Book: Квант. Эйнштейн, Бор и великий спор о природе реальности



Квант. Эйнштейн, Бор и великий спор о природе реальности

Пролог.

Встреча великих


Пауль Эренфест чуть не плакал. Он решился. Скоро начнется конгресс, который продлится неделю. Там будут многие участники квантовой революции, и они попытаются осмыслить значение сделанного ими. И именно там ему придется сказать старому другу Альберту Эйнштейну, что он, Эренфест, принял сторону Нильса Бора. Эренфест, тридцатичетырехлетний австриец, профессор теоретической физики из Лейденского университета (Голландия), был убежден: мир атомов на самом деле так странен и неосязаем, как об этом говорит Бор1.

В записке, переданной Эйнштейну во время заседания, Эренфест неразборчиво написал: “Не смейся! Для профессоров, преподающих квантовую теорию, в чистилище есть специальный семинар, где они вынуждены слушать лекции по классической физике десять часов каждый день”2. “Меня умиляет их наивность, – ответил Эйнштейн. – Кто знает, кто посмеется последним?”3 На самом деле Эйнштейну было совсем не до смеха: на кону стояли сама природа реальности и основы физики.

Фотография участников V Сольвеевского конгресса “Электроны и фотоны”, прошедшего в Брюсселе 24-29 октября 1927 года, отражает финал самого драматического периода в истории физики. Семнадцать из двадцати девяти участников конгресса получили Нобелевскую премию, так что его можно назвать одной из самых впечатляющих “встреч великих”4. Она ознаменовала собой конец “золотого века” физики, конец невероятной эры научного творчества. Последний раз события подобного масштаба происходили во времена научной революции XVII века, во главе которой шли Галилей и Ньютон.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Пауль Эренфест – третий слева в последнем ряду. В первом сидят восемь мужчин и одна женщина. Шестеро из мужчин – лауреаты Нобелевской премии по физике или химии. У женщины сразу две премии: по физике (1903) и химии (1911). Это Мария Кюри. В центре, на почетном месте, восседает еще один нобелевский лауреат. Это Альберт Эйнштейн – самый знаменитый ученый со времен Ньютона. Он смотрит прямо в объектив, и, кажется, ему немного не по себе. Непонятно, что именно является причиной дискомфорта: жесткий воротничок и галстук – или же услышанное на конгрессе в течение прошедшей недели. Справа в конце второго ряда – Нильс Бор. Он выглядит расслабленным и хитровато улыбается. Конгресс для него прошел удачно. Тем не менее в Данию Бор вернулся разочарованным: ему так и не удалось убедить Эйнштейна в правильности “копенгагенской интерпретации”, договориться о природе реальности, открываемой нам квантовой механикой.

Не собиравшийся сдаваться Эйнштейн потратил неделю на то, чтобы показать: квантовая механика не самосогласованна, а “копенгагенская интерпретация” Бора – некорректна. Гораздо позднее Эйнштейн скажет: “Эта теория напоминает мне состряпанный из бессвязных обрывков мыслей набор бредовых идей исключительно умного параноика”5.

Справа от Марии Кюри, с сигарой и шляпой в руке, Макс Планк – человек, открывший кванты. В 1900 году он вынужден был выдвинуть гипотезу о том, что энергия световой волны или любого другого электромагнитного излучения, испускаемого или поглощаемого телом, может складываться только из разного числа небольших порций. Отдельную порцию энергии Планк назвал квантом. Введение кванта энергии означало принципиальный разрыв с давно устоявшимся представлением о том, что энергия излучается или поглощается непрерывно, как текущая из крана вода. В окружающем мире, где безраздельно царит физика Ньютона, вода может капать из крана, но обмен энергией не может происходить отдельными капельками разных размеров. Однако на атомном и субатомном уровнях хозяйничают кванты.

Позднее ученые открыли, что энергия электрона в атоме “квантована”: она может принимать только строго определенные значения. Когда стало понятно, что микромир неспокоен и лишен непрерывности, что он не является съежившейся копией большого мира людей, в котором физические свойства меняются плавно и непрерывно, а при движении из пункта А в пункт С не миновать пункта В, выяснилось, что и другие физические величины квантованы. А квантовая физика утверждает, что электрон в атоме, находившийся в некотором определенном месте, испустив или поглотив квант энергии, может, как по волшебству, оказаться на новом месте, не появляясь в каком-либо промежуточном пункте. Такое поведение частицы находится за пределами понимания классической физики. Это казалось невероятным, равнозначным тому, что тело, вдруг исчезнувшее в Лондоне, в то же мгновение не менее неожиданно появилось бы в Париже, Нью-Йорке или Москве.

Уже к началу 20-х годов стало окончательно ясно, что достижения квантовой физики построены на зыбком фундаменте и не структурированы логически. Из этого состояния замешательства возникла дерзкая новая наука – квантовая механика. В школе до сих пор рассказывают, что атом похож на миниатюрную Солнечную систему, в которой электрон вращается по орбите вокруг ядра. Эта модель атома была забыта. Согласно новой теории, зримого образа атома просто не существует. В 1927 году Вернер Гейзенберг сделал открытие, настолько противоречившее здравому смыслу, что даже ему, вундеркинду квантовой механики, вначале трудно было понять его значение. Он сформулировал так называемый принцип неопределенности, который гласит: если вы хотите узнать точную скорость частицы, то определить точно, где она находится, невозможно (и наоборот).

Никто не понимал, как интерпретировать уравнения квантовой механики и что именно может сказать эта теория о природе реальности на квантовом уровне. Вопросы о причинах и следствиях, а также, например, о том, существует ли Луна, когда никто на нее не смотрит, уже во времена Платона и Аристотеля перешли в ведение философии, но после появления квантовой механики они сделались предметом дискуссии самых выдающихся физиков XX столетия.

Хотя все основные понятия квантовой физики были уже введены, V Сольвеевский конгресс открыл новую главу в истории кванта. Дело в том, что разгоревшийся на этой конференции спор между Эйнштейном и Бором продолжается до сих пор. Многие выдающиеся ученые и философы все еще пытаются выяснить, какова природа реальности и какое описание реальности должно считаться осмысленным. “Никогда еще не велись столь глубокие интеллектуальные споры, – утверждал писатель и ученый Ч. П. Сноу. – Жаль, что их сущность не может стать общим достоянием”6.

Эйнштейн, один из двух главных участников этих дебатов, – легенда XX века. Однажды ему предложили выступить в лондонском театре “Палладиум”. Дамы в его присутствии падали в обморок. В Женеве девушки осаждали его. Сегодня так поклоняются только поп-певцам и кинозвездам. В 1919 году, когда стало известно об изгибании светового луча, наблюдавшемся в момент полного солнечного затмения и предсказанном на основании общей теории относительности, Эйнштейн превратился в научную звезду первой величины. В этом качестве он ездил с лекциями по Америке и в январе 1931 года в Лос-Анджелесе пришел на премьеру фильма Чарли Чаплина “Огни большого города”. Увидев Чаплина и Эйнштейна вместе, толпа начала бурно аплодировать. “Меня приветствуют потому, что все меня понимают, – сказал Чаплин Эйнштейну. – А вас – потому, что не понимает никто”7.

Нильса Бора и тогда, и сейчас знают гораздо меньше. Правда, в 1923 году Макс Борн, сыгравший центральную роль в развитии квантовой механики, писал, что “влияние Бора на теоретические и экспериментальные исследования нашего времени гораздо существеннее, чем какого-либо другого физика”8. В 1963 году, спустя сорок лет, Вернер Гейзенберг заявил, что “в нашем столетии влияние Бора на физику и физиков было самым сильным, сильнее даже влияния Альберта Эйнштейна”9.

В 1920 году, когда Эйнштейн и Бор впервые встретились в Берлине, каждый из них сразу понял, что нашел “спарринг-партнера” и что еще долго без ожесточения и затаенной вражды они будут обмениваться ударами, пытаясь точнее и полнее понять, что такое квант. Это им (и еще некоторым участникам Сольвеевского конгресса 1927 года) обязана своим рождением квантовая физика. “То было героическое время, – вспоминал американский физик Роберт Оппенгеймер, который в 20-е годы был еще студентом. – Период упорной работы в лабораториях, постановки критически важных экспериментов, отчаянных поступков, множества фальстартов и невероятных гипотез. Это было время открытой переписки, наспех созванных конференций, дебатов, критики и блестящих математических импровизаций. Для тех, кто принимал в этом участие, это было время созидания”10. Согласно Оппенгеймеру, отцу атомной бомбы, "они испытывали одновременно и ужас, и экзальтацию, глядя на то новое, что им открылось”.

Без кванта мир, в котором мы живем, был бы совсем другим. Однако почти все XX столетие физики мирились с тем, что квантовая механика отрицает существование реальности за пределами той, которую можно измерить в эксперименте. Именно это заставило американского физика Мюррея Гелл-Манна, лауреата Нобелевской премии, сказать, что квантовая механика – это “мистическая, сбивающая с толку дисциплина, которую никто из нас по-настоящему не понимает, но все знают, как ею пользоваться”11. И ею действительно пользуются. Квантовая механика определяет направление развития и формирует современный мир. Она делает возможным все: от компьютеров до стиральных машин, от мобильных телефонов до атомного оружия.

История кванта начинается в конце XIX века, когда, несмотря на недавнее открытие электрона, рентгеновских лучей, радиоактивности и продолжающейся дискуссии о том, существуют атомы или нет, многие физики были уверены, что ничего значительного уже открыть нельзя. “Наиболее важные фундаментальные законы и явления физической науки уже известны. Эти законы установлены настолько достоверно, что возможность их изменения в связи с новыми открытиями представляется почти невероятной”, – заявил американский физик Альберт Майкельсон в 1899 году. “Будущим исследователям, – утверждал он, – остается уточнять полученные результаты в шестом знаке после запятой”12. Взгляд Майкельсона на физику как на науку “знаков после запятой” разделялся тогда многими. Считалось, что любая нерешенная задача не представляет угрозы для сложившихся физических представлений и что она рано или поздно будет решена с помощью освященных веками теорий и принципов.

Джеймс Клерк Максвелл, величайший физик-теоретик XIX века, еще в 1871 году выступал против такой самоуспокоенности: “Представление о современных экспериментах, сводящихся якобы только к измерениям, распространено так широко, что кажется, будто в скором будущем все основные физические постоянные будут приблизительно оценены, а единственное, что останется ученым – повторять эти измерения с точностью до следующего знака после запятой”13. Но сам Максвелл считал, что настоящей наградой за “тщательно проведенные измерения” является не увеличение точности, а “открытие новых областей исследований” и “формулировка новых научных идей”14. Открытие кванта было результатом именно таких “тщательно проведенных измерений”.

В 90-х годах XIX века многие ведущие немецкие физики были поглощены поиском ответа на давно мучивший их вопрос: какова связь между температурой, цветовой гаммой и интенсивностью света, излучаемого горячим железным прутом? Эта задача казалась тривиальной по сравнению с раскрытием тайны рентгеновских лучей и радиоактивности, заставлявшей физиков стремиться в лаборатории, ставить эксперименты и засиживаться над расчетами. Но для страны, образовавшейся только в 1871 году, поиск решения задачи о горячем железном пруте (позднее она стала называться задачей об абсолютно черном теле) был тесно связан с необходимостью сделать немецкую промышленность способной выдержать конкуренцию с английской и американской. Однако при всех затраченных усилиях лучшие немецкие ученые задачу о горячем пруте решить не могли. В 1896 году им показалось, будто решение найдено, но скоро новые эксперименты показали, что это не так. Эту задачу решил Макс Планк.



ЧАСТЬ I.

Квант

Коротко говоря, то, что я сделал, можно описать только как акт отчаяния.

Макс Планк


Было ощущение, что земля уходит из-под ног, нигде не было видно того, на что можно опереться, на чем можно что-то построить.

Альберт Эйнштейн


Тот, кто не испытал потрясения, столкнувшись впервые с квантовой механикой, не смог, вероятно, ее понять.

Нильс Бор


Глава 1.

Революционер поневоле


Новая научная истина торжествует не потому, что убедила оппонентов и обратила их в свою веру, а скорее из-за того, что со временем они умирают и вырастает новое поколение, для которого эта истина уже привычна”, – писал Макс Планк ближе к концу своей долгой жизни1. Эта граничащая с трюизмом фраза вполне могла бы стать его научным некрологом, если бы он сам не отказался от идей, которые так долго считал истинными. Это был “акт отчаяния”2. Планка – в его темном костюме, накрахмаленной сорочке и черном галстуке-бабочке – можно было бы принять за типичного прусского чиновника конца XIX века, если бы не “проницательные глаза под массивным сводом лысой головы”3. Принимаясь за какую-либо научную задачу, вообще собираясь что-либо предпринять, он был предельно, совсем по-чиновничьи, осторожен. “Мой принцип всегда был таков, – сказал он однажды студентам. – Сначала тщательно выверяй каждый шаг, а потом, если уверен, что справишься, не останавливайся ни перед чем”4. Планк был не из тех, кто легко меняет свои решения.

Его манеры и внешний вид едва ли изменились к 20-м годам XX века. Один из его учеников вспоминал: “Невозможно было представить, что это тот самый человек, который возвестил о начале революции”5. Революционер поневоле, Планк и сам с трудом в это верил. По собственному признанию, он был “настроен миролюбиво”, избегал “сомнительных приключений”6 и был лишен “способности быстро реагировать на интеллектуальное воздействие”7. Чтобы примирить новые идеи со своим глубоким консерватизмом, ему требовались годы. Несмотря на это, в декабре 1900 года именно сорокадвухлетний Планк невольно начал квантовую революцию: он вывел уравнение, описывающее излучение абсолютно черного тела.


Все тела, если они достаточно горячи, излучают одновременно тепло и свет, причем интенсивность излучения и цвет меняются с температурой. Кончик железного прута, оставленного в огне, постепенно краснеет. Если его температура повышается, он становится вишнево-красным, затем желто-оранжевым и, наконец, голубым. Если прут вынуть из огня, он остывает, а его конец окрашивается в обратном порядке в указанные цвета, пока не остывает настолько, что перестает излучать видимый свет. Однако от него еще исходит невидимый поток тепла. Через некоторое время, когда прут остынет настолько, что к нему можно будет прикоснуться, излучение тепла тоже прекращается.

В 1666 году двадцатитрехлетний Исаак Ньютон показал, что луч белого света состоит из набора лучей различных цветов. При прохождении через призму он легко разлагается на семь разноцветных полос: красную, оранжевую, желтую, зеленую, голубую, синюю и фиолетовую8. Ответ на вопрос, определяют ли красный и фиолетовый цвета границы оптического спектра или только той его части, которую может видеть человеческий глаз, был получен в 1800 году. Тогда появились достаточно чувствительные и точные ртутные термометры, и астроном Уильям Гершель поместил один из них перед разноцветными полосами видимого спектра. Он обнаружил, что при перемещении термометра вдоль полосок разных цветов температура повышается, если двигаться от фиолетовой полосы к красной. К его удивлению, температура увеличилась еще немного, когда он случайно оставил термометр чуть дальше конца красной полосы. Гершель обнаружил излучение, которое позднее назвали инфракрасным: невидимый глазу свет, исходящий от нагретого тела9. В 1801 году Иоганн Риттер, изучавший почернение хлорида серебра под действием света, показал, что невидимый свет есть и на другом конце спектра, за фиолетовой полосой. Это ультрафиолетовое излучение.

Тот факт, что при одинаковой температуре все нагретые тела окрашиваются в один и тот же цвет, был известен гончарам задолго до 1859 года, когда Густав Кирхгоф, тридцатичетырехлетний немецкий физик из университета в Гейдельберге, начал теоретическое исследование природы этой корреляции. Чтобы упростить задачу, Кирхгоф ввел понятие “абсолютно черное тело”. Это такое тело, которое является идеальным поглотителем и генератором излучения. Выбор названия оказался вполне удачным. Идеально поглощающее тело не излучает и поэтому кажется черным. Однако если температура идеального генератора излучения настолько велика, что длина волны испускаемого света оказывается в пределах видимой части спектра, оно визуально имеет цвет.

Кирхгоф представлял себе абсолютно черное тело как полый ящик с небольшим отверстием в одной из стенок. Поскольку любое излучение, видимый или невидимый свет, попадает в ящик через отверстие, оно моделирует идеальный поглотитель и ведет себя как абсолютно черное тело. Попав внутрь, излучение поочередно отражается то от одной стенки, то от другой, пока не будет поглощено полностью. Кирхгоф предположил, что абсолютно черное тело окружено изолятором. Поэтому он мог быть уверен, что при нагревании только внутренние поверхности стенок будут генерировать излучение, заполняющее полость.

Сначала стенки (совсем как нагретый железный прут) становятся вишнево-красными, хотя они еще излучают главным образом в инфракрасном диапазоне. Затем, когда температура повышается, стенки становятся бледно-голубыми, поскольку излучаются длины волн из всего спектра: от далекой инфракрасной области до ультрафиолета. Отверстие играет роль идеального излучателя, так как любое проходящее через него излучение представляет собой набор всех длин волн, имеющихся внутри полости при данной температуре.

Кирхгоф доказал математически то, что уже давно знали ремесленники, обжигавшие горшки. Согласно закону Кирхгофа, внутри полости спектр излучения и его интенсивность зависят только от температуры абсолютно черного тела, но не от размера, не от формы и не от материала, из которого оно сделано. Кирхгофу удалось удачно переформулировать задачу о нагретом железном пруте. В его редакции она звучала так: каково для абсолютно черного тела точное соотношение между цветовой гаммой и интенсивностью излучения и величиной излученной энергии при данной температуре? Задача, поставленная Кирхгофом, известна как проблема абсолютно черного тела: требуется измерить спектральное распределение энергии излучения абсолютно черного тела, то есть количество излученной энергии для каждой длины волны, начиная от инфракрасной области спектра и кончая ультрафиолетовой, и вывести формулу для этого распределения при произвольной температуре.

Кирхгоф не имел возможности экспериментировать с реальным абсолютно черным телом, поэтому не смог и продвинуться в построении теории, но направление исследований он указал правильно. Кирхгоф утверждал, что поскольку искомое распределение не зависит от материала, из которого изготовлено абсолютно черное тело, формула, которую надо вывести, должна содержать только две переменные – температуру абсолютно черного тела и длину волны испускаемого излучения. Так как свет является волной, основная характеристика, по которой различаются между собой цвета и оттенки, это длина волны – расстояние между двумя последовательными пиками или впадинами. Величина, обратно пропорциональная длине волны, называется ее частотой. Она равна числу пиков или впадин, через которое проходит некоторая выбранная точка за секунду. Чем больше длина волны, тем меньше ее частота, и наоборот. Есть и другое, эквивалентное определение частоты волны: она равна числу изгибов вверх и вниз, то есть “волнений”, за секунду10.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 1. Характеристики волны.


Из-за технических трудностей при создании реального абсолютно черного тела и отсутствия достаточно точных измерительных приборов для обнаружения излучения и измерения его интенсивности продвижения в решении этой проблемы не было целых сорок лет. Лишь в начале 80-х годов XIX века немецкие компании поставили перед собой задачу сделать такие лампы накаливания, которые могли бы конкурировать с английскими и американскими. Измерение спектра излучения абсолютно черного тела и вывод уравнения, о котором мечтал Кирхгоф, стало приоритетной задачей.

В то время лампы накаливания были последней новинкой в ряду таких новшеств, как дуговая лампа, динамо-машина, электрический мотор и телеграф. Именно они обеспечивали бурное развитие электротехнической промышленности. С каждым новым изобретением все острее чувствовалась нужда в общепризнанной системе единиц и стандартах, которые можно использовать при электрических измерениях.

В 1881 году на парижском Международном конгрессе электриков собрались двести пятьдесят делегатов из двадцати двух стран. Хотя вольт, ампер и некоторые другие единицы уже были определены и поименованы, согласия в вопросе о том, какой стандарт надо использовать при определении светимости, не было, и это мешало разработке наиболее энергосберегающего способа создания искусственного света. Поскольку абсолютно черное тело – идеальный излучатель, оно испускает максимальное количество тепла, то есть инфракрасного излучения. Спектр абсолютно черного тела мог служить эталоном при калибровке и производстве лампочек, которые должны были излучать максимально возможное количество света и при этом как можно меньше нагреваться.

“В условиях конкуренции государств, столь интенсивно продвигающих свои интересы, страна, первой вступившая на новую тропу и начавшая первой развивать новую индустрию, имеет решающий голос”, – писал промышленник и изобретатель динамо-машины Вернер фон Сименс11. Чтобы стать первым, немецкое правительство в 1887 году основало Имперский физико-технический институт (Physikalisch-Technische Reichsanstali). Расположенный на окраине Берлина, в Шарлот-тенбурге, на земле, подаренной Сименсом, PTR был задуман как институт, способный обеспечить победу Германской империи в соревновании с Британией и Америкой. Строительство комплекса продолжалось более десяти лет. В конце концов PTR стал самым оснащенным и самым дорогим исследовательским институтом в мире. Он был создан для того, чтобы, устанавливая стандарты и испытывая новую продукцию, обеспечить полное превосходство Германии в использовании научных достижений. Разработка международно признанного стандарта для измерения яркости свечения была одним из приоритетов института. В PTR необходимость улучшить качество электрических лампочек стала в 90-х годах XIX века движущей силой программы по изучению свойств абсолютно черного тела. Планк оказался нужным человеком в нужном месте в нужное время: кроме улучшения качества лампочек, был открыт квант.


Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в Киле, городе, входившем тогда в состав датской Голштинии. Члены семьи Планков всегда служили церкви и государству. Блестящее положение в гуманитарных науках было обеспечено Максу по праву рождения. Его дед и прадед по мужской линии – выдающиеся теологи, а отец – профессор конституционного права в Мюнхенском университете. Эти люди, чтившие законы божеские и человеческие, были искренними и горячими патриотами. Макс не стал исключением.

Планк учился в одной из самых известных школ Мюнхена – в гимназии им. Максимилиана. Всегда один из лучших в классе, но никогда не первый ученик, он отличался трудолюбием и самодисциплиной. Именно эти качества и требовались: школьная система зиждилась на механическом запоминании множества фактов. Учителя отмечали, что, “несмотря на ребячество”, десятилетний Планк умеет “ясно и логически мыслить” и подает “блестящие надежды”12. В шестнадцатилетнем возрасте Макса привлекали не знаменитые мюнхенские пивные, а опера и концертные залы. Талантливый пианист, он подумывал выбрать карьеру профессионального музыканта. Сомневаясь в правильности такого выбора, он спросил совета. И услышал: “Если вы спрашиваете, то лучше займитесь чем-нибудь другим”13.

В октябре 1874 года, в возрасте шестнадцати лет, Планк стал студентом Мюнхенского университета. Он выбрал физику. Ему все сильнее хотелось узнать, как устроен мир. В отличие от гимназий с их почти военными порядками, немецкие университеты фактически предоставляли студентам полную свободу. Контроля над успеваемостью почти не было. Не было и установленных требований. Такая система позволяла студентам переходить из одного университета в другой, выбирая те курсы, которые им нравились. Рано или поздно желающие сделать научную карьеру становились слушателями самых известных профессоров в самых престижных университетах. После трех лет учебы в Мюнхене, услышав, что “вряд ли еще стоит заниматься физикой”, поскольку в ней ничего стоящего сделать больше нельзя, Планк перешел в ведущий университет немецкоязычного мира – в Берлинский14.

После объединения Германии под эгидой Пруссии и победы над Францией в войне 1870-1871 годов Берлин стал столицей молодого могучего европейского государства. Город, расположенный в месте слияния рек Хафель и Шпрее, благодаря французским контрибуциям быстро менял облик, пытаясь сравняться с Лондоном или Парижем. В 1871 году население Берлина составляло всего 865 тысяч человек, но к 1900 году оно возросло до двух миллионов, и город стал вторым по величине в Европе15. Среди новых горожан были евреи, бежавшие от преследований в Восточной Европе, в частности – от жестоких погромов в царской России. Неизбежно взлетели и цена на жилье, и стоимость жизни. Увеличилось число нищих и бездомных. Когда в разных частях города как грибы после дождя начали появляться лачуги, фабриканты, изготавливавшие картонные коробки, стали предлагать “хорошие дешевые ящики для проживания”16.

И все же, хотя Берлин и демонстрировал приезжим неприглядные стороны жизни, Германия вступала в период беспрецедентного индустриального роста, технологического прогресса и экономического процветания. Страна быстро развивалась главным образом за счет контрибуций и отмены внутренних таможенных тарифов после объединения германских государств. К началу Первой мировой войны Германия вышла на второе место в мире по валовому продукту и экономической мощи, уступая только Соединенным Штатам. В то время она выплавляла две трети европейской стали, добывала половину угля и производила больше электроэнергии, чем Британия, Франция и Италия вместе взятые. Даже рецессия и спад, потрясшие Европу после краха фондовой биржи в 1873 году, лишь замедлили на несколько лет поступательное движение Германии.

После объединения было решено организовать в Берлине – новом государстве в миниатюре – лучший в мире университет. Из Гейдельберга переманили самого известного немецкого физика и выдающегося физиолога Германа фон Гельмгольца. Опытный хирург, изобретатель офтальмоскопа, он внес фундаментальный вклад в понимание работы человеческого глаза. Пятидесятилетний эрудит знал себе цену. Кроме жалования, в несколько раз превышавшего обыкновенное, Гельмгольц потребовал создать физический институт. Он еще строился, когда в 1877 году Планк появился в Берлине и начал посещать лекции в главном здании университета, бывшем дворце на Унтер-ден-Линден, напротив Оперы.

Гельмгольц как преподаватель его жестоко разочаровал. “Было заметно, – вспоминал Планк, – что Гельмгольц никогда тщательно не готовился к лекциям”17. А Густав Кирхгоф, перешедший из Гейдельберга на должность профессора теоретической физики, напротив, готовился к лекциям настолько хорошо, что читал их “как заученный текст, сухо и монотонно”18. Планк, который столь многого ждал от учебы в Берлине, признавался, что “лекции этих людей затягивали в болото”19. Пытаясь утолить жажду научного знания, он много читал и однажды наткнулся на работу Рудольфа Клаузиуса, пятидесятишестилетнего физика из Боннского университета20.

По контрасту с бесцветным преподаванием двух почтенных профессоров “прозрачность стиля и ясность аргументации” Клаузиуса покорили Планка21. После чтения статей Клаузиуса по термодинамике к Планку вернулось страстное желание заниматься физикой. Основы термодинамики – науки, изучающей соотношение между теплотой и различными формами энергии, – в то время сводились к двум законам22. Первый гласит: энергия, в какой бы форме она ни существовала, сохраняется. Ее нельзя ни создать, ни уничтожить. Энергия только может менять форму. Яблоко, висящее на дереве, обладает потенциальной энергией в силу того, что находится в поле тяжести Земли, на некотором расстоянии от ее поверхности. Когда яблоко падает, его потенциальная энергия преобразуется в кинетическую – энергию движения.



Планк услышал о законе сохранения энергии еще в школе. Позднее он скажет, что этот закон был для него “откровением, поскольку имел абсолютную, универсальную, не зависящую от человека ценность”23. В тот момент ему удалось соприкоснуться с вечностью, и с тех пор он считал открытие абсолютных или фундаментальных законов природы “высшей научной целью”24. Теперь зачарованный Планк читал данную Клаузиусом формулировку второго закона термодинамики: “Невозможен процесс, единственным результатом которого является самопроизвольная передача тепла от более холодного тела к более горячему”25. (Что означает слово “самопроизвольная”, можно понять на примере холодильника. Этот прибор должен быть подсоединен к внешнему источнику энергии, в данном случае электрической, и именно это приводит к тому, что тепло переходит от более холодного тела к более горячему.)

Планк понял, что Клаузиус не просто утверждает очевидное: за его словами скрывается нечто гораздо более важное. Тепловой поток, перенос энергии от тела А к телу В, происходящий из-за разности температур, объясняет такие повседневные события, как остывание чашки с кофе или таяние кубиков льда в стакане. Но если систему оставить в покое, обратный процесс никогда не произойдет. А почему бы нет? Закон сохранения не запрещает чашке с кофе нагреваться при одновременном остывании окружающего ее воздуха, стакану воды становиться теплее, а льду – холоднее. Этот закон не запрещает образование потока тепла от холодного тела к горячему. Однако существует нечто, что этому препятствует. Клаузиус назвал это нечто энтропией. Это понятие – центральное для понимания того, почему в природе одни процессы идут, а другие – нет.

Когда чашка с кофе остывает, окружающий воздух становится теплее, поскольку энергия рассеивается и необратимо теряется, что и обеспечивает невозможность обратного процесса. Закон сохранения энергии является тем способом, с помощью которого природа подводит баланс при проведении любой возможной физической “сделки”, однако она требует платить лишь за те сделки, которые действительно имели место. Согласно Клаузиусу, энтропия – это цена, которая определяет, произойдет сделка или не произойдет. В любой изолированной системе оказываются возможными только те процессы, при которых энтропия возрастает либо остается постоянной. Все процессы, при которых энтропия уменьшается, строго запрещены.

Клаузиус определил энтропию как количество тепла, получаемого или отдаваемого телом или системой, деленное на температуру, при которой происходит процесс. Если горячее тело при температуре 500°С передает 1000 единиц энергии более холодному телу, находящемуся при температуре 250°С, его энтропия уменьшается: -1000 ÷ 500 = -2. Если более холодное тело, находящееся при температуре 250°С, приобретает 1000 единиц энергии, то: 1000 ÷ 250 = 4, и энтропия этого тела возрастает на 4. Суммарная энтропия системы, объединяющей горячее и холодное тело, возросла на 2 единицы энергии на градус. Все действительно имеющие место процессы необратимы, поскольку должны приводить к возрастанию энтропии. Это тот закон природы, который препятствует самопроизвольной передаче тепла от холодного к горячему. Только идеальные процессы, в которых энтропия остается постоянной, могут быть обратимы. Они, однако, никогда не реализуются и происходят только в головах физиков. Энтропия Вселенной стремится к максимуму.

Планк считал, что энтропия является, наряду с энергией, “самым важным из свойств физических систем”26. Вернувшись в Мюнхенский университет после годичного пребывания в Берлине, он посвятил диссертацию концепции необратимости. Эта работа должна была стать его визитной карточкой. Однако, к ужасу Планка, “даже те физики, которым эта проблема была близка, не только не одобрили, но даже не проявили интерес” к его исследованию27. Гельмгольц даже не прочитал диссертацию; Кирхгоф прочитал, но не согласился с выводами, а Клаузиус, оказавший такое сильное влияние на Планка, так и не ответил на его письмо. “Воздействие моей диссертации на физиков тех дней было нулевым”, – с горечью вспоминал Планк даже семьдесят лет спустя. Но, повинуясь “некоему внутреннему импульсу”, он не отступил28. Термодинамика, в частности второй ее закон, – вот чем занимался Планк в начале своей научной карьеры29.

Немецкие университеты были государственными учреждениями. Экстраординарные и ординарные профессора (и те, и другие занимали кафедру, при этом оклад экстраординарного профессора был меньше) становились государственными служащими. Их утверждением в должности занималось Министерство образования. В 1880 году Планк стал приват-доцентом Мюнхенского университета. Он не был ни государственным служащим, ни сотрудником университета, а просто приобрел право преподавать за вознаграждение, которое платили студенты, посещавшие лекции. Пять лет спустя он все еще ждал должности экстраординарного профессора. Шансов было мало. Планк был теоретиком. Постановка экспериментов его не интересовала, а теоретическая физика еще не оформилась как самостоятельная дисциплина. Даже в 1900 году в Германии было всего шестнадцать профессоров теоретической физики.

Планк знал: продвижение по карьерной лестнице будет означать, что ему “удалось добиться научного признания”30. Его час пробил, когда было объявлено, что работа, которую следовало представить для получения престижной премии Геттингенского университета, должна называться “Природа энергии”. Когда он работал над ней, в мае 1885 года пришло “спасительное письмо”31: двадцатисемилетнему Планку предложили место экстраординарного профессора в Киле. Макс заподозрил, что этим он обязан дружбе своего отца с главой факультета физики в Киле. Он знал, что перед ним в очереди было много известных людей, ждущих места. Тем не менее он принял предложение, а работу для участия в конкурсе закончил сразу после прибытия в родной город.

Хотя на соискание премии было представлено всего три работы, прошло два года, прежде чем объявили, что победителей не будет. Планку присудили второе место, но жюри отказалось вручить ему премию из-за того, что он поддержал Гельмгольца во время научного диспута с представителем Геттингенского университета. Поведение судей заставило Гельмгольца обратить внимание на Планка и его работу. Планк провел в Киле немногим более трех лет, когда в ноябре 1888 года его удостоили неожиданной чести. В списке возможных кандидатов Планк не был ни первым, ни вторым, но когда те, кто был впереди него, отказались, при поддержке Гельмгольца именно его пригласили занять вместо Густава Кирхгофа пост профессора теоретической физики в Берлинском университете.

Весной 1889 года столица была уже не той, какой Планк покинул ее одиннадцать лет назад. Зловоние, шокировавшее приезжих, исчезло после того, как современная канализационная система заменила открытые стоки. Главные улицы теперь освещались электрическими фонарями. Гельмгольц уже не был главой университетского института физики. Он возглавлял Имперский физико-технический институт – удивительное исследовательское учреждение, расположенное в трех милях от университета. Август Кундт, его преемник, к назначению Планка отношения не имел, но приветствовал “чудесное приобретение” и считал нового профессора “прекрасным человеком”32.

В 1884 году семидесятитрехлетний Гельмгольц и Кундт, которому было всего пятьдесят пять, умерли один за другим в течение месяца. Тридцатишестилетний Планк, который лишь двумя годами ранее получил наконец должность ординарного профессора, остался во главе физического отделения самого известного немецкого университета. Ему пришлось взвалить на себя весь груз ответственности. В обязанности Планка входило также рецензирование статей для “Аннален дер физик”. Теперь он обладал огромным влиянием, поскольку имел право наложить вето на публикацию любой работы по теоретической физике, представленной в главный немецкий физический журнал. Ощущая гнет нового высокого положения и глубоко скорбя о потере коллег, Планк искал утешения в работе.

Как глава группы берлинских физиков он был хорошо осведомлен о связанных с интересами промышленников исследованиях по проблеме абсолютно черного тела, идущих в PTR. Хотя термодинамика была основой теоретического анализа излучения абсолютно черного тела, Планка останавливало отсутствие надежных экспериментальных данных. Он и не пытался вывести уравнение, которое не сумел получить Кирхгоф. Однако вскоре открытие, сделанное одним из его старых друзей из PTR, не позволило Планку больше уклоняться от решения задачи об абсолютно черном теле.


В феврале 1893 года двадцатидевятилетний Вильгельм Вин получил простую математическую формулу, описывающую, как изменение температуры влияет на распределение излучения абсолютно черного тела33. Вин обнаружил, что при возрастании температуры абсолютно черного тела длина волны, при которой излучение достигает своего максимального значения, всегда уменьшается34. Уже было известно, что увеличение температуры приводит к увеличению полной излученной энергии, но, согласно закону смещения Вина, тут имеет место точное соотношение: произведение длины волны, на которую приходится максимум излучения, и температуры абсолютно черного тела остается постоянным. Если температура увеличивается вдвое, пиковая длина вдвое уменьшается.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 2. Распределение интенсивности излучения абсолютно черного тела, иллюстрирующее закон смещения Вина.


Открытие Вина означало, что достаточно вычислить значение этого остающегося постоянным числа, измеряя при данной температуре “пиковую” длину волны (длину волны, соответствующей максимальной интенсивности излучения), и тогда пиковую длину волны можно будет найти при любой другой температуре35. Этот закон объяснял и изменение цвета нагретого железного прута. Если нагревать прут, то при низкой температуре излучаются главным образом длинные волны из инфракрасной области спектра. При повышении температуры интенсивность излучения при всех длинах волн становится больше, а длина волны, на которую приходится пик излучения, уменьшается. Соответственно и цвет излученного света меняется от красного к оранжевому, затем прут становится желтым и, наконец, светло-голубым, по мере того, как увеличивается излучение из ультрафиолетовой области спектра.

Вин принадлежал к тому уже почти исчезнувшему типу физиков, которые были одновременно очень образованными теоретиками и искусными экспериментаторами. Он открыл закон смещения в свободное от работы время и после уговоров опубликовал его как “частное сообщение”, не получив разрешения PTR на публикацию. В то время он работал в лаборатории оптики PTR под руководством Отто Люммера. В обязанности Вина входила практическая работа по подготовке экспериментального исследования излучения абсолютно твердого тела.

Первой ступенью этих исследований было конструирование достаточно хорошего фотометра – прибора, позволяющего сравнивать интенсивность света (количество энергии в данном диапазоне длин волн) от разных источников, таких как газовая лампа и электрическая лампочка. Лишь осенью 1895 года Люммеру и Вину удалось улучшить модель полого абсолютно черного тела, которое можно было однородно нагревать.

В то время как Вин и Люммер продолжали днем разрабатывать новую модель абсолютно черного тела, вечером первый пытался найти уравнение Кирхгофа для распределения излучения абсолютно черного тела. В 1896 году Вин на основании своих данных об энергии излучения абсолютно черного тела в коротковолновой области спектра вывел формулу, которую очень скоро подтвердил Фридрих Пашен из университета в Ганновере.

В июне того же года, когда сообщение о законе распределения появилось в печати, Вин оставил PTR ради должности экстраординарного профессора в Высшей технической школе в Ахене. В 1911 году он получил Нобелевскую премию по физике за открытия в области законов, управляющих тепловым излучением. А Люммер, оставшийся в PTR, продолжил экспериментальную проверку закона распределения. Для чистоты эксперимента ему требовалось провести измерения в таком широком диапазоне высоких температур, который никогда прежде не исследовался. Два долгих года совместной работы с Фердинандом Курльбаумом и Эрнстом Прингсгеймом ушли на усовершенствование модели абсолютно черного тела. Наконец в 1898 году у него в руках оказалось соответствовавшее последнему слову техники нагревающееся электричеством устройство – итог более чем десятилетней кропотливой работы. С его помощью можно было достичь температуры 1500°С.

Отложив на графике интенсивность излучения вдоль вертикальной оси, а длину волны излучения – вдоль горизонтальной, Люммер и Прингсгейм обнаружили, что сначала при росте длины волны интенсивность возрастает, а затем, достигнув максимума, начинает падать. Спектральное распределение энергии излучения абсолютно черного тела по форме напоминает плавник акулы. Форма кривой тем отчетливее, чем выше температура. Нагревая абсолютно черное тело до разных температур, снимая показания приборов и строя графики, Люммер и Прингсгейм убедились, что при увеличении температуры длина волны, при которой излучение достигает максимума, смещается по направлению к ультрафиолетовому концу спектра.

Свои результаты они представили 3 февраля 1899 года на заседании Немецкого физического общества36. Доклад делал Люммер. Он объявил собравшимся (среди них был Планк), что измерения подтверждают закон смещения Вина, однако ситуация с этим законом ясна не до конца. Экспериментальные данные в целом согласуются с теорией Вина, но имеет место небольшое расхождение в инфракрасной области спектра37. Все считали такие результаты ошибкой эксперимента. Но это будет достоверно доказано, только “если удастся поставить новые эксперименты, охватывающие еще более широкий интервал длин волн и еще более широкую область температур”38.

Через три месяца Фредерик Пашен сообщил, что его измерения, хотя и выполненные при более низких температурах, чем измерения Люммера и Прингсгейма, полностью согласуются с предсказаниями закона смещения Вина. Планк вздохнул с облегчением и представил работу Пашена на сессии Прусской академии наук. Закон Вина овладел его воображением. Для Планка теоретический вывод выражения для спектрального распределения энергии излучения абсолютно черного тела был ничем иным, как поиском абсолюта, а поскольку он “всегда считал поиск абсолюта сверхзадачей всей научной деятельности, то с легким сердцем принялся за работу”39.

В мае 1896 года, вскоре после того, как Вин опубликовал свой закон распределения, Планк предпринял попытку обосновать этот закон и вывести формулу Вина, исходя из начал термодинамики. Тремя годами позднее, в мае 1899-го, ему показалось, что, призвав на помощь непререкаемый авторитет второго закона термодинамики, он добился успеха. С ним согласились и, несмотря на непрекращающиеся споры экспериментаторов, начали называть закон Вина законом Вина – Планка. Последний был убежден в своей правоте и утверждал, что “границы применимости нового закона, если они вообще есть, совпадают с границами применимости второго закона термодинамики в теории теплоты”40. Планк выступал за проверку закона распределения, считая ее необходимой, поскольку для него это одновременно означало проверку второго закона термодинамики. И он получил то, что хотел.

В начале ноября 1899 года, потратив девять месяцев на дополнительные измерения с целью исключить возможность экспериментальных ошибок, Люммер и Прингсгейм сообщили: обнаружено “систематическое расхождение между теорией и экспериментом”41. Хотя при малых длинах волн теория и эксперимент прекрасно согласовались, при больших длинах волн закон Вина систематически завышает интенсивность излучения. Однако через несколько недель Пашен выступил с противоположным заявлением. Его новые данные свидетельствовали, что закон распределения “представляется строго исполняющимся законом природы”42.

Так как большинство ведущих экспертов работало в Берлине, проходившие в столице заседания Немецкого физического общества стали основной ареной дискуссий об излучении абсолютно черного тела и статусе закона Вина. Это стало главной темой собрания Немецкого физического общества 2 февраля 1900 года (такие собрания проходили каждые две недели), когда Люммер и Прингсгейм обнародовали результаты новейших измерений. В инфракрасной области спектра они обнаружили систематическое расхождение между результатами измерений и предсказаниями закона Вина. Оно не могло быть ошибкой эксперимента.

Когда стало очевидно, что закон Вина неверен, начались отчаянные попытки найти ему замену. Но все предлагавшиеся паллиативные варианты не подходили. Было ясно: чтобы установить, где и в какой мере нарушается этот закон, требуются новые опыты при еще больших длинах волн. Ведь выполнялся же он в области более коротких длин волн и не противоречил всем экспериментам, кроме тех, которые были выполнены Люммером и Прингсгеймом.

Планк прекрасно понимал, что любая теория отдана на милость твердо установленным экспериментальным данным. Но столь же хорошо он понимал: “Можно не сомневаться, что расхождение между экспериментом и теорией имеет место, если данные разных наблюдателей в основном согласуются”43. Тем не менее раскол между экспериментаторами заставил его пересмотреть обоснованность своих рассуждений. В конце сентября 1900 года, когда Планк еще занимался проверкой вывода своей формулы, нарушение закона Вина глубоко в инфракрасной области спектра подтвердилось.

Точку в этом вопросе поставили Генрих Рубенс (близкий друг Планка) и Фердинанд Курльбаум. Постоянным местом работы Рубенса была Высшая техническая школа на Берлинер-штрассе, где тридцатипятилетний физик незадолго до этого получил должность профессора. Однако основное время Рубенс проводил в расположенном по соседству PTR, куда его приглашали работать коллеги. Именно здесь вместе с Фердинандом Курльбаумом он изготовил модель абсолютно черного тела, позволявшую проводить измерения в неисследованной далекой инфракрасной области спектра. В течение лета они проверяли выполнение закона Вина в интервале длин волн от 0.03 мм до 0.06 мм в интервале температур от 200 до 1500°С. Оказалось, что при таких больших длинах волн различие между теорией и экспериментом настолько велико, что может свидетельствовать только об одном: закон Вина не выполняется.

Рубенс и Курльбаум хотели представить свои результаты в виде доклада Немецкому физическому обществу. Ближайшее заседание было назначено на пятницу, 5 октября. На написание доклада времени почти не оставалось, и они решили подождать две недели до следующего заседания. Однако Рубенс знал, что Планку не терпится узнать новости.


Дом, в котором полвека прожил Планк, стоял посреди огромного сада в Грюневальде, богатом пригороде Западного Берлина, среди элегантных вилл профессоров, банкиров и юристов. Седьмого октября, в воскресенье, на обед к Планку пришли Рубенс с женой. Вскоре разговор друзей неизбежно свернул на физику и на задачу об абсолютно черном теле. Рубенс рассказал, что его последние измерения не оставляют места для сомнений: закон Вина нарушается при больших длинах волн и высоких температурах. Планк узнал, что при таких длинах волн интенсивность излучения абсолютно черного тела пропорциональна температуре.

Тем вечером Планк попытался вывести формулу, которая позволила бы воспроизвести энергетический спектр излучения абсолютно черного тела. Ему было известно три очень важных факта. Во-первых, в области коротких длин волн закон Вина для интенсивности излучения справедлив. Во-вторых, он нарушается в инфракрасной области спектра, где, как показали Рубенс и Курльбаум, интенсивность пропорциональна температуре. В-третьих, закон смещения Вина правилен. Планку предстояло найти способ собрать вместе эти три детали головоломки и написать формулу для интенсивности излучения. Взявшись за решение этой задачи, он использовал весь свой опыт, накопленный за годы упорной работы.

После нескольких неудачных попыток формулу он получил. Она выглядела многообещающе. Но было ли это именно то уравнение Кирхгофа, которое так давно искали? Справедливо ли оно при любых температурах и для любой области спектра? Планк написал Рубенсу записку и среди ночи пошел ее отправлять. Через несколько дней Рубенс снова появился в доме Планка. Сравнив формулу Планка со своими данными, он обнаружил почти идеальное совпадение.

В пятницу 19 октября на заседании Немецкого физического общества, где присутствовали Рубенс и Планк, Фердинанд Курльбаум сделал формальное сообщение о том, что закон Вина справедлив только для коротких длин волн и что он нарушается при больших длинах волн в инфракрасной области спектра. После того как Курльбаум закончил говорить, встал Планк. В повестке дня тема его краткого “сообщения” была обозначена так: “Об одном улучшении закона излучения Вина”. Планк начал выступление словами: “Я сам на заседаниях общества высказывал ту точку зрения, что закон Вина с необходимостью должен быть справедлив”44. Но когда Планк продолжил, стало ясно, что предлагается не просто “улучшение”, не просто попытка поправить закон Вина: речь идет о совершенно новом законе – собственном законе Планка.

Проговорив менее десяти минут, Планк написал на доске свое уравнение для излучения абсолютно черного тела. Обернувшись, он посмотрел на знакомые лица в зале и сказал, что эта формула, “насколько я могу судить, соответствует всем экспериментальным данным, опубликованным к настоящему времени”45. Ответом были вежливые кивки. Молчание зала можно было понять. В конце концов то, что только что предложил Планк, было еще одной подгоночной формулой для описания экспериментальных результатов. Ведь уже предлагались другие уравнения, призванные восполнить пробел, если все же подтвердится отклонение от закона Вина при больших длинах волн.

На следующий день Рубенс пришел поддержать Планка и сказать ему, что “после окончания заседания он в ту же ночь сравнил формулу с результатами своих измерений… и обнаружил удовлетворительное согласие по всем пунктам”46. Меньше чем через неделю Рубенс и Курльбаум сообщили, что они проверили пять разных формул. Сравнив их со своими данными, они выяснили, что наиболее точной является формула Планка. Пашен также подтвердил, что формула Планка согласуется с экспериментом. Однако, несмотря на поддержку экспериментаторов, Планк был озабочен.

Формулу он получил, но что она означала? Какова стоящая за этим физика? Планк понимал, что если ответа на эти вопросы не будет, его результат в лучшем случае окажется “улучшением” закона Вина, “просто формулой, обнаруженной в результате счастливой догадки”, “лишь формально имеющей какое-то значение”47. “Именно поэтому, – скажет Планк позднее, – в первый же день после того, как я сформулировал этот закон, я постарался сделать все, чтобы наполнить его истинным физическим смыслом”48. Для этого надо было вывести искомую формулу, используя шаг за шагом основные физические принципы. Планк знал, куда он должен прийти, но ему надо было определить путь, которым туда можно было попасть. У него был бесценный указатель: уравнение. Вопрос заключался лишь в том, какую цену он готов заплатить за путешествие?

Следующие шесть недель, вспоминал Планк, он “работал так рьяно, как никогда в жизни”, а затем “тьма рассеялась, и неожиданно забрезжил свет в конце туннеля”49. Тринадцатого ноября он написал Вину: “Моя новая формула хороша, а теперь у меня есть и ее теоретическое обоснование, которое через четыре недели я представлю здесь [в Берлине] на Физическом обществе”50. Планк ничего не сказал Вину ни о той напряженной интеллектуальной борьбе, результатом которой стала эта теория, ни о самой теории. Все это время он долго и упорно добивался того, чтобы привести свою формулу в соответствие с двумя великими теориями, лежащими в основании физики XIX столетия: с термодинамикой и электродинамикой. Эту борьбу он проиграл.

Планк был убежден, что “теоретическое объяснение должно быть получено любой ценой, не важно, сколь она будет высока”51. Он “готов был пожертвовать любым из физических законов, в справедливость которых свято верил”52. Планк уже не заботился о том, чего это будет ему стоить, лишь бы удалось “получить правильный ответ”53. Для удивительно сдержанного человека, чувствовавшего себя свободно только за пианино, это было очень громкое заявление. Доведенный до изнеможения борьбой за объяснение своей формулы, он был вынужден совершить “акт отчаяния”. Это и привело его к открытию кванта54.


При нагревании стенок абсолютно черного тела внутрь полости излучается весь спектр частот: инфракрасные, видимые и ультрафиолетовые. Последовательный теоретический вывод формулы Планка должен был основываться на физической модели, с помощью которой можно было бы воспроизвести спектральное распределение энергии излучения абсолютно черного тела. Кое-что уже приходило Планку на ум. Его не смущало, что такая модель не отражала в полной мере реальность. Единственное, чего хотел Планк, – найти правильное соотношение между частотами и, следовательно, длинами волн излучения внутри полости. Наиболее простую модель удалось придумать, воспользовавшись тем, что распределение частот зависит только от температуры, но не от материала, из которого изготовлено абсолютно черное тело.

В 1882 году Планк писал: “Несмотря на все успехи, достигнутые атомной теорией, ясно, что в конце концов она уступит место предположению о непрерывности материи”55. Восемнадцать лет спустя он все еще не верил в атомы: неопровержимого доказательства их существования не было. Из теории электромагнетизма Планк знал, что электрический заряд, колеблющийся с определенной частотой, испускает и поглощает излучение только той же частоты. Поэтому он представил себе стенки абсолютно черного тела в виде набора огромного числа осцилляторов. Хотя каждый осциллятор излучает всего одну частоту, вместе они могут излучать весь спектр частот, которые присутствуют внутри абсолютно черного тела.

Маятник – это осциллятор, частота которого равна числу колебаний за одну секунду. Одно колебание – это отдельное качание туда и обратно, возвращающее маятник в исходное положение. Другой пример осциллятора – груз на пружине. Его частота равна числу прыжков вверх и вниз, совершаемых грузом за секунду, если покоящийся груз потянуть вниз и отпустить. К тому времени, когда Планк для своей теоретической модели использовал то, что он назвал осцилляторами, физика таких колебаний давно уже была известна, а сами колебания маятника или груза получили название “простого гармонического движения”.

Чтобы иметь возможность генерировать разные частоты, Планк представил себе совокупность осцилляторов как набор невесомых пружинок различной жесткости, каждая из которых обладает электрическим зарядом. Нагревание стенок абсолютно черного тела доставляет системе энергию, нужную, чтобы привести осцилляторы в движение. Возбужден данный осциллятор или нет, зависит только от температуры. Если осциллятор активен, он испускает и поглощает излучение внутри полости. Если поддерживать постоянную температуру, через определенное время устанавливается баланс такого динамического обмена энергией излучения и достигается состояние термодинамического равновесия.

Спектральное распределение энергии излучения абсолютно черного тела описывает то, как полная энергия делится между частотами. Планк предположил, что интенсивность излучения определяется числом осцилляторов, колеблющихся на данной частоте, и теперь должен был придумать способ, позволяющий распределить энергию излучения по осцилляторам. Через несколько недель упорного труда Планк понял, что не может вывести формулу, исходя из физических представлений, так долго воспринимавшихся им как символ веры. В отчаянии он обратился к идеям австрийского физика Людвига Больцмана, наиболее рьяного сторонника теории атомов. На пути к заветной формуле Планку пришлось стать вероотступником и после долгой “открытой неприязни к атомной теории”56 признать, что атом представляет собой нечто большее, чем просто удобное допущение.

Людвиг Больцман был плотным, небольшого роста человеком со впечатляющей бородой, какие носили в конце XIX века. Он родился в Вене 20 февраля 1844 года в семье акцизного чиновника. Некоторое время Больцман учился игре на пианино у композитора Антона Брукнера, но физиком оказался лучшим, нежели пианистом. В 1866 году Больцман защитил докторскую диссертацию в Венском университете и быстро стал известен благодаря своему фундаментальному вкладу в кинетическую теорию газов, названную так потому, что ее сторонники верили: газы состоят из атомов или молекул, находящихся в постоянном движении. Позднее, в 1884 году, Больцман теоретически обосновал закон, ранее сформулированный на основе анализа экспериментальных данных его прежним наставником Йозефом Стефаном. Согласно этому закону, полная энергия излучения абсолютно черного тела возрастает пропорционально четвертой степени температуры T4, или T x T x T x T. Это значит, что если температуру абсолютно черного тела увеличить в два раза, излученная энергия увеличится в шестнадцать раз.

Больцман был знаменитым педагогом. Несмотря на сильную близорукость, он, хотя и был теоретиком, оказался очень талантливым экспериментатором. Когда в одном из ведущих европейских университетов освобождалось место профессора, его имя обычно стояло в списке претендентов. Только после того, как Больцман отказался от места профессора Берлинского университета, освободившегося после смерти Густава Кирхгофа, эту вакансию, переведя ее в более низкую категорию, предложили Планку. К 1900 году Больцман, всеми признанный теоретик, много раз переезжавший с места на место, был преподавателем Лейпцигского университета. Однако многие, в их числе и Планк, все еще считали его подход к термодинамике неприемлемым.

Больцман верил, что свойства газов, например давление, – это макроскопическое проявление микроскопических процессов, управляемых законами механики и теории вероятности. Те, кто верил в существование атомов, полагали, что законы классической физики Ньютона управляют движением каждой молекулы газа, но использовать эти законы для определения положения и скоростей всего несметного числа молекул газа практически невозможно. В 1860 году двадцативосьмилетнему шотландскому физику Джеймсу Клерку Максвеллу удалось описать движение молекул газа, не измеряя отдельно скорость каждой из них. Воспользовавшись методами статистики и теории вероятности, он нашел наиболее вероятное распределение скоростей молекул газа, беспрестанно сталкивающихся друг с другом и со стенками сосуда. Применение статистики и теории вероятности было смелым новаторством, позволившим Максвеллу объяснить многие свойства газов. Больцман, который был на тринадцать лет моложе Максвелла, пошел по его стопам при обосновании кинетической теории газов. В 70-х годах он продвинулся еще на шаг вперед. Связав энтропию с беспорядком, он предложил статистическую интерпретацию второго закона термодинамики.

Согласно утверждению, известному как принцип Больцмана, энтропия есть мера вероятности осуществления какого-либо определенного состоянии системы. Например, хорошо перетасованная колода карт – это неупорядоченная система с высокой энтропией. Однако новая упаковка, в которой карты упорядочены по мастям и по значениям от двойки до туза, – строго упорядоченная система с низкой энтропией. Согласно Больцману, второй закон термодинамики имеет отношение к эволюции системы из состояния, реализующегося с малой вероятностью (и поэтому с малой энтропией) в более вероятное состояние с большой энтропией. Второй закон термодинамики не является непреложным. Система может перейти из неупорядоченного состояния в более упорядоченное, как и перетасованную колоду можно упорядочить, разложив карты по мастям. Однако шанс, что такой переход произойдет самопроизвольно, настолько мал, что время, которое предстоит ждать этого события, может во много раз превышать возраст Вселенной.

Планк верил, что второй закон термодинамики непреложен и энтропия возрастает всегда. Согласно же интерпретации Больцмана, энтропия возрастает почти всегда. С точки зрения Планка, между этими двумя формулировками лежала огромная пропасть. Для него стать на точку зрения Больцмана было равнозначно отречению от всего, что он как физик считал святым, но выбора у него не оставалось – надо было вывести правильную формулу для излучения абсолютно черного тела: “До тех пор я не обращал внимания на соотношение между энтропией и вероятностью, совершенно не интересовался им, считая, что каждый вероятностный закон допускает существование исключений. А я в то время был убежден, что второй закон термодинамики справедлив без всяких исключений”57.

Состояние с максимальной энтропией и максимальным беспорядком – наиболее вероятное состояние системы. Для абсолютно черного тела это состояние теплового равновесия – именно то, что требовалось Планку, чтобы найти наиболее вероятное распределение энергии по осцилляторам. Если имеется всего тысяча осцилляторов и десять из них колеблются с частотой ν, именно они определяют интенсивность излучения на этой частоте. Поскольку частота каждого из электрических осцилляторов Планка фиксирована, количество излучаемой и поглощаемой им энергии зависит только от его амплитуды, то есть от размаха колебаний. Частота колебаний маятника, совершающего пять взмахов за пять секунд, равна одному колебанию в секунду. Однако если при раскачивании движение происходит по большой дуге, маятник обладает большей энергией, чем если бы дуга была меньше. Частота остается неизменной, поскольку она определяется длиной маятника, но избыточная энергия позволяет ему двигаться быстрее, описывая большую дугу. Поэтому маятник совершает то же число колебаний, как такой же маятник, двигающийся по более короткой дуге.

Планк понял, что, используя технику Больцмана, он может получить свою формулу для распределения излучения абсолютно черного тела, только если осцилляторы поглощают и излучают энергию порциями, размер которых пропорционален частоте колебаний. Планк говорил, что “самым важным местом всего расчета” было предположение о том, что при данной частоте энергия состоит из набора равных и неделимых “элементов энергии”. Позднее он назвал их квантами58.

Ведомый своей формулой, Планк был вынужден разделить энергию (E) на порции размером hν, где ν – частота осциллятора, a h — константа. Позднее равенство E = станет одной из самых известных формул. Если, например, частота будет равна 20, a h = 2, то величина каждого кванта энергии будет равна 20 х 2 = 40. Если при этой частоте полная энергия равна 3600, то, значит, 3600 ÷ 40 = 90 квантов распределены между десятью осцилляторами, колеблющимися с данной частотой. У Больцмана Планк научился методу, позволяющему определить наиболее вероятное распределение этих квантов среди осцилляторов.

Оказалось, что энергия каждого из осцилляторов может равняться только: 0, hν, 2hν, 3hν, 4hν и так далее до значения nhν, где n – целое число. Это соответствует тому, что поглощается или испускается целое число “элементов энергии” (квантов) размером hν. (Напоминает кассира в банке, который может выдавать купюры только достоинством в 1, 2, 5, 10, 20 и 50 фунтов стерлингов.) Поскольку осцилляторы Планка не могут иметь другой энергии, амплитуда их колебаний ограничена. Необычность такого вывода в применении к повседневному миру особенно наглядна, если рассмотреть груз, подвешенный на пружине.

Если амплитуда колебаний груза равна 1 см, его энергия равна 1 (не будем останавливаться на единицах измерения энергии). Если пружину с привязанным к ней тем же грузом растянуть на 2 см, частота колебаний остается прежней. Однако энергия, пропорциональная квадрату амплитуды, будет равна 4. Если правило для энергии осцилляторов Планка применить к грузу на пружине, то в интервале от 1 см до 2 см возможны только колебания с амплитудами 1,42 см и 1,73 см, поскольку соответствующие энергии равны 2 и 359. Например, амплитуда колебаний не может равняться 1,5 см, поскольку в этом случае энергия равнялась бы 2,25. Квант энергии неделим. Осциллятор не может получить часть кванта энергии: либо все, либо ничего. Это не согласуется с повседневной физикой. В обычном мире нет ограничений на размах колебаний и, значит на величину энергии, которая может излучаться или поглощаться или быть испущена одномоментно. Она может принимать любое значение.

От безысходности Планк открыл нечто столь важное и неожиданное, что и сам не сумел сразу оценить значение своего открытия. Его осцилляторы не могут поглощать или испускать энергию непрерывно, наподобие воды, текущей из крана. Вместо этого они могут получать и терять энергию дискретно, маленькими порциями величиной E = hν, где ν – частота колебаний, совпадающая с частотой излучения, которое может испускать или поглощать осциллятор.

Причина, по которой нельзя увидеть, что макроскопические осцилляторы ведут себя, как осцилляторы атомного размера Планка, в том, что значение h равно 0,000000000000000000000000006626 эргов, помноженных на секунду, или 6,626, деленное на тысячу триллионов триллионов. Согласно формуле Планка, энергия может увеличиваться или уменьшаться только шажками, размер которых пропорционален значению h. Однако из-за того, что величина h бесконечно мала, в нашем мире квантовые эффекты незаметны. Речь идет о маятниках, детях на качелях и грузах на пружинах.

Осцилляторы заставили Планка “нарезать” энергию излучения так, чтобы их можно было снабдить порциями нужного размера, равного hν. Он не верил, что энергия излучения действительно “нарезана” на кванты. Для него это был просто способ, которым его осцилляторы могли получать и испускать энергию. Трудность состояла в том, что, согласно методу Больцмана, после разделения энергии в конце требовалось делать порции все меньше и меньше – до тех пор, пока их размер с точки зрения математики не станет равным нулю, сами порции не исчезнут, а полученный результат все равно останется неизменным. Основой всего расчета был прием, позволявший собрать обратно разделенные кванты. К несчастью для Планка, при использовании такого приема его формула тоже исчезала. Ему некуда было деваться от квантов, но его это не волновало. Формула получена, а с остальным можно было разобраться позднее.


“Господа!” – начал Планк, представ перед членами Немецкого физического общества, собравшегося в одной из аудиторий Физического института Берлинского университета. Рубенс, Люммер и Прингсгейм присутствовали на заседании. Доклад начался в пять часов вечера в пятницу, 14 декабря 1900 года, и назывался “К теории распределения энергии излучения нормального спектра”. “Несколько недель назад я имел честь привлечь ваше внимание к новому выражению, описывающему, как мне кажется, распределение энергии излучения во всех областях нормального спектра”, – говорил Планк60. Теперь он рассказывал о физической модели, позволившей вывести новое уравнение.

Коллеги поздравляли докладчика. Они, как и сам Планк, считали введение кванта, порции энергии, “чисто формальным приемом”, о котором “не стоит слишком задумываться”. Важно было то, что Планку удалось обосновать формулу, о которой он рассказывал в октябре. Конечно, идея разделения энергии осциллятора на кванты была достаточно странной, но об этом на время можно было забыть. Все были уверены, что это трюк теоретика, остроумный математический прием, использованный, чтобы получить правильный ответ. Он не имеет истинного физического смысла. Что продолжало удивлять, так это точность полученной формулы для энергии излучения. Никто, включая самого Планка, не придал кванту энергии большого значения.

Однажды рано утром Планк вышел из дома с семилетним сыном Эрвином. Они направлялись в соседний Грюневальд-ский лес – любимое место прогулок семьи. Позднее Эрвин вспоминал, как отец сказал: “Сегодня я сделал открытие такое же важное, как открытие Ньютона”61. Рассказывая эту историю много лет спустя, он не смог точно вспомнить, когда именно это произошло. Вероятно, незадолго до декабрьской лекции. Возможно ли, что Планк уже тогда полностью осознавал, что такое квант? Или просто старался объяснить сыну, насколько важен новый закон излучения? Ни то, ни другое. Он просто выражал переполнявшую его радость открытия не одной, а сразу двух фундаментальных постоянных: постоянной k, которую он назвал постоянной Больцмана, и постоянной h — кванта действия. Позднее эту константу физики назовут постоянной Планка. Обе эти константы неизменны и вечны. Это две абсолютные величины, описывающие природу62.

Планк понимал, чем обязан Больцману. Он назвал именем этого австрийского физика постоянную k, введенную им при создании формулы для излучения абсолютно черного тела. Кроме того, Планк дважды, в 1905 и в 1906 годах, номинировал Больцмана на Нобелевскую премию. Но было поздно. Больцмана давно мучили болезни: астма, мигрень, слабое зрение, ангины. Но сильнее всего он страдал от приступов тяжелой маниакальной депрессии. В сентябре 1906 года, во время отдыха в Дуино вблизи Триеста, он повесился. Больцману было шестьдесят два года, и хотя некоторые из его друзей давно боялись худшего, известие о его смерти стало для них ужасным ударом. Больцман все больше чувствовал себя одиноким и недооцененным, хотя это было совсем не так. Он был одним из самых известных и уважаемых физиков своего времени. Но в периоды отчаяния непрекращающиеся споры о существовании атомов заставляли его считать, что дело всей его жизни разрушено. В 1902 году Больцман в третий и последний раз вернулся в Венский университет. После смерти Больцмана Планку предложили занять его место. Планк, считавший работы Больцмана “триумфом красоты теоретического исследования”, был польщен, но отказался63.

Постоянная h – это тот “топор”, который “рубит” энергию на кванты, и Планк был первым, кто поднял его. Но для него квантование было лишь способом, с помощью которого воображаемые осцилляторы испускали и поглощали энергию. Планк не делил на порции величиной саму энергию. Есть разница между открытием и его осмыслением. Планк выполнил только действия, которые были необходимы для вывода формулы, хотя ему они не были понятны. Он квантовал только энергию набора осцилляторов, но, хотя это и следовало сделать, не энергию отдельного осциллятора.

Частично это было связано с тем, что Планк надеялся избавиться от кванта. Только гораздо позже он осознал далеко идущие последствия своих действий. Глубоко консервативные взгляды заставили его потратить почти десятилетие на попытки уместить квант в рамки существовавшей физики. Он знал, что многие его коллеги считали это пустой тратой времени. “Я считал иначе, – писал Планк. – Я твердо знал, что элементарный квант действия [h] играет более важную роль в физике, чем мне представлялось вначале”64.

В 1947 году, спустя много лет после смерти Планка, семидесятидевятилетний Джеймс Франк, его ученик и коллега, вспоминал безнадежную борьбу Планка, его попытки “уйти от квантовой теории, понять, может ли он… насколько возможно уменьшить ее влияние”65. Франку было ясно, что Планк был “революционером поневоле”, который “в конце концов пришел к выводу, что ‘сделать ничего нельзя. Нам надо жить с квантовой теорией. И, поверьте мне, она будет развиваться’”66. Это была вполне подходящая эпитафия для упирающегося революционера.

Физикам действительно пришлось научиться “жить с квантом”. И первым это сделал совсем молодой человек, живший в Швейцарии, в Берне. Он был клерком, а не профессиональным физиком, но именно его имя Планк связывал с открытием квантования энергии. Этого клерка звали Альберт Эйнштейн.

Глава 2.

“Батрак патентного бюро”


Пятница, 17 марта 1905 года, Берн. Около восьми утра перед уходом на службу молодой человек в необычном клетчатом костюме запечатал конверт. На прохожих Альберт Эйнштейн производил впечатление человека, забывшего, выходя из дома, снять старые зеленые тапочки с вышитыми цветочками1. Шесть раз в неделю он, оставив жену и маленького сына Ганса Альберта, выходил из небольшой двухкомнатной квартиры в живописном квартале Старого города и направлялся к массивному кирпичному зданию в десяти минутах ходьбы. Мощенная камнем улица Крамгассе со знаменитой Часовой башней и аркадами с обеих сторон – одна из самых красивых в швейцарской столице. Но погруженный в свои мысли Эйнштейн шагал к главному зданию Федерального почтово-телеграфного ведомства, вряд ли замечая что-либо вокруг. Он поднимался по лестнице на третий этаж, где находилось Федеральное ведомство интеллектуальной собственности – Швейцарское бюро патентов. Здесь Эйнштейн и дюжина других технических экспертов – мужчин, одетых в более строгие темные костюмы, – по восемь часов в день занимались отделением зерна от плевел.

Тремя днями ранее Эйнштейну исполнилось двадцать шесть лет. Уже почти три года он был “батраком патентного бюро”2. Служба стала для него избавлением от “надоедливого чувства голода”3. Сама работа ему нравилась: она не надоедала, требовала умения “разносторонне мыслить”, а атмосфера в конторе была дружелюбной и успокаивающей. Позже Эйнштейн говорил об этом месте как о “светском монастыре”. Хотя должность технического эксперта III класса была весьма скромной, работа хорошо оплачивалась и оставляла достаточно времени для занятий. Несмотря на бдительный надзор начальника, грозного Фридриха Галлера, в промежутках между изучением патентов Эйнштейну удавалось выкраивать время для своих расчетов, так что его рабочий стол постепенно превратился в “кабинет теоретической физики”4.

“Казалось, земля уходит из-под ног и нигде не видно прочной основы, на которую можно было бы опереться”, – так вспоминал Эйнштейн о том, что он почувствовал, прочтя опубликованное незадолго до того решение Планка задачи об излучении абсолютно черного тела5. В конверте, отправленном Эйнштейном 17 марта 1905 года редактору самого известного в мире физического журнала “Аннален дер физик”, находилась статья, суть которой была еще более радикальна, чем послужившая для нее отправной точкой идея Планка о существовании квантов. Эйнштейн знал, что его квантовая теория света – не что иное, как ересь.

Двумя месяцами позднее, в середине мая, Эйнштейн писал своему другу Конраду Габихту, что собирается сдать в печать четыре статьи, которые, как он надеется, до конца года будут опубликованы. Первая работа была посвящена квантам. Вторая – это его диссертация на степень доктора философии, в которой Эйнштейн предлагал новый способ определения размеров атомов. Третья статья объясняла природу броуновского движения – хаотического движения крошечных, похожих на цветочную пыльцу частичек, взвешенных в жидкости. О четвертой Эйнштейн писал: “Пока есть только предварительный план статьи. В ней рассматривается электродинамика движущихся тел, для построения которой требуется изменить теорию пространства и времени”6. Это поразительный список. В анналах науки есть лишь один ученый, которого можно сравнить с Эйнштейном в 1905 году, и только один год, когда работы этого ученого можно сравнить с работами Эйнштейна за 1905 год. Его имя – Исаак Ньютон. В 1666 году этот двадцатитрехлетний англичанин заложил основы математического анализа и теории гравитации. В это же время он начал работать над теорией света.

Вскоре имя Эйнштейна станет синонимом слова “относительность”, обозначающим теорию, общие контуры которой впервые появились в четвертой его работе 1905 года. Хотя относительность изменила представление людей о природе пространства и времени, именно развитие идеи Планка и вывод о квантовой природе света и излучения Эйнштейн называл “истинно революционными”7. Он считал теорию относительности просто “модификацией” представлений, уже сформулированных и обоснованных Ньютоном и многими другими учеными. А введенные им кванты света были чем-то абсолютно новым, принадлежащим только ему. Это был полный разрыв с физикой прошлого, воспринимавшийся как кощунство даже самим физиком-самоучкой.

Уже более полувека всеми было признано, что свет – это волна. В работе “Об одной эвристической точке зрения, касающейся возникновения и превращения света”, Эйнштейн выдвинул идею о том, что свет состоит не из волн, а из похожих на частицы квантов. При решении задачи об абсолютно черном теле Планку против его желания пришлось предположить, что энергия поглощается или испускается дискретными порциями. Однако он, как и другие, считал, что, несмотря на то, как происходит обмен энергией между излучением и материей, само электромагнитное излучение представляет собой непрерывный волновой процесс. Революционная точка зрения Эйнштейна состояла в том, что свет, как и любое электромагнитное излучение, не похож на волну, а представляет собой набор маленьких частиц – квантов света. В следующие двадцать лет почти никто, кроме Эйнштейна, в кванты света не верил.

Эйнштейн знал, что ему предстоит нелегкая борьба. Это видно уже из того, что в названии статьи он написал: “Об одной эвристической точке зрения…”. Словарь определяет “эвристику” как “совокупность логических приемов и методических правил теоретического исследования”. Физикам предлагался метод, с помощью которого можно было объяснить остававшиеся непонятыми места в теории света, но не окончательная теория, построенная исходя из первых принципов. Статья Эйнштейна стала первой вехой на пути построения такой теории. Но и это оказалось чересчур для тех, кто совершенно не был готов отказываться от давно устоявшейся волновой теории света.

Четыре работы Эйнштейна, полученные редакцией “Аннален дер физик” между 18 марта и 30 июня 1905 года, определили направление развития физики на много лет вперед. Примечательно, что у Эйнштейна еще нашлось время написать двадцать одну книжную рецензию для этого журнала. И вдобавок в том же году им была задумана пятая работа, о которой он Габихту не сказал. Одно из уравнений в этой работе известно, вероятно, всем: E = mc2. “У меня в голове бушевал ураган”, – так Эйнштейн описывал творческий порыв, охвативший его триумфальной весной и летом 1905 года в Берне, когда были написаны эти поразительные работы8.

Макс Планк, референт журнала “Аннален дер физик” по вопросам теории, одним из первых прочитал “К электродинамике движущихся тел”. Планк сразу оценил статью. Позднее термин “теория относительности” ввел именно он, а не Эйнштейн. Что же касается квантов света, то Планк, хотя и не был полностью согласен с этой идеей, одобрил публикацию работы. Он, по-видимому, думал, что своеобразие автора этих статей заключается как раз в том, что он способен совершить как нечто очень значительное, так и нечто абсолютно смехотворное.


“Жители Ульма – математики”, – такая присказка бытовала в Средние века в небольшом городе на берегу Дуная на юго-западе Германии. Здесь 14 марта 1879 года родился Альберт Эйнштейн, человек, имя которого станет синонимом слов “научный гений”. При рождении голова ребенка была настолько велика и деформирована, что мать волновалась: ее новорожденный сын – калека. Он так долго не говорил, что родители начали опасаться, что Альберт не заговорит вообще. Вскоре после рождения в ноябре 1881 года сестры Майи (других братьев и сестер у него не было) Эйнштейн приобрел довольно странную привычку: он тихонько повторял каждое предложение, которое хотел сказать, до тех пор, пока ему не удавалось сделать это хорошо, и только затем произносил его вслух. Говорить нормально мальчик, к большому облегчению его родителей Германа и Паулины, начал лишь в семилетием возрасте. К этому времени семья уже шесть лет жила в Мюнхене, где отец Эйнштейна и его дядя Якоб открыли электромеханическую мастерскую.

К октябрю 1885 года, когда шестилетнему Эйнштейну пора было идти в школу, частных еврейских школ в Мюнхене не существовало уже более десяти лет, так что мальчика отправили в ближайшее к дому учебное заведение. В Мюнхене, самом сердце католической Германии, религиозное обучение было обязательной частью программы. Но, как вспоминал много лет спустя Эйнштейн, “учителя в школе были либералами и не делали различий между конфессиями”9. Как бы, однако, либеральны и внимательны ни были преподаватели, антисемитизм, проникший во все поры немецкого общества, чувствовался и в школе. Эйнштейн навсегда запомнил урок катехизиса, где учитель закона Божьего рассказывал, как евреи распяли Христа, и говорил, что “антисемитизм жив, особенно среди учеников начальной школы”10. Неудивительно, что у мальчика было мало друзей (а может, и вообще не было). “Я одинокий путник. У меня никогда не было страны, дома, друзей, даже собственной семьи, которую я любил бы всем сердцем”, – писал Эйнштейн в 1930 году. Он называл себя Eispanner, мизантропом.

Школьником Эйнштейн предпочитал одиночество. Его любимым занятием было строить карточные домики. У него хватало терпения доводить их до четырнадцати этажей. Упорство вообще было одной из главных черт характера Эйнштейна. Позднее оно позволило ему следовать намеченным курсом даже тогда, когда другие давно бы сдались. “Господь наградил меня упорством мула, – скажет он позднее, – и достаточно острым нюхом”11. Хотя никто с этим и не соглашался, но, по утверждению самого Эйнштейна, у него не было других талантов, кроме страстного любопытства. Любопытные люди – не редкость, но поскольку он был еще и упрям, то продолжал искать ответы на почти детские вопросы даже тогда, когда его сверстники уже научились попросту не задавать их. Как можно представить себе прогулку верхом на луче света? Этот вопрос знаменовал начало занявшего десять лет пути, который привел к теории относительности.

В 1888 году в возрасте девяти лет Эйнштейн поступил в мюнхенскую гимназию Луитпольда. Он с горечью вспоминал о проведенных там днях. Если молодому Максу Планку военная дисциплина нравилась и помогала учиться, то Эйнштейну она не подходила. И все же, несмотря на недовольство учителями и авторитарными методами преподавания, он превосходно успевал, хотя в гимназии изучались главным образом гуманитарные предметы. Даже после того, как один из учителей заявил, что “из него никогда ничего не выйдет”12, Эйнштейн получил высший балл по латыни и добился успехов в греческом.

Полным контрастом школьной зубрежке и частным домашним урокам музыки было общение с нищим польским студентом-медиком Максом Талмудом. Максу был двадцать один год, а Альберту – десять, когда тот стал приходить к Эйнштейнам на обед. Это было выполнением старой еврейской заповеди: в день отдохновения, шаббат, приглашать на обед бедных молодых людей, изучающих Тору. Талмуд сразу почувствовал родственную душу в любознательном мальчике. Очень скоро эти двое завели привычку долгие часы обсуждать книги, которые Талмуд давал или рекомендовал Альберту. Они начали с научно-популярных изданий, и вскоре Эйнштейн покинул, как он позднее сам говорил, “религиозный рай моей юности”13.

Годы, проведенные в католической школе, и беседы с одним из родственников об иудаизме сделали свое дело. К удивлению светских родителей, у мальчика появилось, по его собственным словам, “пылкое религиозное чувство”. Он перестал есть свинину, по дороге в школу распевал религиозные гимны, а библейский рассказ о сотворении мира считал установленным фактом. Но затем, жадно проглотив огромное количество научно-популярных книг, он понял, что многие библейские истории не могут быть правдивыми. Результатом стало “фантастическое свободомыслие, соединяющееся с убеждением, что с помощью лжи государство намеренно обманывает молодежь; это было очень тяжелое переживание”14, но оно принесло свои плоды. У Эйнштейна появилось сохранившееся на всю жизнь недоверие к власти в любом ее проявлении. Он пришел к выводу, что потеря “религиозного рая” – первый шаг к освобождению от “пут ‘исключительно личного’, от существования, в котором доминируют желания, надежды и примитивные чувства”15.

Утративший веру в Священное писание Альберт заинтересовался другой божественной книгой: учебником геометрии. Он был еще учеником начальной школы, когда дядя Якоб объяснил ему основы алгебры и стал предлагать разные задачи. Когда Талмуд вручил двенадцатилетнему Эйнштейну книгу о евклидовой геометрии, тот уже знал математику лучше любого своего сверстника. Талмуд был поражен быстротой, с которой Альберт усвоил прочитанное, доказав все теоремы и выполнив все упражнения. Рвение мальчика было таким, что за время летних каникул он прошел весь школьный курс математики за следующий год.

Отец и дядя Эйнштейна были инженерами-электриками, поэтому мальчика, читавшего книги по физике, окружали физические приборы. Именно отец ненароком познакомил маленького Альберта с чудесами и тайнами науки. Однажды, когда простуженный сын лежал в постели, Герман показал ему компас. Движение стрелки поразило пятилетнего малыша. Он похолодел от мысли, что “вещи, должно быть, что-то скрывают, какую-то глубоко запрятанную тайну”16.

Сначала электромеханическая мастерская братьев Эйнштейн процветала. Они начали с изготовления электроприборов, а после перешли к установке энергосистем и осветительных сетей. Эйнштейны праздновали одну победу за другой, и будущее казалось им прекрасным. Им даже удалось получить подряд на освещение знаменитого мюнхенского Октоберфеста17. Электрические лампочки использовались во время этого праздника впервые. Но в конце концов братья не выдержали конкуренции с такими гигантами, как “Сименс” и АЭГ. Многие маленькие мастерские успешно развивались и даже процветали в их тени, но чтобы попасть в их число, Якоб был слишком самолюбив, а Герман – нерешителен. Побежденные, но не сдавшиеся братья решили, что Италия, где электрификация только начиналась, – это лучшее место для того, чтобы начать сначала. В июне 1894 года Эйнштейны перебрались в Милан – все, кроме пятнадцатилетнего Альберта. В опостылевшей школе ему следовало провести еще три года, и он остался в Мюнхене на попечении дальних родственников.

Ради родителей он притворялся, что в Мюнхене у него все в порядке. Однако на самом деле юноша все время нервничал из-за надвигающегося призыва. В соответствии с немецким законом, если он останется в стране до своего семнадцатилетия, то будет вынужден пойти на военную службу – либо его объявят дезертиром. Одинокий и подавленный, Эйнштейн пытался найти выход. И неожиданно он понял, что следует предпринять.

Дегенхарт, тот самый учитель греческого, который считал, что из Эйнштейна ничего не выйдет, теперь стал его классным наставником. Однажды в пылу спора Дегенхарт заявил, что Эйнштейн должен покинуть школу. Не дожидаясь дальнейших советов, Альберт так и поступил. Он добыл медицинскую справку о том, что страдает нервным истощением и для выздоровления нуждается в покое. Одновременно Эйнштейн заручился рекомендательным письмом своего учителя математики, в котором говорилось, что по этому предмету он прошел весь гимназический курс. Юноше потребовалось шесть месяцев, чтобы воссоединиться с семьей в Италии.

Родители старались урезонить упрямца, но Эйнштейн отказывался вернуться в Мюнхен. У него были другие планы: остаться в Милане и подготовиться к октябрьским вступительным экзаменам в Федеральный политехнический институт в Цюрихе. Основанный в 1854 году и переименованный в 1911 году в Федеральную высшую техническую школу Политехникум, или Поли, был не настолько престижным, как ведущие университеты Германии. А главное, для поступления туда не требовалось свидетельство об окончании гимназии. Как он объяснил родителям, надо только выдержать вступительные экзамены.

Скоро им стала ясна и вторая часть сыновнего плана. Чтобы полностью исключить возможность быть призванным Рейхом на военную службу, Альберт хотел отказаться от немецкого гражданства. Поскольку он был слишком молод для того, чтобы сделать это самостоятельно, требовалось согласие отца. Герман не возражал и от имени сына обратился к властям. В январе 1896 года была получена стоившая три марки справка, подтверждающая, что Альберт Эйнштейн более не является германским подданным. Согласно закону, следующие пять лет – до того, как стать гражданином Швейцарии, – он считался человеком без гражданства. Эйнштейн всю жизнь оставался пацифистом, но, приобретя новое гражданство, 13 марта 1901 года (за день до своего двадцать второго дня рождения) был вынужден пройти медицинское освидетельствование: им интересовалась швейцарская армия. К счастью, из-за плоскостопия и варикозного расширения вен призыва Эйнштейн избежал18. В Мюнхене юношу тревожила не столько мысль об армейской службе как таковой, сколько необходимость надеть серую военную форму и присягнуть Рейху, который он ненавидел.

“Как самое дорогое, я вспоминаю месяцы, проведенные в Италии”, – спустя полвека описывал Эйнштейн свое тогдашнее беззаботное существование19. Он помогал отцу и дяде в мастерской, а также путешествовал, навещая друзей и родственников. Весной 1895 года семья переехала в Павию, где братья открыли новую фабрику, просуществовавшую чуть больше года. В это время Альберт усердно готовился к вступительным экзаменам в “Поли”. И хотя экзамены он провалил, его результаты по физике и математике были настолько впечатляющими, что профессор физики пригласил его посещать свои лекции. Это было очень заманчивое предложение, но Эйнштейн внял разумному совету директора “Поли”. В связи с полным провалом по истории, языкам и литературе тот предложил молодому человеку еще на год вернуться за парту и рекомендовал одну из швейцарских школ.

В конце октября Эйнштейн уже был в Аарау, городке в тридцати милях западнее Цюриха. Либеральный дух здешней кантональной школы позволил Эйнштейну проявить себя. Жизнь в семье учителя классических языков, у которого он поселился, оставила в его памяти неизгладимый след. Йост Винтелер и его жена Паулина поощряли свободомыслие трех своих дочерей и четырех сыновей. Совместные обеды были веселыми и шумными. Очень скоро Эйнштейн стал относиться к Винтелерам, как к приемным родителям. Он даже называл их “папаша Винтелер” и “мамаша Винтелер”. Хотя в старости Эйнштейн и говорил, что он – одинокий путник, ему нужны были люди, которые заботились бы о нем, а он – о них.

В сентябре 1896 года подошла пора вступительных экзаменов. Эйнштейн легко сдал их и уехал в Цюрих, в Политехникум20.


“Счастливый человек слишком удовлетворен настоящим, чтобы задумываться о будущем”, – таково начало короткого эссе “Мои планы на будущее”, написанного Эйнштейном во время двухчасового экзамена по французскому языку. Имея склонность к абстрактному мышлению и не имея никакого практического опыта, он решил, что станет учителем математики и физики21. В октябре 1896 года Эйнштейн оказался самым молодым из студентов педагогического факультета Политехникума, готовившего учителей точных наук. Всего пять человек решили специализироваться в преподавании математики и физики. Единственная среди них женщина стала женой Эйнштейна.

Никто из друзей Альберта не понимал, что влекло его к Милеве Марич. Сербка из Австро-Венгрии, четырьмя годами старше Эйнштейна. Переболевшая в детстве туберкулезом Милева слегка хромала. В течение первого года им прочли пять обязательных курсов по математике и механике и (по желанию) один курс по физике. Хотя в Мюнхене Эйнштейн зачитывался учебником геометрии, сейчас математика как таковая его не интересовала. Герман Минковский, профессор математики, вспоминал, что Эйнштейн был “отъявленным лентяем”. Но это объяснялось не апатией, а скорее неумением сразу ухватить суть. Эйнштейн признавался, что для него “именно осмысление основных физических принципов тесно связано с освоением самых сложных математических методов”22. Позднее, на тернистом пути к собственным открытиям он пожалел, что отсутствие усердия не позволило ему получить “приличное математическое образование”23.

К счастью, среди остальных трех студентов этого курса был Марсель Гроссман, учившийся лучше любого из них и разбиравшийся в математике. Именно к Гроссману обратился Эйнштейн, когда при построении математического аппарата общей теории относительности ему пришлось сражаться с очень трудными формулами. Эти двое разговаривали обо всем, “что только может интересовать молодых людей, которые смотрят на мир открытыми глазами”24, и очень скоро стали друзьями. Гроссман (всего на год старше своего друга) оказался проницательным человеком. Новый приятель настолько поразил его, что он привел его к себе домой и познакомил с родителями. “Однажды этот Эйнштейн, – заявил он им, – станет великим человеком”25.

Эйнштейн стал пропускать лекции, и в октябре 1898 года сдать экзамен ему удалось только благодаря великолепным конспектам Гроссмана. Дела пошли совсем по-другому, когда курс физики начал читать Генрих Фридрих Вебер. Эйнштейн “дождаться не мог следующей лекции”26. Вебер, которому было больше пятидесяти, умел живо излагать материал, и Эйнштейн признавал, что лекции по термодинамике он читал “мастерски”. Но, к сожалению, в курсе ничего не говорилось о теории магнетизма Максвелла и о других новейших результатах. Вскоре склонность Эйнштейна к независимости и пренебрежение к занятиям начали сказываться на его отношениях с профессорами. “Вы толковый молодой человек, – говорил ему Вебер, – но делаете большую ошибку: не позволяете научить вас чему-нибудь”27.

На выпускном экзамене в июле 1900 года Эйнштейн стал четвертым из пяти. Экзамены оказались для него настолько тяжелым испытанием и настолько лишили уверенности в себе, “что еще год он не мог даже подумать о том, чтобы взяться за решение какой-нибудь научной задачи”28. Милева была единственной, кто экзамен не сдал. Это был чувствительный удар для юноши и девушки, которые к тому времени уже нежно называли друг друга Johonzel (Джонни) и Doxerl (Долли). А дальше было вот что.

Эйнштейн больше не видел себя школьным учителем. После четырех лет жизни в Цюрихе у него родился новый честолюбивый замысел: стать физиком. Но даже для лучшего студента шансы получить постоянную работу в университете были мизерными. Первой ступенькой являлась должность ассистента одного из профессоров “Поли”, но никто не захотел с ним связываться. Тогда Эйнштейн стал искать место на стороне. “Скоро окажется, что я осчастливил своими предложениями всех физиков от берегов Северного моря до южной оконечности Италии”, – писал он Милеве в апреле 1901 года, когда она гостила у его родителей29.

Одним из “осчастливленных” был химик из университета в Лейпциге Вильгельм Фридрих Оствальд. Эйнштейн писал ему дважды, но оба письма остались без ответа. По-видимому, отец, терзавшийся при виде упавшего духом сына, сам, без ведома Альберта (Эйнштейн так об этом и не узнал) тоже написал Оствальду30: “Уважаемый господин профессор! Пожалуйста, простите отца, который осмелился обратиться к Вам по поводу своего сына. Все, кто может судить о его способностях, считают моего сына очень талантливым. В любом случае, смею заверить Вас, он необыкновенно любит науку, прилежен и предан своему делу”31. Это обращение осталось без ответа. (Позднее именно Оствальд первым выдвинет Эйнштейна на соискание Нобелевской премии.)

Впрочем, и антисемитизм мог сыграть свою роль. Эйнштейн был уверен, что именно плохая характеристика, данная Вебером, помешала ему получить место ассистента профессора. Он было совсем потерял надежду, но тут пришло письмо от Гроссмана с предложением подходящей и хорошо оплачиваемой работы. Гроссман-старший узнал о его бедственном положении и захотел помочь молодому человеку, которого так высоко ценил его сын. Он горячо порекомендовал Эйнштейна своему другу Фридриху Галлеру, директору бюро патентов в Берне, где имелась вакансия. “Когда я вчера получил твое письмо, – писал Эйнштейн Марселю, – оно тронуло меня верностью и человеколюбием, заставившими тебя не забыть старого неудачливого друга”32. К этому времени Эйнштейн, который целых пять лет был человеком без гражданства, стал гражданином Швейцарии. Он был уверен, что это поможет ему в поисках работы.

Может быть, судьба действительно сменила гнев на милость? Эйнштейну предложили временную работу в технической школе городка Винтертур примерно в двадцати милях от Цюриха. С утра у Эйнштейна было пять или шесть уроков, а во второй половине дня он был свободен и мог заниматься физикой. “Ты даже не представляешь, как я счастлив на этом месте! – писал он ‘папаше Винтелеру’ из Винтертура. – Я совершенно отказался от мысли получить место в университете, поскольку вижу, что даже так у меня достает силы и желания продолжать попытки заниматься наукой”33. Вскоре все перестало быть радужным: Милева объявила, что беременна.

Провалив экзамены во второй раз, Милева вернулась к родителям, чтобы дождаться рождения ребенка. Эйнштейн воспринял новость о том, что скоро станет отцом, спокойно. Ему уже приходило в голову сделаться страховым агентом, и теперь он торжественно пообещал взяться за любую, даже самую скромную работу, чтобы они смогли пожениться. Когда родилась дочь, Эйнштейн был в Берне. Он никогда не видел Лизерль. Что случилось с ней, удочерил ее кто-нибудь или она умерла в младенчестве, остается тайной.

В декабре 1901 Фридрих Галлер написал Эйнштейну, что он может предложить свои услуги патентному бюро34. Перед Рождеством заявление о приеме на работу было подано. Эйнштейну казалось, что окончились его бесконечные поиски постоянной работы. “Все время я строю самые радужные планы на будущее, – писал он Милеве. – Я уже говорил тебе, в каком достатке мы будем жить в Берне?”35 Уверенный, что очень быстро все образуется, Эйнштейн оставил работу учителя в частной школе-интернате в Шафгаузене. Он должен был проработать год, но уволился уже через несколько месяцев.


В Берне в то время жили около шестидесяти тысяч человек. Эйнштейн приехал в первую неделю февраля 1902 года. Со времен пожара, уничтожившего пятьсот лет назад половину Берна, атмосфера Старого города мало изменилась. Здесь, на Грехтиг-кайтгассе (Аллее правосудия), недалеко от знаменитого парка с медведями, Эйнштейн снял квартиру36. Она стоила всего двадцать три франка и, как он писал Милеве, “была просто большой красивой комнатой”37. Распаковав чемоданы, Эйнштейн отправился в редакцию газеты и поместил объявление с предложением своих услуг в качестве учителя математики и физики. Первый урок считался пробным и бесплатным. Объявление было напечатано 5 февраля, в среду, а уже через несколько дней потраченные на него деньги окупились. Один из учеников описывал своего нового учителя так: “Рост Эйнштейна сто семьдесят шесть сантиметров. Он широкоплеч, слегка сутулый. Его короткий череп кажется невероятно широким. Цвет лица матовый, смуглый. Над большим чувственным ртом узкие черные усы. Нос с легким орлиным изгибом. Глаза карие, светятся глубоко и мягко. Голос пленительный, как вибрирующий звук виолончели. Эйнштейн говорит довольно хорошо по-французски, с легким иностранным акцентом”38.

Молодой румынский еврей Морис Соловин наткнулся на объявление, читая газету на улице. Соловин, изучавший философию в Бернском университете, интересовался и физикой. Он считал, что недостаток математического образования мешает ему достаточно глубоко понимать эту науку. Потому, прочитав объявление, Соловин немедленно отправился по указанному адресу. Эйнштейн сразу почувствовал родственную душу. Ученик и учитель беседовали два часа. У них нашлось много общих интересов, и, проговорив еще полчаса на улице, они договорились увидеться на следующий день. Но когда ученик и учитель вновь встретились, настоящего урока не получилось: оба с энтузиазмом обсуждали волновавшие их вопросы. На третий день Эйнштейн заявил: “Собственно говоря, уроки физики вам не нужны”39. Они быстро подружились. В Эйнштейне Соловину больше всего нравилась его способность точно и понятно обрисовать поставленную задачу.

Вскоре Соловин предложил читать одни и те же книги, а потом обсуждать их. Когда Эйнштейн был еще школьником в Мюнхене, именно так они поступали с Максом Талмудом. Он решил, что это блестящая идея. Вскоре к ним присоединился Конрад Габихт. Приятель Эйнштейна по работе в школе-интернате в Шафгаузене, он переехал в Берн, чтобы в университете закончить диссертацию по математике. Эти трое, объединенные желанием учиться для собственного удовольствия и разбираться в сложных вопросах физики и философии, стали называть свой кружок “Академия ‘Олимпия’”.

Хотя Эйнштейн был рекомендован Галлеру его другом, тот сам хотел убедиться, что молодой человек справится с работой. Число патентных заявок на разнообразные электрические устройства росло, и надо было привлечь к работе не только инженеров, но и физика. Поэтому прием Эйнштейна на работу в бюро был насущной необходимостью, а не просто услугой другу. Молодой человек произвел на Галлера достаточно приятное впечатление, и он предложил ему временно занять должность технического эксперта III класса с годовым жалованием в три с половиной тысячи франков. В восемь часов утра 23 июня 1902 года Эйнштейн впервые отправился на работу, как “респектабельный федеральный бумагомаратель”40.

“Вы физик, – заявил ему Галлер, – а значит, ничего не смыслите в чертежах”41. О постоянной работе не могло и быть речи до тех пор, пока он не сможет их читать и оценивать. Галлер сам взялся научить Эйнштейна всему необходимому, включая искусство выражаться ясно, лаконично и корректно. Хотя тому никогда не нравилось, когда его поучали как школьника, было понятно, что у Галлера, которого он считал “чудесным человеком и светлой головой”42, следует перенять все, что только можно. “К его резкому тону быстро привыкаешь. Я его глубоко уважаю”, – писал Эйнштейн43. По мере обучения и сам Галлер научился ценить своего молодого протеже.

В октябре 1902 года отец Эйнштейна, которому было всего пятьдесят пять лет, серьезно заболел. Эйнштейн поехал в Италию повидаться с ним – как оказалось, в последний раз. Именно тогда Герман Эйнштейн дал согласие на брак Альберта и Милевы. До тех пор и он, и Паулина возражали против матримониальных планов сына. В январе следующего года в Берне Соловин и Габихт стали единственными гостями на гражданской церемонии заключения брака между Альбертом и Милевой. “Брак – это попытка создать нечто прочное и долговременное из случайного эпизода”, – заметит позднее Эйнштейн44. Но в 1903 году ему была нужна жена, которая готовила бы, убирала и смотрела за ним45. Милева же рассчитывала на нечто большее.

В бюро патентов Эйнштейн был занят сорок восемь часов в неделю. С понедельника по субботу он приходил на работу в восемь часов утра и трудился до полудня. Потом завтрак – дома или в соседнем кафе с друзьями. В контору надо было вернуться к двум. Он написал Габихту, что “кроме восьми часов работы остается восемь часов ежедневного безделья и сверх того воскресенье”46. Только в сентябре 1904 года Эйнштейн получил постоянную работу, а его жалованье выросло до четырех тысяч. А весной 1906 года Галлер, пораженный умением Эйнштейна “разбираться в самых сложных патентных заявках”, оценил его как “одного из наиболее высоко ценимых экспертов бюро”47. Эйнштейн получил повышение и стал техническим экспертом II класса.

“Я буду благодарен Галлеру до конца жизни”, – писал Эйнштейн Милеве сразу после переезда в Берн, ожидая место в бюро48. Свое обещание он выполнил. Но только много лет спустя он в полной мере оценил степень влияния на него Галлера и работы в бюро: “Может, я бы и не умер, но мой интеллектуальный рост застопорился бы”49. Галлер требовал, чтобы каждая патентная заявка оценивалась настолько строго, чтобы впоследствии ее нельзя было опротестовать юридически. “Вначале считайте, что в заявке все ошибочно, что изобретатель по меньшей мере жертва самообмана. Если же это окажется не так, внимательно следуйте за каждым поворотом его мысли, но не теряйте бдительности”, – наставлял Галлер Эйнштейна50. Так получилось, что Эйнштейн нашел работу, подходившую ему по темпераменту и позволившую проявить себя. И к занимавшим его физическим вопросам Эйнштейн относился с той же беспристрастностью, с какой оценивал помыслы и надежды изобретателей, часто построенные на зыбком песке сомнительных чертежей и неправильно выбранных технических условий. Умение всесторонне обдумывать вопрос, которому научила его эта работа, он считал “подлинно благословенным даром”51.

“У него была способность оценить значение того, что осталось незамеченным, фактов известных всем, но ускользнувших от их внимания, – вспоминал друг и соратник Эйнштейна, физик-теоретик Макс Борн. – Именно его сверхъестественная способность проникнуть в суть законов природы, а не владение математическим аппаратом, отличает его от всех нас”52. Эйнштейн знал, что не обладает достаточной математической интуицией, которая могла бы позволить ему отличить то, что на самом деле важно, от “всего остального, скрывающего только более или менее глубокую образованность”53. Но когда дело касалось физики, его чутье было безупречным. Эйнштейн как-то сказал, что “научился чуять то, что может касаться основ, и отвлекаться от всего остального, от множества вещей, загромождающих мозг и отвлекающих от самого главного”54.

Годы, проведенные в бюро, только обострили его чутье. Как и при работе с патентами, Эйнштейн искал слабые стороны, несогласованность в чертежах, по которым работает природа. Если в теории обнаруживалось противоречие, Эйнштейн пытался устранить его, добиться правильного понимания или, если сделать было ничего нельзя, предложить альтернативу. Его “эвристический” принцип, согласно которому в некоторых случаях свет ведет себя как поток частиц, был способом, который Эйнштейн предложил, чтобы разрешить противоречие, связанное с самыми основами физики.


Эйнштейну потребовалось много времени, чтобы согласиться с тем, что мир состоит из атомов и что эти дискретные разорванные частички материи обладают энергией. Например, энергия газа – сумма энергий отдельных составляющих его атомов. Но это ни в коей мере не касалось света. Согласно теории электромагнетизма Максвелла, да и любой волновой теории, световые лучи распространяются непрерывно, охватывая все большую область пространства, наподобие волн, расходящихся из точки на поверхности пруда, в которую попал камень. Эйнштейн видел в этом глубокое формальное различие. Оно его беспокоило, но, с другой стороны, стимулировало желание всесторонне обдумать вопрос55. Он понял, что дихотомию между прерывностью материи и непрерывностью электромагнитной волны можно устранить, если предположить, что свет тоже состоит из квантов56.

О квантах света Эйнштейн задумался после того, как перепроверил выведенную Планком формулу для спектра излучения абсолютно черного тела. Он согласился с тем, что эта формула верна, но, анализируя способ, которым она была получена, Эйнштейн заподозрил неладное. Планк должен был получить совсем иную формулу, однако он знал, какой эта формула должна быть, и построил свой вывод так, чтобы получить именно ее. Эйнштейн точно определил место, где Планк сбился с пути. В отчаянной попытке обосновать свое уравнение (которое, он знал, прекрасно согласуется с экспериментом) ему не удалось применить последовательно физические представления и методы расчета, имевшиеся в его распоряжении. Эйнштейну стало ясно, что если бы Планк это сделал, он получил бы уравнение, совершенно не согласующееся с экспериментом.

В июне 1900 года лорд Рэлей уже предложил формулу, которую должен был бы получить Планк, но тот либо не придал ей значения, либо вообще не заметил. Тогда он еще не верил в существование атомов и поэтому не мог согласиться с тем, что Рэлей использовал теорему о равнораспределении. Атомы могут двигаться только тремя способами: вверх и вниз, туда и сюда и из стороны в сторону. Говорят, что они обладают тремя “степенями свободы”. Энергия, которую атомы могут получать и накапливать, распределяется по степеням свободы. В дополнение к трем возможным движениям (трансляциям) молекуле, состоящей из двух и более атомов, позволено совершать еще три вращательных движения вокруг воображаемых осей, соединяющих атомы. Следовательно, степеней свободы имеется шесть. Согласно теореме о равнораспределении, энергия газа равномерно распределяется между молекулами, а затем делится поровну между всеми доступными молекуле движениями.

Рэлей использовал эту теорему, чтобы распределить энергию излучения абсолютно черного тела по различным длинам волн внутри полости. Это был пример безупречного использования физики Ньютона, Максвелла и Больцмана. При выводе была допущена несущественная численная ошибка, исправленная затем Джеймсом Джинсом. Получилось выражение, известное как закон Рэлея – Джинса. Но, согласно этой формуле, в ультрафиолетовой области спектра плотность излученной энергии становится бесконечно большой. Этот результат ознаменовал полное поражение классической физики. В 1911 году его назовут “ультрафиолетовой катастрофой”. Слава Богу, на самом деле катастрофы нет: ультрафиолетовое излучение сделало бы жизнь на Земле невозможной.

Эйнштейн самостоятельно вывел формулу Рэлея – Джинса. Он знал, что предсказываемое ею распределение излучения абсолютно черного тела противоречит экспериментальным данным и приводит к абсурдному результату в ультрафиолетовой области спектра. Поскольку закон Рэлея – Джинса правильно описывает излучение абсолютно черного тела только при больших длинах волн (очень низких частотах), за отправную точку Эйнштейн взял полученный прежде закон излучения Вина. Это был единственный надежный путь, несмотря на то, что закон Вина справедлив только для коротких длин волн (высокие частоты) и нарушается при больших длинах волн (низкие частоты) в инфракрасной области. Однако у этого подхода были свои преимущества. У Эйнштейна не было сомнений, что закон Вина справедлив и верно описывает по крайней мере часть спектра излучения абсолютно черного тела. Рассмотрением этой области спектра и собирался ограничиться Эйнштейн.

План Эйнштейна был прост и остроумен. Газ представляет собой набор частиц. При термодинамическом равновесии именно свойства этих частиц определяют, например, давление газа при данной температуре. Если имеется сходство между свойствами излучения абсолютно черного тела и частицами газа, то можно утверждать, что и само электромагнитное излучение похоже на частицы. Эйнштейн начал с рассмотрения воображаемого пустого абсолютно черного тела. Но, в отличие от Планка, он поместил туда газ частиц и электронов. Правда, атомы стенок полости тоже содержат электроны. При нагревании абсолютно черного тела эти электроны совершают колебания в широком интервале частот, что приводит к испусканию и поглощению излучения стенками полости. Вскоре внутренняя полость абсолютно черного тела оказывается заполненной быстро двигающимися частицами и электронами, и осциллирующие электроны излучают энергию. В конце концов, когда полость и наполняющие ее частицы будут иметь одну и ту же температуру T, достигается состояние термодинамического равновесия.

Первый закон термодинамики (закон сохранения энергии) можно записать так, чтобы связать энтропию системы с ее энергией, температурой и объемом. Кроме закона сохранения энергии, Эйнштейн использовал закон Вина, а также идеи Больцмана, стремясь выяснить, как энтропия излучения абсолютно черного тела зависит от занимаемого им объема, “не используя какую-либо модель для описания испускания и распространения излучения”57. Получилась формула, выглядевшая точно так же, как формула, связывающая энтропию газа, состоящего из атомов, с его объемом. Излучение абсолютно черного тела подчинялось тем же закономерностям, как если бы оно состояло из отдельных, похожих на частицы порций энергии.

Для открытия кванта света Эйнштейну не нужен был ни закон излучения Планка, ни его метод. Не повторяя путь Планка, Эйнштейн получил немного другую формулу. Но и его формула содержала ту же информацию: равенство E = справедливо. Энергия квантуется и может поглощаться или испускаться только порциями размером hν. Чтобы его воображаемые осцилляторы правильно воспроизводили спектр излучения абсолютно черного тела, Планк квантовал только испускание и поглощение электромагнитного излучения, а Эйнштейн квантовал электромагнитное излучение и, следовательно, сам свет.

Хотя Эйнштейн показал, что есть случаи, когда электромагнитное излучение ведет себя как частички газа, он понимал, что протащил квант света контрабандой, введя его по аналогии. Чтобы убедить других в ценности новой “эвристической точки зрения” на природу света, он использовал ее для объяснения другого малопонятного явления58.

Впервые фотоэлектрический эффект наблюдал немецкий физик Генрих Герц в 1887 году. Он ставил эксперименты, целью которых была демонстрация существования электромагнитных волн, и случайно заметил, что разряд между двумя металлическими сферами становится ярче, если их облучать ультрафиолетовым светом. Объяснить эффект он не смог, хотя потратил несколько месяцев на изучение “совершенно нового удивительного явления”, которое, как он ошибочно считал, связано только с ультрафиолетовым излучением59.

“Было бы лучше, если бы оно [явление] было менее загадочным, – признавался Герц, – однако есть надежда, что когда ответ на эту загадку будет найден, мы сможем понять много больше нового, чем в случае простого решения”60. К сожалению, Герц не дожил до того момента, когда исполнилось его пророчество. Он умер в 1894 году в возрасте всего тридцати шести лет.

Атмосфера таинственности, окружавшая фотоэффект, еще сильнее сгустилась в 1902 году. Бывший ассистент Герца Филипп фон Ленард, поместив две металлические пластинки в стеклянную трубку, из которой был откачан воздух, показал, что этот эффект имеет место и в вакууме. Присоединив проволочки, отходящие от пластинок, к батарее, он обнаружил, что если одну из пластинок осветить ультрафиолетовым светом, в системе начинает течь ток. Фотоэлектрический эффект можно было объяснить эмиссией электронов с освещенной металлической поверхности. Направленный на пластину ультрафиолетовый свет может привести к такому повышению энергии электронов, что они, покинув пластинку, преодолевают расстояние до другой пластины и замыкают контур, вызывая “фотоэлектрический ток”. Однако наблюдавшаяся Ленардом картина противоречила устоявшимся физическим представлениям. Можно сказать, что именно он вывел на сцену Эйнштейна и его квант света.

Считалось, что если делать свет ярче, то есть увеличивать его интенсивность, то число электронов, вылетающих с поверхности пластины, останется прежним, но их энергия будет больше. Ленард же обнаружил, что это совсем не так: увеличивается число электронов, а энергия каждого из них остается прежней. Полученное Эйнштейном квантовое решение этой загадки было простым и элегантным: если свет состоит из квантов, то при увеличении интенсивности светового луча увеличивается и число входящих в него квантов. Когда луч большей интенсивности ударяется о пластинку, большее число квантов приводит к увеличению числа испускаемых электронов.

Второе неожиданное открытие Ленарда состояло в том, что, как оказалось, энергия вылетающих электронов определяется не интенсивностью, а частотой света. Поскольку энергия кванта света пропорциональна его частоте, квант красного света (низкие частоты) обладает меньшей энергией, чем квант голубого света (высокие частоты). Изменение цвета (частоты) луча той же интенсивности не меняет число квантов. Поэтому неважно, какого цвета луч попадает на пластину: число вылетевших электронов будет одинаковым. Однако поскольку свет разной частоты складывается из квантов с разной энергией, электроны будут обладать большей или меньшей энергией в зависимости от цвета луча, которым освещают пластинку. Ультрафиолетовый свет вызовет эмиссию электронов с большей кинетической энергией, чем квант красного света.

Был еще один интригующий факт. Оказалось, что у каждого металла имеется свой минимальный “порог частоты”. Если частота меньше пороговой, электроны, вне зависимости от интенсивности и продолжительности свечения, не вылетают вообще. А если порог превзойден, то даже если свет очень слабый, происходит эмиссия электронов. Квантовая теория света Эйнштейна позволила ответить и на этот вопрос. Для этого ему пришлось ввести новое понятие: работа выхода.

Эйнштейн рассматривал фотоэффект как процесс, в результате которого электрон получает от кванта света достаточно энергии, чтобы преодолеть силы, удерживающие его внутри металла, и удалиться от поверхности. По определению Эйнштейна, работа выхода есть минимальная энергия, необходимая для того, чтобы электрон мог оторваться от поверхности. Для разных металлов работа выхода разная. Если энергия света слишком мала, то квант света не обладает достаточной энергией, позволяющей электрону порвать связи, удерживающие его внутри металла.

Этот процесс Эйнштейн описал простым уравнением: максимальная кинетическая энергия электрона, покинувшего металлическую поверхность, равна энергии поглощенного кванта минус работа выхода. Используя это уравнение, Эйнштейн предсказал, что график зависимости максимальной кинетической энергии электрона от частоты будет представлять собой прямую линию, начинающуюся в точке, соответствующей пороговой частоте данного металла. Для любого металла наклон этой линии всегда будет точно равен постоянной Планка h.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 3. Фотоэлектрический эффект – максимальная кинетическая энергия испускаемых электронов в зависимости от частоты света, падающего на металлическую поверхность.


“Я потратил десять лет жизни на проверку полученного Эйнштейном в 1905 году уравнения, и, вопреки своим ожиданиям, – жаловался американский физик-экспериментатор Роберт Милликен, – вынужден недвусмысленно заявить, что проверку это уравнение, несмотря на всю его абсурдность, выдержало, хотя кажется, что оно противоречит всему известному нам об интерференции света”61. И хотя Нобелевская премия за 1923 год была присуждена ему, в частности, и за эту работу, Милликен даже вопреки собственным экспериментальным данным упрямо игнорировал гипотезу о квантах, считая, что “физическая теория, на которой базируется эта формула, полностью несостоятельна”62. С самого начала большинство физиков восприняло кванты света Эйнштейна с тем же недоверием. Лишь немногие задавались вопросом, существуют ли вообще кванты света или это лишь удобное допущение, необходимое для расчетов. Но и они соглашались только на то, что свет, а, следовательно, и электромагнитное излучение, лишь ведет себя как частица при обмене энергией с материей, но не состоит из квантов63. Так думал и Макс Планк.

В 1913 году, когда Планк и три других физика выдвинули Эйнштейна в действительные члены Прусской академии наук, свою рекомендацию они закончили словами, которые должны были оправдать Эйнштейна: “Подытоживая, можно сказать, что среди важных задач, которыми изобилует современная физика, вряд ли есть хоть одна, в которой Эйнштейн не получил бы выдающихся результатов. Иногда он выходит за рамки дозволенного, как, например, в случае гипотезы о квантовой природе света. Но это нельзя поставить ему в упрек. Ибо если время от времени не рисковать, нельзя получить истинно новый результат даже в самой точной из естественных наук”66.

Спустя два года скрупулезные эксперименты Милликена уже не позволяли игнорировать уравнение фотоэффекта Эйнштейна. В 1922 году это было невозможно: годом ранее Эйнштейн удостоился Нобелевской премии именно за объяснение фотоэлектрического эффекта. Но стоящая за этим физика – кванты света – премией отмечена не была. К этому времени Эйнштейн был уже не безвестным служащим патентного бюро в Берне, а всемирно известным физиком-теоретиком, автором теории относительности. Многие считали его величайшим ученым со времен Ньютона. Однако его квантовая теория света еще не стала общепризнанной: слишком уж решительно она порывала с прошлым.


Упорное нежелание согласиться с мнением Эйнштейна о существовании квантов света объяснялось тем, что имелось огромное число свидетельств в пользу волновой теории света. Но спор о том, что такое свет, частица или волна, шел давно. В XVIII и в начале XIX века господствовала корпускулярная теория Исаака Ньютона. В предисловии к “Оптике” (1704) он писал: “В этой книге я намерен не объяснять свойства света с помощью гипотез, но описать и доказать их на основании здравого смысла и опытов”65. Первые эксперименты были выполнены им в 1666 году. С помощью призмы белый свет расщеплялся на цвета радуги, а потом с помощью второй призмы они опять соединялись вместе, превращаясь в луч белого света. Ньютон считал, что лучи света состоят из корпускул – “очень маленьких тел, испускаемых светящейся субстанцией”66. Если частицы света двигаются по прямой, теория Ньютона позволяет понять, почему повернувшего за угол человека можно слышать, но не видеть: свет за угол не заворачивает.

Ньютону удалось на языке математики описать массу наблюдаемых оптических явлений, включая отражение и рефракцию – изгиб световых лучей при попадании из менее плотной среды в более плотную. Однако у света были и свойства, которые Ньютон объяснить не мог. Световой луч, попадающий на стеклянную поверхность, частично проходит сквозь нее, частично отражается. Почему одни частицы света отражаются, а другие – нет? Пришлось приспосабливаться. Ньютон считал, что корпускулы света вызывают волнообразное возмущение эфира. Эти “приступы легкого отражения и легкого прохождения” были причиной того, что световой луч отчасти проходил сквозь стекло и отчасти отражался67. Ньютон связал “размер” возмущений эфира с цветом. Возмущения самого большого “размера” (согласно терминологии, принятой гораздо позже, – те, у которых длина волны самая большая) ответственны за красный цвет, самого маленького (длина волны самая короткая) – за фиолетовый.

Голландский физик Христиан Гюйгенс утверждал, что корпускул света нет. Он был на тринадцать лет старше Ньютона. К 1678 году Гюйгенс сформулировал волновую теорию света, объяснявшую отражение и рефракцию. Однако его “Трактат о свете”, посвященный этому вопросу, был опубликован лишь в 1690 году. Гюйгенс считал, что свет представляет собой волну, распространяющуюся через эфир. Эта волна сродни ряби на озере от брошенного камня. Если свет действительно состоит из частиц, задавался вопросом Гюйгенс, почему нет свидетельств соударений этих частиц при пересечении двух световых лучей? А потому, утверждал он, что таких частиц нет. Звуковые волны не сталкиваются, и, следовательно, свет похож на волну.

Хотя теории и Ньютона, и Гюйгенса объясняли отражение и рефракцию, когда речь шла о некоторых других оптических явлениях, их предсказания разнились. Десятилетиями не удавалось тщательно проверить эти теории. Однако существовало явление, которое можно было использовать для этой цели. Тень, отбрасываемая телом, когда о него ударяется луч света, состоящий из движущихся по прямым линиям корпускул Ньютона, должна иметь острые углы. А волны Гюйгенса, как вода, плещущаяся вокруг омываемого ею тела, должны приводить к образованию тени, контур которой слегка размыт. Иезуит и физик Франческо Гримальди окрестил дифракцией явление изгибания света вокруг препятствий или краев очень узкой щели. В книге, напечатанной два года спустя после его смерти в 1665 году, он описал тень, отбрасываемую непрозрачным предметом, помещенным на пути тонкого солнечного луча, проникающего в совершенно темную комнату через дырочку в ставнях. Эта тень оказалась больше той, которую следовало ожидать, если бы свет состоял из частиц, движущихся по прямой. Кроме того, вокруг тени, там, где граница между светом и темнотой должна быть четкой, наблюдались слегка размытые цветные полосы.

Ньютон хорошо знал об открытии Гримальди. Позднее он и сам поставил опыты для исследования дифракции, результаты которых легче было объяснить на основании волновой теории Гюйгенса. Однако Ньютон настаивал, что дифракция – результат действия сил на частицы света, и само это явление указывает на природу света. Поскольку Ньютон был всеми признанным ученым, его корпускулярная теория света (странный гибрид частицы и волны) была признана единственно верной. Помогло и то, что Ньютон пережил Гюйгенса, умершего в 1695 году в тридцатидвухлетнем возрасте. Знаменитая эпитафия Александра Поупа (пер. А. П. Павлова): “Природы строй, ее закон/ В извечной тьме таился/ И бог сказал: ‘Явись, Ньютон!’ / И всюду свет разлился” – свидетельство того, как благоговейно относились к Ньютону при жизни. И еще долго после смерти Ньютона в 1727 году его авторитет был непререкаем и никто не смел подвергнуть сомнению его представление о природе света. Лишь на заре XIX века английский эрудит Томас Юнг бросил Ньютону вызов. Со временем его работа привела к возрождению волновой теории света.

Родившийся в 1773 году Юнг был старшим из десяти детей в семье. Он бегло читал уже в два года, а к шести годам дважды прочитал всю Библию. Юнг, врач по образованию, знал более десяти языков и внес существенный вклад в дешифровку египетских иероглифов. Получив от дяди наследство и приобретя таким образом независимость, он смог заняться научными изысканиями, удовлетворяя свое непомерное любопытство. Юнга интересовала природа света. Он решил исследовать сходство и различие между светом и звуком, а заодно прояснить “одно или два неясных места в теории Ньютона”68. Юнг был убежден, что свет представляет собой волну, и поставил эксперимент, положивший конец корпускулярной теории Ньютона.

Юнг направил монохроматический свет на экран со щелью. Пройдя через щель, свет попадал на второй экран с двумя очень узкими параллельными щелями, расположенными близко друг к другу. Как фары автомобиля, эти две щели служили новыми источниками света, или, как писал Юнг, “центрами расхождения, от которых свет благодаря дифракции расходится во всех направлениях”69. На сплошном экране, расположенном за экраном с двумя щелями, Юнг увидел светлую полосу в центре, окруженную с обеих сторон чередующимися светлыми и темными полосами.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 4. Эксперимент Юнга с двумя щелями. Справа – картина интерференции.


Юнг использовал аналогию, чтобы объяснить появление “интерференционных полос”. Бросим два камня в озеро. Места, где они падают в воду, находятся на небольшом расстоянии друг от друга. Каждый камень приводит к появлению волн. Зыбь, образованная одним из камней, наталкивается на зыбь, источником которой является другой камень. Там, где встречаются впадины или гребни двух волн, они сливаются, образуя одну новую впадину или гребень. Это конструктивная интерференция. А там, где встречаются гребень и впадина, они гасят друг друга, оставляя поверхность воды невозмущенной. Это деструктивная интерференция.

В эксперименте Юнга световые волны, исходящие из двух щелей, прежде чем попасть на экран, точно так же интерферируют. Яркие полосы являются результатом конструктивной интерференции, темные – деструктивной. Юнг понял, что этот результат можно объяснить, только предположив, что свет – это волна. Корпускулы Ньютона просто привели бы к появлению на экране двух ярких изображений щелей, а между ними все осталось бы темным. Иная интерференционная картина была бы просто невозможна.

В 1801 году Юнгу, впервые выдвинувшему идею интерференции и сообщившему о результатах своих экспериментов, пришлось выдержать яростную атаку в печати. Ведь он посягнул на самого Ньютона! В свою защиту Юнг напечатал брошюру, в которой объяснил свое отношение к Ньютону: “Но, как бы я ни благоговел перед Ньютоном, это не значит, что я должен считать его непогрешимым. Без торжества, но с сожалением я вижу, что и он совершал ошибки, а его авторитет, возможно, иногда даже замедлял развитие науки”70. Юнг продал один-единственный экземпляр своей брошюры.

Человеком, вслед за Юнгом попытавшимся выйти из тени Ньютона, был французский инженер Огюстен Жан Френель. Он был на пятнадцать лет моложе Юнга и ничего не знал о нем. Френель независимо открыл не только явление интерференции, но и повторил многие другие результаты Юнга. В сравнении с экспериментами его английского коллеги изящные эксперименты Френеля отличались тщательностью, а результаты сопровождались безупречными математическими расчетами. Они были поданы так, что к 1820 году число новообращенных маститых сторонников волновой теории стало расти. Работы Френеля убеждали: волновая теория лучше корпускулярной теории Ньютона объясняет целый ряд оптических явлений. Мало того, Френель опротестовал обвинение, давно тяготевшее над волновой теорией: якобы она не дает ответа на вопрос, почему свет не может поворачивать за угол. Френель утверждал, что может. Но поскольку длина волны света в миллионы раз меньше длины волны звука, отклонение светового луча от прямой линии очень мало, и поэтому его трудно заметить. Волна изгибается только вокруг таких препятствий, размеры которых несущественно превышают длину волны. Звуковые волны очень длинны, и поэтому они могут огибать большинство барьеров.

Убедить оппонентов и скептиков сделать выбор между двумя конкурирующими теориями можно было, поставив эксперимент, для которого эти теории предсказывали разные результаты. Таким экспериментом, проведенным в 1850 году во Франции, стало измерение скорости света в средах плотнее, чем воздух. Оказалось, что в стекле или воде свет распространяется медленнее. Это полностью совпадало с предсказанием волновой теории. Корпускулярная теория Ньютона не могла объяснить, почему свет движется именно с такой скоростью. Но оставался вопрос: если свет – это волна, то каковы ее свойства? Здесь на сцене появляется Джеймс Клерк Максвелл со своей теорией электромагнетизма.

Родившемуся в 1831 году в Эдинбурге сыну шотландского дворянина было предопределено стать величайшим физиком XIX столетия. Свою первую научную работу о математических методах черчения овалов Максвелл опубликовал, когда ему было пятнадцать лет. В 1855 году Кембриджский университет присудил ему премию им. Адамса за исследование устойчивости колец Сатурна. Он показал, что эти кольца должны состоять из маленьких, раздробленных осколков вещества – метеоритов. В 1860 году Максвелл фактически завершил кинетическую теорию газов, объясняющую свойства газа постоянным движением составляющих его частиц. Но главным достижением Максвелла стала теория электромагнетизма.

В 1819 году датский физик Ханс Кристиан Эрстед показал, что текущий по проволоке электрический ток отклоняет стрелку компаса. Через год француз Франсуа Араго обнаружил, что проволока с током ведет себя как магнит и может притягивать железную стружку. Вскоре его соотечественник Андре Мари Ампер выяснил, что две параллельные проволочки притягиваются друг к другу, если направление текущих по ним токов одинаково. Если же направления токов разные, то проволочки отталкиваются. Заинтригованный возможностью создать магнетизм с помощью электрического тока, великий английский экспериментатор Майкл Фарадей решил выяснить, можно ли превратить магнетизм в электричество. Вставив магнит в катушку, на которую была намотана проволока, он убедился, что если магнит двигать вверх и вниз, то по проволоке течет электрический ток. Ток исчезал, если магнит внутри катушки переставал двигаться.

В 1864 году Максвелл показал, что так же, как лед, вода и пар суть формы одного и того же вещества, электричество и магнетизм – разные проявления одного и того же явления: электромагнетизма. Ему удалось описать поведение столь разных на первый взгляд электричества и магнетизма с помощью системы четырех очень красивых математических уравнений. Увидев их, Людвиг Больцман сразу осознал величие сделанного Максвеллом открытия. В восторге он процитировал Гете: “Начертан этот знак не Бога ли рукой?” (пер. Н. Холодковского)71. Используя свои уравнения, Максвелл сделал удивительное открытие: электрические волны распространяются по эфиру со скоростью света. Этот результат нуждался в проверке. Если утверждение справедливо, то свет является одной из форм электромагнитного излучения. Но существуют ли электромагнитные волны на самом деле? Если да, распространяются ли они со скоростью света? Максвелл не дожил до экспериментального подтверждения своего открытия. В ноябре 1879 года, в возрасте сорока восьми лет он умер от рака. В тот год родился Эйнштейн. А меньше чем через десять лет, в 1887 году, предсказания Максвелла были проверены в экспериментах Генриха Герца. Объединение электричества, магнетизма и света стало величайшим достижением физики XIX века.

Герц указывал, что его исследования “по меньшей мере позволяют полностью отбросить сомнения касательно тождественности света, лучистой энергии и движения электромагнитных волн. Я верю, что теперь можно с достаточной степенью надежности использовать эту идентичность при изучении оптических и электрических явлений”72. По иронии, именно в этих экспериментах Герц открыл фотоэффект, который помог Эйнштейну показать ошибочность этого утверждения. Его квант света бросил вызов волновой теории, казавшейся всем, включая Герца, неопровержимой. Свет представляет собой форму электромагнитного излучения. Это утверждение считалось столь надежно доказанным, что физики не могли даже помыслить, что от него можно отказаться в пользу кванта света. Многие считали квант света абсурдом. В конце концов, энергия кванта определяется частотой света, но частота есть характеристика волны, а не похожих на частицы порций энергии, путешествующих в пространстве.

Эйнштейн был полностью согласен, что волновая теория света “великолепно работает при объяснении дифракции, интерференции, отражения и рефракции” и что, “вероятно, никогда не будет заменена другой теорией”73. Однако, отмечал он, этот успех зиждется на том, что она описывает явления, для которых важно, как ведет себя свет в течение определенного периода времени. При этом те его свойства, которые похожи на свойства частиц, не проявляются. Ситуация полностью меняется, если речь идет о практически “мгновенном” испускании и поглощении света. Эйнштейн предположил, что именно поэтому волновая теория сталкивается “с огромными трудностями” при объяснении такого явления, как фотоэлектрический эффект74.

Макс фон Лауэ (в то время приват-доцент Берлинского университета и будущий Нобелевский лауреат) писал Эйнштейну, что готов согласиться с тем, что кванты принимают участие в испускании и поглощении света. Но это все: свет сам по себе не состоит из квантов, предостерегал Лауэ, а “только при обмене энергией с материей ведет себя как они”75. Очень немногие соглашались даже с этим. Частично проблема заключалась в Эйнштейне. В своей первой работе он действительно отметил, что свет ведет себя так, как если бы он состоял из квантов. Это трудно назвать категорическим утверждением, способствующим признанию кванта света. А дело было в том, что Эйнштейн не хотел ограничиваться “эвристической точкой зрения”: ему очень хотелось построить до конца проработанную теорию.

Фотоэффект оказался полем боя между считавшимися непрерывными световыми волнами и прерывностью материи – атомами. Но в 1905 году еще не все до конца верили в существование атомов. Одиннадцатого мая (меньше чем через два месяца после окончания статьи о квантах) в редакцию “Аннален дер физик” поступила вторая за тот год работа Эйнштейна. В ней объяснялось, что представляет собой таинственное броуновское движение. Именно эта работа стала основным свидетельством в поддержку существования атомов76.

В 1827 году шотландский ботаник Роберт Броун рассматривал в микроскоп взвешенную в воде пыльцу. Он видел, что ее частички, словно борясь с невидимой силой, все время беспорядочно двигаются. Еще ранее было замечено, что если увеличивать температуру воды, это странное ерзание нарастает. Считалось, что оно объясняется какими-то биологическими причинами. Однако Броун обнаружил, что даже если частички пыльцы до опыта пролежали на полке двадцать лет, в растворе они будут двигаться точно так же. Заинтригованный, он стал использовать мелкую пудру, приготовленную из различных неорганических веществ, начиная со стекла и заканчивая растертыми в порошок камешками, отколовшимися от египетского сфинкса. Наблюдая взвесь этих частиц в воде, он увидел то же хаотическое движение и понял, что никакая жизненная сила не может быть его причиной. Броун опубликовал свои исследования в брошюре “Краткий отчет о наблюдениях в микроскоп, выполненных в июне, июле и августе 1827 года, над частицами пыльцы растений, и о повсеместном существовании активных молекул в органических и неорганических телах”. Предлагалось много более или менее правдоподобных объяснений броуновского движения, однако рано или поздно все они оказывались несостоятельными. Лишь к концу XIX столетия ученые, верившие в существование атомов и молекул, сошлись на том, что броуновское движение – это результат столкновения частиц взвеси с молекулами воды.

Эйнштейн понял, что броуновское движение вызвано не отдельным столкновением частицы с молекулой воды, а совокупностью большого числа таких столкновений. В каждый момент времени коллективный эффект таких столкновений приводит к случайному хаотическому движению зерен пыльцы или частичек взвеси. Эйнштейн предположил, что ключ к пониманию такого непредсказуемого движения надо искать в отклонениях (статистических флуктуациях) от ожидаемого “усредненного” поведения молекул воды. Учитывая соотношение размеров молекул и частичек, можно предположить, что в среднем большое число молекул одновременно с разных направлений ударяет по частичке. Учитывая разницу масштабов, каждое столкновение будет приводить к бесконечно малому сдвигу зерна пыльцы в каком-то определенном направлении. Однако суммарный эффект столкновений сведется к тому, что частичка останется неподвижной, поскольку столкновения нейтрализуют друг друга. Эйнштейн понял, что броуновское движение связано с регулярным отклонением поведения молекул воды от “нормального”. Некоторые из них сбиваются в кучки и все вместе, как одно целое, ударяют по зерну пыльцы, посылая его в какую-то определенную сторону.

Эйнштейн вычислил, какое среднее расстояние по горизонтали пройдет частица за единицу времени при таком зигзагообразном движении. Он предсказал, что при температуре воды в 17°С частица диаметром в одну тысячную миллиметра за минуту сдвинется в среднем на шесть тысячных миллиметра. Эйнштейн предложил формулу, позволявшую измерить размер атома, имея только термометр, микроскоп и секундомер. Тремя годами позднее, в 1908 году, предсказание Эйнштейна было подтверждено тонкими экспериментами, выполненными в Сорбонне Жаном Перреном. В 1926 году он получил за эту работу Нобелевскую премию.


Планк поддержал теорию относительности, а анализ броуновского движения посчитал решающим доказательством существования атома. Этого было достаточно, чтобы репутация Эйнштейна крепла, хотя его квантовая теория света не встречала понимания. Нередко адресованные ему письма приходили на адрес университета в Берне. Мало кто знал о том, что Эйнштейн служит в патентном бюро. “Должен сказать честно, я был поражен, прочитав, что вы должны отсиживать в конторе восемь часов в день, – писал ему Якоб Лауб из Вюрцбурга. – У истории припасено много неудачных шуток”77. В марте 1908 года с этим согласился и Эйнштейн. После шести лет работы он уже не хотел быть “батраком патентного бюро”.

Эйнштейн предложил свои услуги школе в Цюрихе. Им требовался учитель математики, но он заявил, что готов и желает преподавать также физику. К прошению была приложена копия диссертации: в 1905 году ему удалось с третьей попытки защитить ее в университете в Цюрихе. Диссертация послужила основой статьи о броуновском движении. Считая, что это повысит его шансы, он послал еще и все свои опубликованные работы. Всего на должность претендовал двадцать один человек. Несмотря на впечатляющие научные достижения, Эйнштейн не попал даже в шорт-лист из трех кандидатов.

По настоянию Альфреда Клейнера, профессора экспериментальной физики в Цюрихском университете, Эйнштейн сделал третью попытку стать приват-доцентом (лектором без жалованья) в университете в Берне. Первая попытка окончилась неудачей, поскольку тогда он не был доктором философии. В 1907 году он провалился, так как не представил habilitationsschrift – часть нового неопубликованного исследования. Клейнер хотел, чтобы Эйнштейн стал экстраординарным профессором теоретической физики (такая вакансия вскоре должна была открыться в университете), а необходимой для этого ступенью являлась должность приват-доцента. Эйнштейн написал, как требовалось, habilitationsschrift и весной 1908 года получил эту должность.

Всего три студента посещали первый курс лекций Эйнштейна по теории теплоты. Все трое стали его друзьями. Это неудивительно: лекции Эйнштейна по вторникам и субботам начинались в семь часов утра, а студенты имели право решать, посещать ли им курсы приват-доцентов. Нередко (и тогда, и в будущем) Эйнштейн оказывался не готов к лекции и делал много ошибок. Ошибившись, он обращался к студентам: “Кто скажет, в чем я не прав?” Если студент указывал на ошибку в расчетах, Эйнштейн заявлял: “Я всегда вам говорил, что математика у меня хромает”78.

Преподавание было главной обязанностью Эйнштейна. Желая убедиться, что он справляется с этой задачей, Клейнер пришел на одну из его лекций. Эйнштейн, раздраженный тем, что “его будут проверять”, оказался не на высоте79. Однако Клейнер дал ему возможность исправиться, и Эйнштейну это удалось. “Мне повезло, – написал он своему другу Якобу Лаубу. – Вопреки обычному, я прочитал лекцию хорошо – и мне это сошло”80. В мае 1909 года Эйнштейн наконец стал приват-доцентом в Цюрихе. Теперь он мог похвастаться, что стал “официальным членом этой гильдии потаскух”81. Прежде чем перевезти в Швейцарию Милеву и пятилетнего сына Ганса Альберта, Эйнштейн в сентябре поехал в Зальцбург, где проходила конференция Общества немецких естествоиспытателей и врачей. Его пригласили выступить с основным докладом, а слушателями были люди, представлявшие собой сливки немецкого физического сообщества. Отправляясь туда, он хорошо подготовился.

Обычно такой доклад делали пожилые мэтры, а не ученые едва за тридцать, собиравшиеся впервые получить должность экстраординарного профессора. Поэтому, когда Эйнштейн прошел к кафедре, на него устремились удивленные взгляды. Казалось, он ничего не замечал. Лекция, ставшая знаменитой, называлась “О развитии наших взглядов на сущность и структуру излучения”. Эйнштейн объявил аудитории, что “следующей ступенью в развитии теоретической физики станет построение теории света, которая будет синтезом волновой теории и теории испускания света”82. Это была не просто догадка. Эйнштейн основывался на мысленном эксперименте. Он рассмотрел зеркало, подвешенное внутри полости абсолютно черного тела. Ему удалось вывести уравнение для флуктуаций энергии и импульса излучения в такой системе и показать, что выражение для этих флуктуаций состоит из двух разных слагаемых. Одно следует из волновой теории света, а второе имеет все признаки, позволяющие считать, что свет состоит из квантов. Нельзя обойтись без какого-либо из этих слагаемых, равно как и без обеих теорий. Так впервые было предсказано свойство света, получившее позднее название корпускулярно-волновой дуализм.

Эйнштейн вернулся на свое место. Планк, председательствовавший на заседании, первым взял слово. Он поблагодарил докладчика, а затем заявил, что не согласен с ним. Он настаивает на том, что квант необходим только при описании обмена энергией между материей и излучением. Планк сказал, что “пока нет необходимости” вслед за Эйнштейном утверждать, что свет состоит из квантов. За Эйнштейна вступился только Йоханнес Штарк. К сожалению, впоследствии он, как и Ленард, стал сторонником нацистов, и тогда уже они оба нападали на Эйнштейна как на автора “жидовской физики”.


Эйнштейн ушел из патентного бюро, чтобы у него оставалось больше времени для занятий. Но в Цюрихе его ждало жестокое разочарование. У него было семь лекционных часов в неделю. К лекциям следовало готовиться, и он жаловался, что “свободного времени остается еще меньше, чем в Берне”83. Сначала студенты были потрясены затрапезным видом нового профессора. Но неформальный стиль лекций и предложение прерывать его, когда что-то становится неясным, быстро завоевали Эйнштейну их уважение и привязанность. В дополнение к обязательным лекциям раз в неделю он приглашал своих студентов в кафе “Террас”, где они болтали до закрытия. Достаточно скоро Эйнштейн привык к учебной нагрузке. Он опять обратился к задачам, которые давно и безуспешно старались решить другие. Он надеялся сделать это с помощью квантов.

В 1819 году двое французских ученых Пьер Дюлонг и Алексис Пти измерили удельную теплоемкость – количество энергии, необходимое для нагревания на один градус одного килограмма вещества – для целого ряда металлов, начиная с меди и заканчивая золотом. Следующие полвека никто из тех, кто верил в существование атомов, не подвергал сомнению их утверждение, что “все простые тела обладают в точности равными теплоемкостями”84. Большим сюрпризом стало открытие в 70-х годах XIX века исключений из правила.

Эйнштейн, пытаясь раскрыть загадку аномалий теплоемкости, использовал идею Планка и предположил, что при нагревании тела атомы начинают колебаться. Они не могут колебаться с какой-то произвольной частотой. Они “квантованы”, то есть их частоты колебаний могут быть только кратны определенной “фундаментальной” частоте. Эйнштейн выдвинул новую теорию поглощения тепла твердыми телами. Атомы могут поглощать только дискретные порции энергии – кванты. Однако когда температура падает, энергия тела понижается. В конце концов ее становится недостаточно, чтобы обеспечить каждый атом правильной квантованной порцией энергии. Из-за этого тело получает меньше энергии, что приводит к уменьшению теплоемкости.

Три года работа Эйнштейна не вызывала ни малейшего интереса. Отмечали только, что квантование энергии – ее разделение на атомном уровне на небольшие порции – позволяет решить задачу еще в одной области физики. Однако новость о том, что знаменитый немецкий физик Вальтер Нернст поехал из Берлина к Эйнштейну в Цюрих, заставила многих спохватиться и начать штудировать эту работу. Вскоре стало ясно, с чем была связана поездка. Нернст научился аккуратно измерять теплоемкость твердых тел при низких температурах и обнаружил полное совпадение результатов с предсказаниями “квантового" решения Эйнштейна.

Популярность Эйнштейна росла. Ему предложили место профессора в Немецком университете в Праге. Отказаться было невозможно, хотя это и означало, что надо покинуть Швейцарию, где он прожил пятнадцать лет. Эйнштейн и Милева с сыновьями Гансом Альбертом и Эдуардом, которому не было еще и года, приехали в Прагу в апреле 1911 года.

Вскоре после переезда Эйнштейн написал своему другу Микеланджело Бессо: “Я уже не задаюсь вопросом, существуют ли реально кванты, и не пытаюсь их больше строить. Мой мозг уже не может работать в этом направлении”. Вместо этого, писал Эйнштейн Бессо, он намерен ограничиться попыткой понять, к каким последствиям приводят кванты85. Не только он хотел ответить на этот вопрос. Девятого июня, меньше чем через месяц после того, как он отправил письмо Бессо, Эйнштейн получил необычное послание. Бельгийский промышленник Эрнест Гастон Сольве, сделавший состояние на открытии нового способа производства пищевой соды, предложил Эйнштейну тысячу франков на покрытие дорожных расходов, если тот согласится принять участие в “научном конгрессе”, который будет происходить в Брюсселе с 29 октября по 4 ноября86. Позднее его назовут I Сольвеевским конгрессом. Из всех европейских стран приглашены всего двадцать два человека. Они соберутся, чтобы обсудить “текущие вопросы молекулярной и кинетической теории”. Планк, Рубенс, Вин и Нернст подтвердили свое участие. Эта встреча на высшем уровне была посвящена кванту.

Восьмерых, в том числе Планка и Эйнштейна, попросили подготовить сообщения на заданные темы. Их тексты, написанные по-французски, по-немецки или по-английски, должны были быть разосланы другим участникам и послужить отправной точкой дискуссий на пленарных заседаниях. Планк должен был написать о теории излучения абсолютно черного тела, а Эйнштейну предложили изложить его квантовую теорию теплоемкости. Хотя Эйнштейну была предоставлена честь сделать заключительный доклад, его квантовая теория света не была включена в повестку.

“Это предприятие кажется мне очень привлекательным, – писал Эйнштейн Нернсту. – У меня ни на минуту не возникло сомнений, что Вы являетесь его душой”87. К 1910 году Нернст решил, что настало время разобраться с квантом, который, как он считал, представляет собой не более чем “прием, характеризующийся очень странными, почти гротескными свойствами”88. Он уговорил Сольве финансировать конгресс, и бельгиец, не поскупившись, арендовал “Метрополь”. Эйнштейн и его коллеги провели пять дней в роскошном отеле за разговорами о квантах. Как ни мало надежд возлагал Эйнштейн на этот “шабаш ведьм”, в Прагу он все равно вернулся разочарованным. Он жаловался, что не узнал ничего, чего не знал бы прежде89.

И однако Эйнштейн был рад познакомиться с другими “ведьмами”. Одна из них, Мария Кюри, оказавшаяся женщиной “безо всяких претензий”, оценила “ясность ума Эйнштейна, его способ подачи фактов и глубину знаний”90. Во время конгресса стало известно, что она получила Нобелевскую премию по химии. Мария Кюри – первый ученый, заслуживший две такие премии: в 1903 году ей была присуждена Нобелевская премия по физике. Это удивительное событие затмил разгоревшийся во время конгресса скандал. Французская пресса была полна слухов о ее романе с женатым французским физиком Полем Ланжевеном. Стройный молодой человек с холеными усами тоже был участником конгресса, и газеты много писали о побеге этой парочки. Эйнштейн, не заметивший между ними каких-либо особых отношений, считал эти сообщения чепухой. Он был уверен, что, несмотря на “блестящий ум, Кюри недостаточно привлекательна, чтобы представлять угрозу для кого-нибудь”91.

Хотя иногда казалось, что Эйнштейн чувствует себя не в своей тарелке, он был первым, кто научился жить в согласии с квантом. Именно это позволило ему обнаружить скрытую от других сторону природы света. Был еще один молодой теоретик, тоже научившийся жить с квантом. Он использовал его, чтобы воскресить несовершенную, уже отброшенную модель атома.

Глава 3.

“Золотой” датчанин


Манчестер, Англия, 19 июня 1912 года, среда. “Дорогой Харальд! Похоже, мне удалось кое-что понять про структуру атомов”, – пишет Нильс Бор младшему брату1. “Не рассказывай об этом никому, – предупреждает он. – Иначе не смогу писать тебе”. Молчание было очень важно для Бора. Он надеялся, что ему удастся осуществить мечту любого физика: приоткрыть завесу, скрывающую непознанное. Надо было еще кое-что доделать. И Бор пишет: “Очень хочу доделать все поскорее. Для этого мне даже пришлось взять в лаборатории отпуск на два дня (это тоже секрет)”2. Однако двадцатишестилетнему датчанину потребовалось гораздо больше времени, чтобы доработать и изложить свои идеи в трех статьях под общим названием “О строении атомов и молекул”. Первая, опубликованная в июле 1913 года, стала поистине революционной: Бор осмелился ввести квант непосредственно внутрь атома.


Нильс Хенрик Давид Бор родился в Копенгагене в 1885 году. В этот день его матери Эллен исполнилось двадцать пять лет. Перед рождением второго ребенка она вернулась под крыло родителей. Отец Эллен, банкир и политик, был одним из самых богатых людей города. Его особняк (дом №14) на Вед Странден – широкой мощеной улице, идущей от замка Кристианборг, где заседал датский парламент, – привлекал внимание своей величественностью. Хотя родители Нильса прожили здесь недолго, этот дом стал первым в череде просторных, обставленных со вкусом домов, в которых прошла жизнь Бора.

Кристиан Бор, отец Нильса, – известный профессор физиологии Копенгагенского университета, – открыл роль диоксида углерода при вытеснении кислорода из гемоглобина и исследовал процесс дыхания. За эти работы он был номинирован на Нобелевскую премию по физиологии и медицине. С 1886 года до его безвременной кончины в 1911 году (ему было всего пятьдесят шесть) семья жила в просторной квартире, принадлежавшей университетской Академии хирургии. Эту квартиру, расположенную на одной из фешенебельных улиц, всего в десяти минутах ходьбы от школы, очень любили все дети: Дженни (она была старше Нильса на два года), Нильс и Харальд (он был моложе Нильса всего на восемнадцать месяцев3). В семье было три горничных и няня, ухаживающая за детьми. Жизнь была комфортабельной и спокойной и значительно отличалась от существования большинства жителей Копенгагена, население которого все время росло.

Благодаря положению отца и происхождению матери частыми гостями дома были ведущие ученые, философы, писатели и художники Дании. Трое из них – физик Кристиан Кристиансен, философ Харальд Геффдинг и лингвист Вильгельм Томсен – были, как и Бор-старший, членами Датской королевской академии наук и литературы. Обычно после еженедельных собраний академии обсуждение продолжалось на квартире одного из участников “квартета”. Если гости приходили в дом к Бору, то подросткам, Нильсу и Харальду, разрешалось присутствовать при этих оживленных дискуссиях. Мальчикам выпала редкая возможность узнать, что волновало интеллектуалов Европы накануне конца столетия. Как напишет позже сам Нильс, это было “одно из их самых ранних и самых сильных впечатлений”4.

В школе Нильс прекрасно успевал по математике и естественным наукам, но к языкам способностей у него не было. “В то время он не задумываясь пускал в ход кулаки, если дело доходило до драк во время школьных перемен”, – вспоминал один из друзей5. В 1903 году, когда Бор поступил в Копенгагенский университет (в то время единственный университет в Дании), чтобы изучать физику, Эйнштейн уже более трех лет служил в патентном бюро в Берне6. В 1909 году, когда Бор получил степень магистра, Эйнштейн был экстраординарным профессором теоретической физики Цюрихского университета. Тогда же его впервые номинировали на Нобелевскую премию. Бор тоже отличился, но уровень награды был совсем другим. В 1907 году, когда ему был двадцать один год, он получил золотую медаль Датской королевской академии за работу о поверхностном натяжении воды. После этого его отец, получивший в 1885 году серебряную медаль, часто повторял: “Я серебряный, а Нильс – золотой”7.

Бор стал “золотым” после того, как отец заставил его уехать из лаборатории в деревню. Только там ему удалось закончить “золотую” статью. Хотя она была передана комиссии всего за два часа до окончания приема работ, Бор все еще хотел внести кое-какие добавления. Их он передал экзаменаторам двумя днями позднее. Желание Бора переписывать любой текст до тех пор, пока он не убедится, что изложение точно соответствует тому, что он хочет сказать, граничило с одержимостью. За год до окончания докторской диссертации Бор признался, что уже написал “четырнадцать более или менее отличающихся друг от друга черновиков”8. Однажды Харальд, заметив письмо на столе Бора, предложил его отправить, но услышал: “О нет! Это только первый набросок черновика”9.

Всю жизнь братья оставались очень близкими друзьями. Кроме математики и физики, оба любили спорт, особенно футбол. Харальд, игравший лучше, завоевал в составе датской футбольной команды серебряную Олимпийскую медаль за 1908 год (в финальном матче они проиграли Англии). Многие считали его более одаренным, чем брат. Докторскую степень по математике он получил годом раньше Нильса, защитившего диссертацию по физике в мае 1911 года. Их отец, однако, всегда считал старшего сына “самым одаренным членом семьи”10.

На защиту диссертации Бор, как того требовал обычай, пришел во фраке. Его доклад оказался необычно коротким для таких собраний: он занял ровно девяносто минут. Одним из двух экзаменаторов был Кристиан Кристиансен, друг отца. Он отметил, что в Дании, к сожалению, нет физиков, “специализирующихся в области теории металлов, которые могли бы по достоинству оценить работу”11. Тем не менее степень Бору была присуждена, а копии его работы направлены таким знаменитостям, как Макс Планк и Хендрик Лоренц. Не ответил ни один, и стало понятно, что без перевода посылать ее было бессмысленно. Впрочем, вместо того чтобы перевести диссертацию на немецкий или французский (большинство физиков говорило на этих языках свободно), Бор уговорил друга перевести диссертацию на английский.

В отличие от отца, выбравшего Лейпциг, и брата, поехавшего в Геттинген (в этих немецких университетах честолюбивые датчане традиционно завершали свое образование), Нильс Бор отправился в Кембридж. Для него “сердце физики”12 находилось там, где работали Ньютон и Максвелл. Он рассчитывал, что переведенная диссертация станет его визитной карточкой, и надеялся, что ему удастся поработать с сэром Джозефом Джоном Томсоном. Об этом человеке он позднее вспоминал как о “гении, который указал путь всем”13.


В конце сентября 1911 года, после беспечного лета с катанием на яхте и пешими походами, Бор прибыл в Англию. Целый год он будет получать стипендию, учрежденную пивоваренной фирмой “Карлсберг”. “Я почувствовал, как радостно стало у меня на душе, когда, стоя перед лавкой, увидел на ее двери надпись ‘Кембридж’”, – написал Бор своей невесте Маргрет Норлунд14. Рекомендательное письмо и фамилия Бор обеспечили Нильсу теплый прием университетских физиологов, помнивших его покойного отца. Они помогли ему найти небольшую двухкомнатную квартиру на окраине города. Еще какое-то время он был “очень занят устройством, визитами и зваными обедами”15. Но затем настроение Бора испортилось: его, как и других друзей и учеников Джозефа Джона Томсона, огорчали отношения, складывавшиеся с этим человеком.

Томсон, сын книготорговца из Манчестера, был избран третьим по счету руководителем Кавендишской лаборатории. Это произошло в 1884 году, через неделю после того, как ему исполнилось двадцать восемь лет. Это назначение было совершенно невероятным. Во-первых, после Джеймса Клерка Максвелла и лорда Рэлея руководителем столь известной экспериментальной лаборатории стал совсем молодой человек. А во-вторых – один из ассистентов Томсона вспоминал, что тот “настолько не умел работать руками, что я считал необходимым не подпускать его к приборам”16. И хотя Томсон, получивший Нобелевскую премию за открытие электрона, не обладал навыками настоящего экспериментатора, коллеги утверждали, что он “обладал интуитивной способностью разобраться в деталях работы сложных приборов, даже не прикасаясь к ним”17.

Вежливая манера Томсона – хрестоматийного рассеянного профессора в круглых очках и твидовом пиджаке – помогла Бору подавить волнение при первой встрече с ним. Желая произвести впечатление, он вошел в кабинет, держа свою диссертацию и книгу Томсона. Открыв книгу, Бор указал на одно из уравнений и заявил: “Оно неправильно”18. Хотя Томсон не привык, чтобы ему так беспардонно напоминали о его прежних ошибках, он пообещал прочесть диссертацию Бора. Положив ее поверх стопки статей на своем заваленном бумагами столе, он пригласил молодого датчанина на обед в следующее воскресенье.

Неделя проходила за неделей, а диссертация оставалась непрочитанной. Воодушевление, с которым он приехал, проходило, и Бор начал нервничать. “Похоже, – писал он Харальду, – что с Томсоном не так легко иметь дело, как мне показалось сначала”19. Несмотря на это, Бор по-прежнему восхищался пятидесятилетним ученым: “Он прекрасный человек, неправдоподобно умный, обладающий невероятной фантазией (послушал бы ты хоть одну из его популярных лекций) и бесконечно дружелюбный. Но он так занят, у него сразу такое количество дел, он так погружен в работу, что к нему трудно пробиться”20. Бор знал: ему мешает плохой английский. Чтобы преодолеть языковой барьер, он начал со словарем читать “Посмертные записки Пиквикского клуба”.

В начале ноября Бор отправился навестить бывшего студента отца, который теперь был профессором физиологии в Манчестерском университете. Во время этого визита Бора представили Эрнесту Резерфорду, только что вернувшемуся с физического конгресса в Брюсселе21. Харизматичный новозеландец, вспоминал Бор много лет спустя, “говорил с присущим ему энтузиазмом о множестве новых направлений в физической науке”22. Восхищенный “живым рассказом о дискуссиях на Сольвеевском конгрессе”, Бор покинул Манчестер, очарованный Резерфордом как физиком и как человеком23.


Первого мая 1907 года на физическом факультете Манчестерского университета произошла сенсация. Всеобщее внимание привлек новый декан, искавший свой кабинет. “Резерфорд прыгал через три ступеньки. Мы только в страшном сне могли себе представить профессора, таким образом поднимающегося по лестнице”, – вспоминал позднее один из его ассистентов24. Но спустя несколько недель энергия и деловой подход тридцатишестилетнего профессора покорили его новых коллег. Именно тогда Резерфорд начал собирать команду, успехи которой, достигнутые в следующие десять лет, были невероятными. Эта группа сформировалась и благодаря личности Резерфорда, и благодаря его научному чутью и изобретательности. Он не только руководил этой группой. Он был ее сердцем.

Резерфорд, четвертый из двенадцати детей в семье, родился 30 августа 1871 года в Новой Зеландии, в деревянном домишке в поселке Спринг-Грув на севере Южного острова. Его мать была учительницей, отец – строительным рабочим. Джеймс и Марта Резерфорд делали все возможное для достижения их детьми того, что позволят им талант и удача. Шансом для Эрнеста оказались стипендии, благодаря которым он смог продолжать образование. Они в итоге и привели его на другой конец света – в Кембридж.

В октябре 1895 года, когда Резерфорд явился в Кавендишскую лабораторию, чтобы работать под началом Томсона, он вовсе не был тем жизнерадостным и уверенным в себе человеком, каким стал спустя несколько лет. Трансформация началась после того, как он продолжил начатую в Новой Зеландии работу по детектированию “беспроводных” волн (позднее их назвали радиоволнами). Резерфорду потребовалось всего несколько месяцев, чтобы усовершенствовать детектор. Он подумывал о том, чтобы заработать, но вовремя понял, что в научной среде, где патенты были редкостью, попытка использовать разработки ради корысти может повредить репутации. Никогда, даже после того, как Гульельмо Маркони заработал состояние, Резерфорд не сожалел, что забросил свой детектор. А ведь состояние Маркони могло бы принадлежать Резерфорду, если бы открытие, ставшее главной новостью мировой прессы, было сделано с помощью его детектора.

Восьмого ноября 1895 года Вильгельм Рентген обнаружил, что при пропускании тока высокого напряжения через стеклянную вакуумную трубку некое излучение вызывает свечение небольшого бумажного экрана, покрытого платино-цианистым барием. Позднее, когда пятидесятилетнего профессора физики Вюрцбургского университета спрашивали, о чем он думал, когда открыл загадочные лучи, Рентген ответил: “Я не думал, а исследовал”25. Почти шесть недель он раз за разом повторял “один и тот же эксперимент, чтобы окончательно убедиться, что лучи действительно существуют”26. Опыты подтвердили, что источником странного излучения, вызывающего флуоресценцию, была трубка27.

Рентген попросил свою жену Берту положить руку на фотопластинку и направил на нее “X-лучи” – так он назвал неизвестное излучение. Через пятнадцать минут Рентген осмотрел пластинку. Берта испугалась, увидев очертания костей, двух колец и темное пятно на месте руки. Первого января 1896 года Рентген разослал копии своей работы “Новый тип лучей” с фотографиями гирь в ящике и костей руки Берты ведущим физикам Германии и всего мира. Новость об открытии Рентгена и его удивительных фотографиях распространилась молниеносно. Через несколько дней об “X-лучах” узнали все. Фотографии кисти Берты обошли все газеты мира. О таинственных лучах за год было опубликовано сорок девять книг и тысячи научных и научно-популярных статей28.

Томсон приступил к изучению X-лучей еще до того, как 23 января в еженедельном научном журнале “Нейчур” появился английский перевод статьи Рентгена. Тогда Томсон занимался исследованием электропроводности газов. X-лучи привлекли его внимание, когда он услышал, что они делают газ проводником. Томсон быстро проверил это утверждение и попросил Резерфорда помочь ему выяснить, что происходит с газом при прохождении X-лучей. По результатам этой работы Резерфорд в следующие два года опубликовал четыре статьи, которые принесли ему международную известность. Первую Томсон предварил небольшим введением, в котором высказал предположение, что, как и свет, X-лучи являются формой электромагнитного излучения. Это предположение подтвердилось позднее.

Пока Резерфорд ставил свои опыты, француз Анри Беккерель искал ответ на вопрос, испускают ли X-лучи и светящиеся в темноте фосфоресцирующие вещества. Вместо этого он обнаружил излучение соединений урана (независимо от того, фосфоресцируют они или нет). Сообщение Беккереля об открытии “урановых лучей” осталось почти незамеченным. Считалось, что такие лучи могут испускать только соединения урана, и поэтому они мало кого заинтересовали. Среди этих немногих оказался Резерфорд: он собрался выяснить, влияют ли эти лучи на электропроводность газов. Позднее ученый говорил, что это было самым важным решением за всю его жизнь.

Резерфорд исследовал глубину проникновения урановых лучей, используя очень тонкие слои фольги из “голландского металла” – сплава меди с цинком. Оказалось, что интенсивность прошедшего излучения зависит от числа слоев фольги.

Сначала при увеличении их числа интенсивность падала, затем добавление новых слоев практически не влияло на ее величину, однако потом интенсивность удивительным образом опять начинала уменьшаться. Повторив эксперименты с фольгой из разных материалов, Резерфорд отметил тот же эффект. Он смог предложить лишь одно объяснение: существуют два типа излучения – Резерфорд назвал его альфа- и бета-лучами.

Когда немецкий физик Герхард Шмидт объявил, что торий и его соединения тоже испускают излучение, Резерфорд сравнил их с альфа- и бета-лучами. Он обнаружил, что излучение тория мощнее, и пришел к выводу, что в этом случае “присутствуют более проникающие лучи”29, позднее названные гамма-лучами30. Мария Кюри ввела термин “радиоактивность” для описания процесса излучения и назвала вещества, испускающие “беккерелевские лучи”, радиоактивными. Она считала, что поскольку радиоактивность наблюдается не только у урана, это явление должно быть связано с атомами. Уверенность в этом позволила Марии Кюри и ее мужу Пьеру открыть такие радиоактивные элементы, как радий и полоний.

В апреле 1898 года, когда в Париже вышла первая работа супругов Кюри, Резерфорд узнал, что в Университете Мак-Гилла в Монреале объявлен конкурс на замещение должности профессора физики. Хотя благодаря работам по радиоактивности он уже был признанным авторитетом, Резерфорд мало надеялся на успех, несмотря на рекомендацию Томсона: “У меня никогда не было столь преданного работе и самостоятельного ученика, как мистер Резерфорд. Я уверен, что если он получит это место, ему удастся создать в Монреале блестящую физическую школу… Считаю, что для любого университета было бы большой удачей иметь возможность предоставить мистеру Резерфорду место профессора физики”31. В конце сентября двадцатисемилетний Резерфорд приехал в Монреаль. Там он провел следующие девять лет.

Резерфорд, покидая Англию, уже знал, что “от него ожидают большого числа новых работ и создания научной школы, способной посрамить янки”32. С этой задачей он справился. Первое открытие, сделанное Резерфордом в Канаде, касалось радиоактивности тория. Ученый показал, что в течение минуты она уменьшается в два раза, затем еще в два раза за следующую минуту. Через восемь минут интенсивность радиоактивного излучения уменьшается в восемь раз относительно исходного значения33. Описывая закон уменьшения радиоактивности в зависимости от времени, Резерфорд ввел понятие периода полураспада, то есть времени, которое необходимо, чтобы интенсивность радиоактивного излучения уменьшилась вдвое. А затем последовало открытие, которое принесло ему место профессора в Манчестере и Нобелевскую премию.

В октябре 1901 года Эрнест Резерфорд и двадцатипятилетний английский химик Фредерик Содди, живший в Монреале, начали совместно исследовать радиоактивность тория. Вскоре они поняли, что торий, вероятно, превращается в другой элемент. Содди вспоминал, как он остолбенел и у него вырвалось: “Это же трансмутация”. “Ради всего святого, Содди, не называйте это трансмутацией, – воскликнул Резерфорд. – Нас распнут как алхимиков”34.

Однако скоро они оба убедились, что на самом деле радиоактивность представляет собой превращение одного элемента в другой за счет испускания излучения. Сначала их еретическую теорию восприняли очень скептически, но экспериментальные данные оказались решающими. Критикам пришлось отказаться от столь милого всем представления об устойчивости материи. Это уже была не мечта алхимиков, а научно установленный факт: все радиоактивные элементы самопроизвольно превращаются в другие элементы, а период полураспада – это время, которое требуется для того, чтобы половина атомов претерпела такое превращение.

“Молодой, энергичный, похожий на мальчишку, он напоминал кого угодно, только не ученого, – вспоминал о Резерфорде Хаим Вейцман, тогда преподаватель химии в Манчестерском университете, позднее первый президент Израиля. – Он охотно и убежденно говорил о чем угодно, иногда не имея понятия о предмете разговора. Спускаясь вниз в столовую на ланч, я слышал в коридоре… раскаты его голоса”35. Вейцман полагал, что Резерфорд, “полностью поглощенный своей наукой, открывшей новую эру в естествознании, был начисто лишен политического чутья и вообще политикой не интересовался”36. Центральное место в работе Резерфорда занимало “прощупывание” атомов с помощью α-частиц.

Но что представляют собой α-частицы? Это долго смущало Резерфорда даже после того, как он понял, что на самом деле α-лучи – положительные частицы, направление движения которых меняется в сильном магнитном поле. Он считал, что α-частица – это ион гелия, то есть атом гелия, потерявший два электрона, но поскольку доказательствами он располагал лишь косвенными, то никогда не говорил этого публично. И вот теперь, почти десять лет спустя после открытия α-лучей, он надеялся найти окончательный ответ на вопрос, что такое α-частицы. Про β-частицы уже давно стало понятно, что они суть быстро двигающиеся электроны. Летом 1908 года Резерфорд с помощью двадцатипятилетнего немца Ганса Гейгера получил подтверждение своей старой гипотезы: α-частица действительно является атомом гелия, потерявшим два электрона.

“Дьявол кроется в рассеянии”, – говорил Резерфорд, когда они с Гейгером пытались “сорвать маску” с α-частиц37. Двумя годами ранее в Монреале он уже обратил внимание на то, что некоторые α-частицы, проходя через слюдяную пластинку, несколько отклоняются от прямолинейной траектории, из-за чего на фотопластинке появляется размытое пятно. Резерфорд решил выяснить причину этого. Вскоре после приезда в Манчестер он наметил список тем, которыми следовало бы заняться. Одну из них – рассеяние α-частиц – он предложил Гейгеру.

Вместе они разработали схему простого эксперимента. Они собирались подсчитать число сцинтилляций – небольших вспышек света, вызванных α-частицами, которые, пройдя через листок тонкой золотой фольги, ударяются в бумажный экран, покрытый сульфидом цинка. Считать сцинтилляции, проводя долгие часы в полной темноте, было очень трудно. К счастью, по словам Резерфорда, “Гейгер был гениальным исполнителем и мог, не теряя самообладания, считать хоть целую ночь напролет”38. Гейгер обнаружил, что α-частицы либо проходят через фольгу и не меняют направления, либо отклоняются на один-два градуса. Этого и следовало ожидать. Удивительно было другое: Гейгер заметил, что некоторые α-частицы “отклоняются на существенно больший угол”39.

Еще до того, как Резерфорд полностью разобрался в том, что означают результаты Гейгера и имеют ли они вообще смысл, ему была присуждена Нобелевская премия по химии “за проведенные исследования в области распада элементов в химии радиоактивных веществ”. Забавная сторона этого события состоит в том, что человек, полагавший, что “наука может быть либо физикой, либо коллекционированием марок”, претерпел неожиданное превращение из физиков в химики40. После возвращения из Стокгольма Резерфорд-лауреат научился вычислять вероятности рассеяния α-частиц на разные углы. Расчеты показали, что очень мал (практически равен нулю) шанс, что α-частица, проходя через золотую фольгу, многократно рассеется: это в результате могло бы привести к большому углу отклонения.

Именно тогда, когда Резерфорд был погружен в эти вычисления, Гейгер предложил привлечь к работе подающего надежды студента Эрнеста Марсдена. “Почему бы нет? Пусть выяснит, могут ли α-частицы рассеиваться на большие углы”, – сказал Резерфорд41. И очень удивился, когда Марсден обнаружил, что это возможно. Поиск продолжался. Углы рассеяния все увеличивались, но, согласно расчетам, рассеяния на такие большие углы вообще не могло быть: зарегистрированных Марсденом вспышек света, указывающих на то, что α-частицы попадают на покрытый сульфидом цинка экран, не должно было быть видно.

Пытаясь понять “природу гигантских электрических или магнитных сил, способных повернуть или рассеять пучок α-частиц”, Резерфорд попросил Марсдена проверить, могут ли α-частицы рассеиваться назад42. Он не ожидал, что Марсден вообще что-нибудь увидит, и был крайне удивлен, когда Марсден обнаружил: некоторые α-частицы отскакивают от золотой фольги. “Это невообразимо! – отозвался Резерфорд. – Это столь же невероятно, как если бы вы попали пятнадцатидюймовым снарядом в бумажную салфетку, а он отскочил бы и попал в вас”43.

Гейгер и Марсден сравнили результаты экспериментов, в которых использовались разные металлы. Оказалось, что золото рассеивает обратно в два раза больше α-частиц, чем серебро, и в двадцать раз больше, чем алюминий. От платиновой фольги отскакивает лишь одна из восьми тысяч α-частиц. В статье, опубликованной в июне 1909 года, Гейгер и Марсден безо всяких комментариев подробно описали эксперимент и его результаты. Сбитому с толку Резерфорду потребовалось еще восемнадцать месяцев на решение этой загадки.

Весь XIX век вокруг существования атомов велись непрерывные научные и философские дебаты. Но к 1909 году неоспоримые доказательства их реальности уже появились. Критикам атомарной теории пришлось уступить давлению неопровержимых фактов. Доказательства основывались прежде всего на экспериментально подтвержденной модели броуновского движения Эйнштейна и открытом Резерфордом распаде радиоактивных элементов. После десятилетий споров, участие в которых принимали многие видные физики и химики, наиболее приемлемой была признана модель атома, предложенная в 1903 году Джозефом Джоном Томсоном, – “пудинг с изюмом”.

Томсон считал, что атом – это не обладающий массой положительно заряженный шар, в котором, как изюмины в пудинге, распределены отрицательно заряженные электроны. Электроны были открыты Томсоном шестью годами ранее. Положительный заряд компенсирует силы отталкивания, действующие между электронами, которые в противном случае разорвали бы атом на части44. В атоме каждого элемента, предполагал Томпсон, электроны распределены по собственному, характерному для данного элемента набору концентрических окружностей. Различное число и способ расположения электронов, например в золоте и свинце, отличают их. Поскольку в атоме Томсона массой обладают только электроны, то даже в самых легких из них должно было быть несметное количество электронов.

Ровно за сто лет до этого, в 1803 году, английский химик Джон Дальтон впервые высказал идею о том, что атом каждого элемента однозначно характеризуется его весом. Прямого метода измерения атомных весов у него не было, поэтому он определял только их относительные значения, анализируя пропорции, в которых элементы объединяются, образуя соединения. Для сравнения Дальтону нужен был эталон. Поскольку водород – самый легкий из известных элементов, он положил его атомный вес равным единице. После этого атомные веса остальных элементов можно было сравнивать с атомным весом водорода.

Томсон, изучив результаты экспериментов по рассеянию рентгеновских лучей и β-частиц атомами, пришел к выводу, что его модель неверна: он переоценил число электронов. Согласно новым расчетам Томсона, атом не может иметь больше электронов, чем ему предписывает атомный вес. Точное число электронов в атоме было неизвестно, но предложенный Томсоном способ определения их максимально возможного числа ученые сразу расценили как шаг в правильном направлении. У атома водорода, атомный вес которого равен единице, может быть только один электрон. Однако атом гелия с атомным весом четыре может иметь два, три, даже четыре электрона. У других элементов допустимое число электронов определялось точно так же.

Катастрофическое уменьшение числа электронов означало, что вес атома должен определяться главным образом весом сферы, по которой размазан положительный заряд. Неожиданно сфера, которую Томсон придумал как трюк, способный обеспечить стабильность и нейтральность атома, стала реальностью. Но даже эта новая усовершенствованная модель не могла объяснить рассеяние α-частиц и не позволяла определить точное число электронов в каждом из атомов.

Резерфорд был уверен, что α-частицы рассеиваются из-за наличия внутри атома чрезвычайно сильного электрического поля. Но в атоме Томсона, где положительный заряд равномерно размазан по всему атому, нет настолько интенсивного электрического поля. Альфа-частица, ударившись о такой атом, просто не может отлететь обратно. В декабре 1910 года Резерфорду удалось “сконструировать атом неизмеримо лучше атома Дж. Дж. [Томсона]”45. “Теперь я знаю, – заявил он Гейгеру, – на что похож атом”46. На томсоновский он совсем не был похож.

Атом Резерфорда состоит из крошечного, расположенного в центре положительно заряженного ядра, в котором сосредоточена практически вся масса атома. Ядро примерно в сто тысяч раз меньше самого атома. Его можно сравнить с “мухой в соборе”47. Резерфорд понимал, что электроны атома не могут нести ответственность за отклонение α-частиц, поэтому ему не надо было точно знать, как они располагаются вокруг ядра. Он однажды пошутил, что атом уже не был, как его учили, тем “чудным несгибаемым парнем красного или серого цвета, какой вам приглянется”48.

При любом “столкновении” большинство α-частиц, не отклоняясь от своего пути, пролетит через атом Резерфорда: они не почувствуют влияния крошечного ядра в центре, от которого окажутся слишком далеко. Другие лишь слегка изменят направление, испытав слабое воздействие электрического поля ядра. Чем ближе к ядру оказывается проходящая через атом α-частица, тем сильнее воздействует на нее электрическое поле и тем сильнее она отклоняется от начальной траектории. Но если α-частица испытывает столкновение с ядром, действующая между ними сила отталкивания отбросит эту частицу строго назад, как мяч, ударяющийся о стенку. Гейгер и Марсден показали, что такие отскоки случаются чрезвычайно редко. Резерфорд говорил, что это “похоже на стрельбу по мошке, летающей вечером в Альберт-холле”49.

Модель Резерфорда позволяла получить простую формулу, точно предсказывающую, какую долю α-частиц можно обнаружить при любом угле рассеяния. Резерфорд не хотел делать свою модель атома достоянием гласности, пока не будет тщательно исследовано распределение по углам рассеянных α-частиц. Гейгер взялся за решение этой задачи и обнаружил, что распределение α-частиц полностью согласуется с теоретическими выкладками Резерфорда.

Седьмого марта 1911 года Резерфорд представил свою модель атома в докладе, сделанном на заседании Манчестерского литературного и философского общества. А четыре дня спустя он получил письмо от профессора университета в Лидсе Уильяма Генри Брэгга. Тот писал, что “пятью или шестью годами ранее” японский физик Хантаро Нагаока предложил модель атома с “большим, положительно заряженным центром”50. Он не знал, что прошлым летом Нагаока во время поездки по ведущим лабораториям Европы был и у Резерфорда. Не прошло и двух недель после получения письма Брэгга, как пришло и письмо из Токио. Нагаока, поблагодарив за “сердечный прием в Манчестере”, указывал, что в 1904 году он предложил “модель атома типа Сатурна”51. Согласно этой модели атом состоит из большого тяжелого центра, вокруг которого по круговым орбитам вращаются электроны52.

“Предлагаемая мною структура атома чем-то напоминает Вашу, представленную в опубликованной несколько лет назад работе”, – поблагодарил Резерфорд в ответном письме. Однако, несмотря на сходство моделей, между ними было очень важное отличие. В модели Нагаоки тяжелая положительно заряженная центральная часть занимала почти весь плоский, похожий на блин атом. А в сферической модели Резерфорда крошечное положительно заряженное ядро, сосредоточившее в себе практически всю массу атома, расположено в его центре, а сам атом остается практически пустым. Но у обеих моделей имелся неустранимый дефект, из-за которого практически никто из физиков не отнесся к ним серьезно.

Дело в том, что атом, у которого неподвижные электроны расположены вокруг положительно заряженного ядра, нестабилен: отрицательно заряженные электроны неудержимо притягиваются к ядру. Если же они вращаются вокруг ядра наподобие планет, вращающихся вокруг Солнца, атом все равно разрушится. Еще Ньютон показал, что движение по кругу всегда происходит с ускорением. А согласно теории Максвелла, если заряженная частица, каковой является электрон, движется с ускорением, она излучает электромагнитные волны и непрерывно теряет энергию. Вращающийся вокруг ядра электрон, двигаясь по спирали, упадет на ядро за время порядка одной тысячной от одной миллиардной секунды. Само существование материального мира свидетельствовало против наличия ядра у атома.

Резерфорд давно знал об этой, казалось, непреодолимой трудности. В книге “Радиоактивные превращения”, изданной еще в 1906 году, он писал: “Неизбежная потеря энергии двигающимся с ускорением электроном вызывает наибольшие затруднения при попытке понять устройство стабильного атома”53. Но в 1911 году он предпочел не обращать внимания на эту трудность: “На этой стадии не стоит останавливаться на вопросе о стабильности атома. Она, очевидно, определяется мгновенной структурой атома и движением составляющих его заряженных частей”54.

В первый раз Гейгер проверил формулу рассеяния Резерфорда быстро и недостаточно тщательно. Теперь вместе с Марсденом он потратил на измерения почти год. К июлю 1912 года результаты полностью подтвердили и саму формулу, и основные выводы теории Резерфорда55. Пройдут годы, и Марсден напишет: “Эта тотальная проверка была трудоемкой, но захватывающей задачей”56. В процессе работы они также поняли, что, с учетом ошибки эксперимента, заряд ядра атома данного элемента приблизительно равен половине его атомного веса. Это означало, что за исключением водорода, атомный вес которого равен единице, число электронов в атомах всех других элементов тоже должно приблизительно равняться половине атомного веса. Теперь можно было определить точное число электронов, например, в атоме гелия. Оно равно двум, а не двум, или трем, или четырем, как ранее предполагалось. Однако уменьшение числа электронов означало, что атом Резерфорда должен излучать энергию еще интенсивнее.

Когда Резерфорд подробно пересказывал Бору все, что обсуждалось на I Сольвеевском конгрессе, он забыл отметить, что в Брюсселе ни он, ни другие не упоминали теорию ядра атома Бора.


Сотрудничество с Томсоном, о котором мечтал Бор в Кембридже, не сложилось. Много позднее Бор назвал одну из возможных причин неудачи: “Я недостаточно хорошо знал английский и поэтому не знал, как выразить свои мысли. Я мог только указать на ошибку, но, похоже, он не нуждался в подобных указаниях”57. Томсон вообще имел дурную репутацию человека, не читающего работ и писем своих студентов и коллег. Кроме того, к этому времени он уже перестал активно интересоваться физикой электронов.

Чары Томсона развеялись. В начале декабря Бор еще раз столкнулся с Резерфордом на традиционной ежегодной встрече аспирантов Кавендишской лаборатории – шумной вечеринке с тостами, песнями и чтением лимериков, заканчивавшейся обедом из десяти перемен. Резерфорд опять произвел на Бора сильное впечатление, и последний всерьез задумался, не поменять ли Кембридж и Томсона на Манчестер и Резерфорда. Через месяц он поехал в Манчестер, чтобы обсудить эту возможность с Резерфордом. Молодой человек, решившийся на целый год разлучиться со своей невестой, отчаянно пытался сделать нечто очень важное, что могло бы оправдать его. Бор сказал Томсону, что хочет “понять, что такое радиоактивность”, и получил разрешение оставить Кембридж в конце нового семестра58. “В Кембридже, – заметил он много лет спустя, – было очень интересно, но время было потрачено абсолютно впустую”59.

Бору оставалось провести в Англии всего четыре месяца, когда в середине марта 1912 года он приехал в Манчестер. Здесь он собирался прослушать семинедельный курс по технике экспериментов с радиоактивными веществами. Времени было очень мало, и все вечера Бор проводил, пытаясь понять, как физика электронов может помочь лучше разобраться в свойствах металлов. Под руководством Гейгера и Марсдена он успешно окончил курс, и Резерфорд предложил ему выполнить небольшое самостоятельное исследование.

“Резерфорд – человек, в котором невозможно ошибиться, – писал Бор Харальду. – Он регулярно заходит, чтобы поинтересоваться, как идут дела, и обсудить все до мельчайших подробностей”60. В отличие от Томсона, совсем, по мнению Бора, не обращавшего внимания на учеников, Резерфорд “интересуется работой всех своих сотрудников”. Он обладал сверхъестественной способностью распознавать таланты. Одиннадцать его учеников и несколько соавторов стали лауреатами Нобелевской премии. Когда Бор появился в Манчестере, Резерфорд написал одному из друзей: “Бор, датчанин, выбрался из Кембриджа и явился сюда, чтобы поучиться работать с радиоактивностью”61. Тогда Бор еще не сделал ничего такого, что отличало бы его от энергичных молодых людей, работавших в лаборатории Резерфорда, кроме одного – он был теоретиком.

Вообще-то Резерфорд не очень ценил теоретиков и никогда не упускал возможности пройтись на их счет. “Они играют со своими символами, – сказал он однажды коллеге, – а мы добываем действительно неоспоримые факты, объясняющие устройство природы”62. Другой раз, когда его пригласили прочесть лекцию о направлениях развития современной физики, он ответил: “Я не могу прочесть целую лекцию об этом. Единственное, что я мог бы сказать, так это то, что физики-теоретики подняли головы, и самое время нам, экспериментаторам, помочь им опустить их”63. Однако двадцатишестилетнего датчанина он сразу полюбил: “Бор другой. Он играет в футбол”64.

Каждый день к вечеру работа в лаборатории останавливалась. Все аспиранты и сотрудники собирались поболтать за чаем, к которому подавались пирожные и бутерброды. Резерфорд посещал эти собрания. Он восседал в кресле и был готов поддержать разговор на любую тему. Чаще всего, впрочем, говорили о физике, в частности об атомах и радиоактивности. Резерфорду удалось создать на этих собраниях атмосферу открытости и дружелюбия, и там никто не боялся говорить – даже новички. Душой компании был Резерфорд. Бор знал, что он всегда готов “выслушать любого юнца, когда было ясно, что у него на уме хоть что-то есть”65. Единственное, чего не выносил Резерфорд, так это “напыщенности”. Говорить на этих собраниях Бору нравилось.

В отличие от Эйнштейна, свободно говорившего и писавшего, Бор (неважно, говорил ли он по-датски, по-английски или по-немецки) часто останавливался и подбирал слова. Бывало, во время разговора Бор просто думал вслух, пытаясь прояснить для себя какой-то вопрос. Именно за чаем он познакомился с Дьёрдем (Георгом Карлом) фон Хевеши, который в 1943 году получил Нобелевскую премию по химии за работу по использованию изотопов в качестве меченых атомов при изучении химических процессов. Его работы широко используются для диагностики в медицине, они нашли широкое применение в химии и биологии.

Чужие в стране, языком которой им еще предстояло по-настоящему овладеть, они быстро стала друзьями. Их дружба длилась всю жизнь. “Он знал, как помочь иностранцу”, – сказал о Хевеши Бор, вспоминая, как этот молодой человек, всего на несколько месяцев старше его, помог ему включиться в жизнь лаборатории66. Именно разговоры с Хевеши, рассказавшим Бору, что число открытых новых радиоактивных элементов уже таково, что в периодической таблице для них не хватает места, заставили его задуматься о том, как устроены атомы. Даже названия этих “радиоэлементов”, появляющихся в большом количестве при радиоактивном распаде атомов, отражали некоторую неуверенность и замешательство в определении их истинного места в мире атомов. Это были уран X, актиний В, торий С и другие. Но, как сказал Хевеши, возможно, у этой проблемы есть решение. Его предложил Фредерик Содди, работавший в Монреале с Резерфордом.

В 1907 году стало ясно, что два элемента, получающиеся при радиоактивном распаде (торий и радиоактивный торий) обладают разными физическими, но абсолютно идентичными химическими свойствами. Чтобы разделить их, ставились различные химические опыты, но все безрезультатно. В течение нескольких последующих лет был открыт еще ряд таких неразделяемых химически элементов. Фредерик Содди, обосновавшийся к тому времени в Глазго, предположил: атомный вес – единственное, что отличает эти новые радиоактивные элементы от их известных “полных химических аналогов”67. Они напоминают близнецов, вес которых немного отличается.

В 1910 году Содди высказал предположение, что неразделимые химическими методами радиоактивные элементы (позднее он назвал их изотопами) – просто разные формы одного и того же элемента, и поэтому все они должны занимать одну и ту же клетку в периодической таблице68. Эта идея противоречила принятым правилам размещения элементов в периодической таблице: элементы располагались в порядке возрастания их атомного веса. Первым был водород, последним – уран. Но тот факт, что и радиоторий, и радиоактиний, и ионий, и уран X с точки зрения химии идентичны торию, убедительно свидетельствовал в пользу существования изотопов Содди69.

До разговоров с Хевеши Бор не проявлял интереса к модели атома Резерфорда. Но теперь у него возникла идея: различать атомы только по их физическим и химическим свойствам недостаточно, надо учитывать и различие ядер атомов. Не обращая внимания на неизбежность коллапса атома с ядром, Бор отнесся к модели Резерфорда с полной серьезностью и попытался согласовать наличие изотопов с использованием атомных весов для упорядочения периодической таблицы. “После этого, – скажет он позднее, – все встало на свои места”70.

Бор понял, что число электронов в атоме Резерфорда задается зарядом ядра. Поскольку атом нейтрален, то есть не обладает отличным от нуля зарядом, очевидно, что положительный заряд ядра должен компенсироваться суммарным отрицательным зарядом всех его электронов. Поэтому атом водорода в модели Резерфорда должен состоять из ядра с зарядом плюс один и одного электрона с зарядом минус один.

Квант. Эйнштейн, Бор и великий спор о природе реальности
Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 5. Периодическая таблица химических элементов (Летом 2012 года Международный союз теоретической и прикладной химии утвердил названия элементов 114 и 116: флеровий (Н) и ливерморий (Lv). – Прuм. ред.)


Атом гелия, заряд ядра которого равен плюс двум, должен содержать два электрона. Увеличение заряда ядра при одновременном увеличении числа электронов позволяло выстроить по порядку элементы от водорода до самого тяжелого известного в то время элемента – урана (заряд ядра равен 92).

Бору было очевидно, что именно заряд ядра определяет положение атома в периодической таблице. Отсюда оставался один шаг до теории изотопов. Именно Бор, а не Содди, понял, что заряд ядра, а не атомный вес объединяет радиоактивные элементы, обладающие одинаковыми химическими, но различными физическими свойствами. Периодическая таблица может вместить и радиоактивные элементы – надо только расположить их в соответствии с зарядом их ядра.

Теперь Бор смог объяснить, почему Хевеши не удается разделить свинец и радий D. Если электроны определяют химические свойства, то любые два элемента с одинаковым числом и одинаковой конфигурацией электронов будут химически неразличимы. Так, свинец и радий D имеют один и тот же заряд ядра (82) и поэтому одно и то же число электронов (82), что делает идентичными их химические свойства. При этом свинец и радий D отличаются по своим физическим свойствам, поскольку различны массы их ядер. Масса ядра свинца примерно равна 207, радия D — 210. Отсюда Бор вывел, что радий D – это изотоп свинца и поэтому не может быть отделен от него при химических экспериментах. Позднее все изотопы стали называть так, как и элементы, изотопами которых они являются. Указывают только атомный вес изотопа: так, радий D – это свинец-210.

Бор ухватил суть: радиоактивность – явление, связанное с ядрами, а не с атомами. Это позволило ему объяснить на ядерном уровне процесс радиоактивного распада, когда один радиоактивный элемент превращается в другой с испусканием α-, β- или γ-излучения. Бор отдавал себе отчет в том, что если радиоактивность связана с ядерными процессами, то при превращении ядра урана с зарядом плюс 92 в уран X путем испускания α-частицы теряются две единицы положительного заряда и образуется ядро с зарядом плюс 90. Это новое ядро не может удержать все 92 электрона свинца, поэтому оно быстро теряет два из них, что приводит к появлению нового нейтрального атома. Каждый новый атом, образующийся в результате радиоактивного распада, чтобы остаться нейтральным, немедленно приобретает либо теряет электроны. Уран X с зарядом ядра плюс 90 является изотопом тория. Они оба, объяснял Бор, “обладают одним и тем же зарядом ядра и отличаются только массой и внутренней структурой ядер”71. Именно поэтому не удается разделить торий (атомный вес 232) и уран X, то есть торий-234.

Теория Бора описывала, что происходит на ядерном уровне при радиоактивном расщеплении элементов. Из нее, скажет Бор позднее, следовало, что “при радиоактивном распаде элемент, совершенно независимо от изменения его атомного веса, может сдвинуться со своего места в периодической таблице на две клетки назад или на одну клетку вперед. Это означает уменьшение или увеличение заряда ядра, сопровождающееся испусканием, соответственно, α- или β-лучей”72. Уран, распадающийся с испусканием альфа-частицы, превращается в торий-234 и переходит на две клетки назад в периодической таблице.

Бета-частицы, представляющие собой быстрые электроны, обладают отрицательным зарядом, равным минус единице. Если ядро испускает одну β-частицу, то его положительный заряд увеличивается на единицу. Это похоже на то, как если бы две частицы, одна заряженная положительно, а другая – отрицательно, мирно существовали в виде нейтральной пары, которая разрывается на части, испуская электрон и оставляя положительно заряженный осколок. Ядро нового атома, образующегося при β-распаде, обладает зарядом на единицу больше, чем распавшийся атом, и, следовательно, сдвигается в периодической таблице на одну клетку вперед.

Когда Бор решился рассказать обо всем этом Резерфорду, тот предостерег его и заметил, что опасно “экстраполировать достаточно скудные экспериментальные данные”73. Обескураженный холодным приемом, Бор попытался убедить Резерфорда, что такая теория “будет решающим доказательством справедливости его модели атома”74. Он потерпел фиаско. В какой-то степени это произошло из-за того, что Бор не сумел ясно изложить свои мысли. В это время Резерфорд писал книгу. Он был занят и не нашел времени, чтобы полностью осмыслить значение сделанного Бором. Резерфорд верил, что хотя альфа-частицы и испускаются ядрами, бета-частицы суть просто электроны, каким-то образом выталкиваемые из радиоактивного атома. Хотя Бор целых пять раз пытался переубедить Резерфорда, тот по-прежнему сомневался в логической последовательности его выводов75. Чувствуя, что Резерфорд “немного раздражен” и им самим, и его идеями, Бор решил оставить все, как есть76. Однако другие этого не допустили.

Очень скоро Фредерик Содди нащупал тот же “закон смещения”, что и Бор, однако он мог, в отличие от молодого датчанина, публиковать свои работы без согласия руководителя. Никто не был удивлен, что именно Содди может прорвать линию фронта. Но уж никто не мог предположить, что эксцентричный сорокадвухлетний голландский юрист станет автором такой принципиально важной идеи. В июле 1911 года Антониус Иоханнес ван ден Брук опубликовал в журнале “Нейчур” небольшую статью. Он предположил, что заряд ядра элемента определяется не его атомным весом, а местом в периодической таблице, его атомным номером. Хотя ван ден Брук исходил из модели атома Резерфорда, его выводы основывались на оказавшихся неверными предположениях. Например, он считал, что заряд ядра элемента равен половине его атомного веса. Резерфорд был заметно раздражен тем, что юрист опубликовал “смеха ради кучу догадок безо всякого научного обоснования”77.

Не дождавшись поддержки, 27 ноября 1913 года ван ден Брук опубликовал в “Нейчур” еще одну статью, в которой отбросил предположение о равенстве заряда ядра половине его атомного веса. Теперь он основывался на опубликованных Гейгером и Марсденом результатах детального исследования рассеяния альфа-частиц. А еще неделей позже Содди написал в “Нейчур” письмо, в котором утверждалось, что идея ван ден Брука объясняет сущность закона смещения. Затем последовало одобрение Резерфорда: “Мне кажется многообещающим предположение ван ден Брука о том, что заряд на ядре равен его атомному номеру, а не половине атомного веса”. Когда были написаны эти лестные слова в поддержку ван ден Брука, прошло чуть более восемнадцати месяцев с тех пор, как Резерфорд сам посоветовал Бору перестать заниматься похожей задачей.

Бор никогда не жаловался, что из-за отсутствия у Резерфорда энтузиазма не он первый опубликовал трактовку роли атомного номера. За работы на эту тему в 1921 году Содди была присуждена Нобелевская премия по химии78. “Уверенность в правильности своих оценок, восхищение его неординарной личностью вдохновляли всех, работавших в его лаборатории, и заставляли приложить максимум усилий, чтобы быть достойным того неподдельного неослабевающего интереса, который он проявлял к работе каждого”, – позднее вспоминал Бор о Резерфорде79. Одним словом, Бор продолжал работать, стараясь заслужить одобрение Резерфорда – “самую высокую оценку, о которой каждый из нас мог только мечтать”80. Он был великодушен там, где у других осталось бы чувство разочарования и горечи.


После того как Резерфорд отговорил Бора от публикации, тот наткнулся на статью, которая привлекла его внимание81. Это была работа Чарльза Галтона Дарвина – единственного теоретика из группы Резерфорда и внука великого натуралиста. Дарвин вычислил потери энергии α-частицами при прохождении через вещество, а не при рассеянии на атомных ядрах. Используя свою модель атома, эту задачу уже решил Джозеф Джон Томсон. Теперь Дарвин пересмотрел его решение, исходя из модели атома Резерфорда.

Модель атома Резерфорда опиралась на данные Гейгера и Марсдена о рассеянии α-частиц на большие углы. Резерфорд, понимая, что электроны атома не могут быть ответственны за рассеяние на такие углы, не учитывал их вовсе. При выводе закона рассеяния α-частиц, определяющего долю этих частиц, отклонившихся на заданный угол, Резерфорд считал атомы голыми ядрами. Затем он просто помещал ядро в центр атома и окружал его электронами, не заботясь об их расположении. Дарвин принял аналогичный подход, но он рассматривал не влияние ядра атома на проходящие через вещество α-частицы, а сосредоточился на том, как на них воздействуют электроны атома. Он указывал, что при прохождении α-частиц через вещество потери энергии определяются в основном их столкновениями с электронами атома.

Дарвин не знал твердо, как расположены электроны внутри атома. Лучшее, что он смог придумать, это что они равномерно распределены по объему атома либо по его поверхности: результат зависел только от величины заряда ядра и радиуса атома. Дарвин обнаружил, что полученные им значения радиусов различных атомов не согласуются с принятыми оценками. Читая его статью, Бор сразу нашел то место, где Дарвин ошибся: он считал отрицательно заряженные электроны внутри атома свободными, тогда как они связаны с положительно заряженным ядром.

Бор отлично умел видеть и использовать недостатки имеющихся теорий. Это искусство исправно служило ему всю его долгую научную жизнь. Часто свою работу он начинал с определения ошибок и противоречий в чужих работах. В данном случае отправной точкой послужила ошибка Дарвина. Резерфорд рассматривал только ядро, а Дарвин – только электроны атома, но не их влияние друг на друга. Бор понял, что теория, позволяющая объяснить, как альфа-частицы взаимодействуют с электронами в атоме, должна строиться с учетом его истинной структуры82. Оставив переживания, связанные с Резерфордом, Бор взялся за исправление ошибки Дарвина.

В это время Бор, обычно писавший много писем, замолчал. “Не волнуйся, у меня все в порядке, – успокаивал он Харальда. – Несколько дней назад мне пришло в голову кое-что, связанное с объяснением поглощения альфа-лучей. Это произошло так: работающий здесь молодой математик Ч.Г. Дарвин, внук того самого Дарвина, только что опубликовал статью по этому поводу. Мне кажется, что там не только есть математическая ошибка (хотя и не очень существенная), но, главное, что-то не так с основополагающими предположениями. Я занимаюсь построением теории, которая, если даже окажется не совсем правильной, возможно, поможет пролить свет на вопросы, касающиеся структуры атомов. Я планирую вскоре опубликовать небольшую статью по этому поводу”83. То, что ходить в лабораторию не обязательно, “очень помогает в работе над этой задачкой”84.

Пока его догадки не были облечены в плоть и кровь, единственным человеком в Манчестере, которому Бор рассказал о них, был Резерфорд. Хотя Резерфорда и удивил ход мыслей молодого датчанина, на сей раз он внимательно выслушал и поддержал его. После этого разговора Бор вообще перестал ходить в лабораторию. Он торопился: его пребывание в Манчестере близилось к концу. “Мне удалось кое-что понять, но, конечно, работа займет больше времени, чем мне по глупости казалось, – написал он Харальду 17 июля, ровно через месяц после того, как поделился с ним секретом. – Я надеюсь, у меня будет готова небольшая заметка, которую можно будет показать Резерфорду до того, как я уеду. Я ужасно, ужасно занят, но невероятная жара здесь, в Манчестере, не способствует прилежанию. Как мне хочется поговорить с тобой!”85 Ему хотелось рассказать брату, что он надеется починить разваливающийся атом с ядром Резерфорда. Его атом должен был стать квантовым.

Глава 4.

Квантовый атом


Первое августа 1912 года, четверг. Улицы Слагелсе, небольшого живописного городка примерно в пятидесяти милях к юго-западу от Копенгагена, украшены флагами. Начальник полиции (мэр был в отпуске) за две минуты обвенчал в ратуше Нильса Бора и Маргрет Норлунд. Харальд был шафером. На церемонии присутствовали только члены семьи. Как и родители, Бор отказался от религиозной церемонии. В Бога он перестал верить еще подростком. Тогда он признался отцу: “Не могу понять, почему это так глубоко меня волновало. Вера для меня совершенно ничего не значит”1. Если бы Кристиан Бор был жив, он одобрил бы сына, за несколько месяцев до свадьбы официально порвавшего с лютеранской церковью.

Вначале молодожены собирались провести медовый месяц в Норвегии, однако планы изменились из-за того, что Бор не успел закончить статью об альфа-частицах. Пара поехала в Кембридж, где и провела первые две недели медового месяца2. Между визитами к старым друзьям и прогулками по городу Бор закончил статью. Работали вдвоем: Бор диктовал, стараясь как можно яснее выразить свои мысли, а Маргрет редактировала английский текст. Вместе им работалось так хорошо, что ближайшие несколько лет Маргрет фактически исполняла обязанности секретаря своего мужа.

Бор вообще не любил писать. Ему удалось закончить докторскую диссертацию только после того, как мать записала текст под его диктовку. “Ты не должна помогать Нильсу, он должен учиться писать сам”, – безуспешно убеждал ее муж3. Когда Бор все же брался за перо, он писал медленно и совершенно неразборчиво. “В первую очередь, – вспоминал один из его сотрудников, – ему было трудно думать и писать одновременно”4. Когда Бор работал, ему надо было рассуждать вслух, а думалось ему лучше, когда он двигался. Обычно ученый ходил вокруг стола, а один из его ассистентов (или вообще любой, кого Бору удавалось поймать) сидел с ручкой наготове, пока он на ходу диктовал что-нибудь на одном из известных ему языков. Бора редко сразу удовлетворял текст статьи или лекции. Доходило до того, что он “переписывал” его (с чужой помощью) двенадцать раз подряд. Конечный результат такого титанического труда, этого поиска точности и ясности, бывал настолько невнятен, что читателю не удавалось увидеть лес за деревьями.

После того как рукопись статьи об альфа-частицах была закончена и запечатана в конверт, Нильс и Маргрет сели на поезд в Манчестер. Познакомившись с женой Бора, Эрнест и Мэри Резерфорд одобрили выбор молодого датчанина. Действительно, союз Нильс и Маргрет был долгим, счастливым и прочным, что помогло им пережить смерть двоих из шести сыновей. Маргрет настолько понравилась Резерфорду, что о физике сначала говорили мало. Впрочем, Резерфорд все же нашел время прочесть статью Бора, одобрил ее и обещал послать в “Философикал мэгэзин”5. Несколькими днями позднее свободные и счастливые молодожены отправились в Шотландию, где и провели остаток медового месяца.

Вернувшись в начале сентября в Копенгаген, Нильс и Маргрет поселились в небольшом доме в престижном пригороде Хеллеруп на берегу моря. В Дании, где был лишь один университет, физику найти вакансию было трудно6. Как раз перед свадьбой Бор принял предложение стать помощником преподавателя в техническом колледже [Loereanstalt]. Каждое утро Бор ехал на велосипеде на работу. “Он все время работал и, казалось, всегда спешил”, – вспоминал позднее один из преподавателей7. Спокойный, курящий трубку старейшина физиков – все это было впереди.

Кроме того, Бор служил приват-доцентом в университете: он читал курс термодинамики. Как и Эйнштейн, Бор считал подготовку к лекциям слишком утомительной. Тем не менее, по крайней мере один студент оценил его усилия и был признателен за “ясность и лаконичность”, с которой он “преподносил трудный материал”, а также за “мастерство” изложения8.

Преподавание и обязанности ассистента оставляли слишком мало времени для упорной работы над разрешением противоречий, раздирающих атом Резерфорда. Постоянно спешащему молодому человеку казалось, что он двигается вперед слишком медленно. Бор надеялся, что написанный им в Кембридже текст для Резерфорда (“резерфордовский меморандум”), в котором излагались его еще недостаточно точно сформулированные идеи структуры атома, станет основой статьи, которая будет готова к публикации сразу после медового месяца9. Этого не произошло.

“Видите ли, – признался Бор полвека спустя в одном из своих последних интервью, – к сожалению, очень многое, написанное там, ошибочно”10. Однако уже тогда он нащупал ключевую проблему – нестабильность атома Резерфорда. Согласно теории электромагнетизма Максвелла, электрон, двигающийся по кругу вокруг ядра, должен непрерывно излучать электромагнитные волны. Этот непрекращающийся расход энергии приводит к тому, что электрон, двигаясь по спирали, быстро падает на ядро. Нестабильность, связанная с излучением, была настолько хорошо известным дефектом атома Резерфорда, что Бор даже не касался ее в своем “меморандуме”. Что действительно его беспокоило, так это механическая нестабильность, мешающая существованию такого атома.

Резерфорд, предположив, что электроны вращаются вокруг ядра как планеты вокруг Солнца, ничего не сказал о том, как электроны располагаются внутри атома. Было понятно, что конфигурация из отрицательно заряженных электронов, двигающихся по кругу вокруг ядра, нестабильна из-за силы отталкивания, действующей между одинаково заряженными частицами. Не могут электроны находиться и в состоянии покоя, поскольку заряды противоположного знака притягиваются и, значит, будут сдвигаться по направлению к положительно заряженному центру. С этого утверждения начинался “меморандум” Бора: “Без учета движения электронов равновесной конфигурации в таком атоме быть не может”11. Перед молодым датчанином стояло множество проблем. Электроны не могут образовывать кольцо, они не могут покоиться, не могут двигаться по орбите вокруг ядра. А если в центре атома находится крошечное ядро, сравнимое с точкой, то модель Резерфорда не позволяет определить радиус атома.

Многие физики полагали, что проблемы, связанные с устойчивостью, – сокрушительный аргумент против модели атома с ядром Резерфорда. Но для Бора они указывали на ограниченность физических представлений, лежащих в основе описания атома, и предсказывали их скорую кончину. Его определение радиоактивности как “ядерного”, а не “атомного” явления, новаторская работа о радиоэлементах, позднее названных Содди изотопами, и о заряде ядра убеждали Бора, что атом Резерфорда на самом деле стабилен, несмотря на предсказания общепринятых физических теорий. Вопрос, на который Бор должен был дать ответ, звучал так: а почему?

Поскольку уже было ясно, что если следовать за Ньютоном и Максвеллом, то не избежать падения электрона на ядро, Бор решил, что “к вопросу о стабильности надо подходить по-другому”12. Он понимал, что сохранить атом Резерфорда можно только путем “радикальных изменений”. И Бор решил сосредоточиться на кванте, нежеланном детище Планка, в защиту которого выступил Эйнштейн13. Утверждение, что при взаимодействии излучения и материи энергия поглощается и испускается только порциями определенных размеров, выходило за рамки освященных веками представлений классической физики. Хотя Бор, как и почти все, не верил в кванты света Эйнштейна, ему было ясно, что “каким-то образом атом управляется квантами”14. Но в сентябре 1912 года у него еще не было даже догадки, как это может происходить.

Всю жизнь Бор любил детективы и, как частный сыщик, пытался найти ключ к тайне. В данном случае ему прежде всего надо было разобраться с предсказанием нестабильности атома. Будучи уверенным в том, что атом стабилен, Бор сделал решающий шаг: он ввел понятие стационарного состояния. Планк, чтобы объяснить экспериментальные данные, сначала придумал формулу для излучения абсолютно черного тела, а уж потом попытался ее получить. И тогда он натолкнулся на квант. Бор использовал ту же стратегию. Он начал с того, что переделал модель атома Резерфорда так, чтобы электроны, вращающиеся вокруг ядра, не излучали энергию. Только после этого он постарался это обосновать.

Классическая физика не накладывает ограничений на положение орбит внутри атома. Бор ввел такие ограничения. Как архитектор, проектирующий здание в точном соответствии с требованиями взыскательного клиента, он разместил электроны на “специальных” орбитах. Двигаясь по таким орбитам, электроны не излучают непрерывно энергию и не падают по спирали на ядро. В этом чувствовалась рука гения. Бор был уверен, что в атомном мире некоторые законы физики не выполняются, и поэтому “проквантовал” орбиты электронов. Планку, чтобы получить формулу для излучения абсолютно черного тела, пришлось “проквантовать” энергию, поглощаемую и испускаемую воображаемыми осцилляторами. Бору пришлось отказаться от общепринятой точки зрения, согласно которой электрон может вращаться вокруг ядра, находясь на произвольном расстоянии от него. Электрон, возражал он, из всех допустимых классических орбит выбирает только избранные “стационарные” орбиты.

Такое ограничение в полной мере устраивало Бора, пытавшегося собрать жизнеспособную модель атома. Но, несмотря на это радикальное утверждение, противоречащее физическим канонам, он продолжал двигаться по порочному кругу: электроны, занимающие специальные орбиты, не излучают энергию; электроны не излучают энергию, потому что находятся на специальных орбитах. До тех пор, пока ему не удастся предложить истинно физического объяснения стационарных состояний – разрешенных орбит электронов, – они будут восприниматься только как нечто, напоминающее строительные леса, возведенные теоретиком для поддержки дискредитировавшей себя модели.

В начале ноября Бор написал Резерфорду: “Надеюсь, смогу закончить статью за несколько недель”15. Прочитав письмо, Резерфорд понял, что Бор все сильнее волнуется. Поэтому он ответил, что никакой спешки нет, “не надо торопиться с публикацией”: не похоже, что кто-либо еще занимается этой проблемой16. Неделя шла за неделей, но сдвинуться с мертвой точки не получалось. Слова Резерфорда не убедили Бора: если пока никто всерьез и не взялся за раскрытие загадки атома, то это только вопрос времени. Надеясь на прорыв, в декабре Бор попросил несколько месяцев отпуска. Разрешение было получено, и вместе с женой он поселился за городом. Здесь Бор продолжил поиск ключей к разгадке тайны атома. Один из них он нашел ближе к Рождеству в работе Джона Николсона. Сначала он вообразил худшее, но вскоре понял, что этот англичанин угрозы для него не представляет.

Николсон, с которым Бор встретился во время своего бесплодного пребывания в Кембридже у Томсона, не произвел на него впечатления. Он был всего на несколько лет старше Бора (Николсону был тридцать один год) и недавно получил место профессора математики в Университетском колледже Лондона. Николсон тоже занимался построением собственной модели атома. Он считал, что на самом деле все элементы суть комбинации четырех “примитивных атомов”. Каждый из этих “примитивных атомов” состоит из ядра, окруженного электронами, образующими вращающееся кольцо. Число электронов в каждом из них разное. И хотя, по словам Резерфорда, Николсон устроил из атома “ужасную мешанину”, именно в его работе Бор отыскал второй ключ к разгадке мучившей его тайны. Это было физическое объяснение сущности стационарных состояний, то есть причины, по которой электроны могут располагаться только на определенных орбитах вокруг ядра.

Тело, двигающееся по прямой линии, обладает импульсом. Импульс есть масса тела, помноженная на его скорость. Электрон, двигающийся по кругу, обладает так называемым угловым моментом. Обозначим его буквой L. Он равен массе электрона, помноженной на его скорость и на радиус орбиты: L = mvr. В классической физике нет ограничений на величину углового момента электрона (или какого-либо другого двигающегося по кругу тела).

Прочитав статью Николсона, Бор обнаружил, что, как утверждал бывший коллега из Кембриджа, угловой момент кольца электронов может меняться только на величину, кратную h/2π. Здесь h — постоянная Планка, а π — хорошо известная из математики постоянная, равная 3,14…17. Николсон показал, что угловой момент вращающегося кольца электронов может меняться только на h/2π, или на 2 (h/2π), на 3 (h/2π) и так далее до n (h/2π), где n — целое число. Для Бора это был один из искомых ключей к проблеме стационарных состояний. Разрешены только такие орбиты, на которых угловой момент электрона равен целому числу n, помноженному на h и деленному на 2π. Пусть числа n = 1,2,3 и так далее генерируют стационарные состояния атома, в которых электрон не испускает излучения и, следовательно, может сколь угодно долго вращаться вокруг ядра. Все другие орбиты, нестационарные состояния, запрещены. Внутри атома угловой момент квантован. Он может принимать только значения L = nh/2π, и никакие другие.

Человек может стоять только на ступеньках лестницы, но не между ними. Точно так же, поскольку орбиты электронов квантованы, квантованы и энергии электронов внутри атомов. Для атома водорода Бору удалось методами классической физики вычислить энергию его единственного электрона на каждой из орбит. Набор разрешенных орбит называется энергетическими уровнями, а соответствующие им энергии обозначаются символом En. Нижняя ступенька энергетической квантовой лестницы соответствует n = 1. Когда n = 1, электрон находится на первой разрешенной орбите, в самом низком энергетическом квантовом состоянии. Его называют основным состоянием. Согласно модели Бора, в атоме водорода самому низкому уровню соответствует энергия E1, равная -13,6 эВ (электронвольт – единица измерения энергии, используемая для описания атомных процессов). Знак “минус” указывает на то, что электрон связан с ядром18. Если электрон занимает какую-либо другую орбиту, когда n не равно 1, то говорят, что он находится в возбужденном состоянии. Позднее число n было названо главным квантовым числом. Это число всегда целое. Значения n определяют стационарные состояния, в которых может находиться электрон, и, соответственно, набор энергетических уровней атома En.

Бор вычислил значения энергий стационарных состояний для атома водорода и показал, что энергия уровня n равна энергии основного состояния, деленной на n2, то есть (E/n2). Это значит, что при n = 2, в первом возбужденном состоянии, энергия равна -13,6 ÷ 4 = – 3,40 эВ. Радиус первой электронной орбиты, n = 1, определяет размер атома водорода в основном состоянии. В рамках модели Бора этот радиус, в согласии с самыми точными современными экспериментальными оценками, равен 5,3 нанометра (нм). Нанометр – единица длины, равная одной миллиардной части метра. Бор показал, что радиусы других разрешенных орбит растут как r2: если при n = 1 радиус равен r, то радиус орбиты при n = 2 равен 4r, при n = 3 он равен 9r, и так далее.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 6. Несколько стационарных состояний и соответствующие им энергетические уровни атома водорода (рисунок не в масштабе)


Тридцать первого января 1913 года Бор написал Резерфорду: “Надеюсь, скоро мне удастся отправить статью про атомы в печать. Я потратил на нее гораздо больше времени, чем предполагал, но, кажется, за последнее время мне удалось добиться существенного прогресса”19. Квантуя угловой момент орбитальных электронов, Бор смог добиться стабильности атома с ядром. Так он объяснил, почему электроны могут занимать не произвольные, а только строго определенные орбиты, то есть находиться только в стационарных состояниях. Через несколько дней после отправки письма Резерфорду Бор нашел третий, последний, ключ, позволивший ему завершить построение квантовой модели атома.

В это время Ханс Мариус Хансен, с которым Бор в студенческие годы дружил (тот был на год моложе) в Копенгагене, вернулся в датскую столицу, закончив обучение в Геттингене. Когда они с Бором встретились, тот рассказал товарищу о своих соображениях относительно структуры атома. В Германии Хансен занимался исследованиями в области спектроскопии. Он изучал поглощение и испускание излучения атомами и молекулами. Хансен спросил Бора, могут ли его идеи пролить свет на загадку образования спектральных линий. Уже давно было известно, что в зависимости оттого, испарение какого металла происходит при горении, открытое пламя меняет цвет. Оно становится ярко желтым вблизи натрия, темно-красным вблизи лития, фиолетовым вблизи калия. Еще в XIX веке было обнаружено, что каждый элемент приводит к образованию уникального набора спектральных линий: очень узких участков спектров, на которых интенсивность излучения сильно возрастает либо сильно ослаблена. Число, расстояние и длины волн спектральных линий, генерируемых атомами каждого из элементов, уникальны. Это как бы отпечатки пальцев, по которым элементы можно распознавать.

Спектры очень сложны. Различным элементам соответствует невероятно большое число разнообразных вариантов расположения и интенсивности спектральных линий. Поэтому трудно себе представить, что именно они послужили ключом к пониманию внутренней структуры атома. Всем интересно разглядывать цветной узор на крыльях бабочек, но, как сказал позднее Бор, “никто не думает, что, глядя на раскраску их крыльев, можно понять основы биологии”20. Связь между спектральными линиями и атомами была очевидна, но в феврале 1913 года Бор совершенно не представлял себе, в чем она состоит. Хансен предложил Бору взглянуть на формулу Бальмера для спектральных линий водорода. Насколько Бор помнил, он никогда о такой формуле не слышал. Более вероятно, что он просто забыл ее. Хансен записал формулу и пояснил: никто не понимает, почему она работает.

Иоганн Бальмер – швейцарский математик, преподававший в школе для девочек в Базеле и по совместительству читавший лекции в местном университете. Однажды Бальмер пожаловался коллегам, что ему нечего делать. Они, зная его пристрастие к нумерологии, рассказали о четырех спектральных линиях водорода. Заинтригованный Бальмер решил, что сможет описать все четыре линии одной математической формулой. Правда, всем казалось, что такой формулы быть не может. В середине XIX века шведский физик Андерс Ангстрем измерил с очень высокой точностью длины волн четырех спектральных линий водорода в красной, зеленой, голубой и фиолетовой областях видимого спектра. Обозначив их “альфа”, “бета”, “гамма” и “дельта”, он получил, что соответствующие им длины волн суть 656,210; 486,074; 434,01 и 410,12 нм21. В июне 1884 года, на пороге своего шестидесятилетия, Бальмеру удалось получить формулу, с помощью которой можно было вычислить длины волн (λ) каждой из этих четырех спектральных линий. Значения λ = b [т2 / 2 – n2)], где m и n – целые числа, а b — константа, которая определяется из эксперимента. Она равна 364.56 нм.

Бальмер показал, что если положить n равным 2 и считать, что m принимает значения 3,4,5 или 6, то приведенная формула практически точно воспроизводит искомую последовательность длин волн. Например, если в формулу подставить n = 2 и m = 3, то получается длина волны красной альфа-линии. Однако Бальмер сделал нечто большее. Он не просто воспроизвел длины волн известных четырех линий, которые позднее были названы в его честь серией Бальмера. Он предсказал существование пятой линии для n = 2 и m = 7. Бальмер не подозревал, что Ангстрем, работа которого была опубликована в Швеции, уже открыл такую линию и измерил ее длину волны. Два значения, экспериментальное и теоретическое, совпадали почти идеально.

Ангстрем умер в 1874 году в возрасте пятидесяти девяти лет. Если бы он прожил дольше, он удивился бы, узнав, что Бальмер, использовав свою формулу, предсказал существование других серий спектральных линий для атома водорода. Эти серии попадают в инфракрасную и ультрафиолетовую области спектра. Бальмер просто положил n равным 1, 3, 4 и 5 и, как и в случае n = 2, позволил m принимать ряд других целочисленных значений. Например, Бальмер предсказал, что при n = 3 и m = 4, или 5, или 6, или 7 существует серия линий в инфракрасном диапазоне. Эта серия линий была открыта в 1908 году Фридрихом Пашеном. Все предсказанные Бальмером серии линий были обнаружены, но никто не мог объяснить, почему его формула оказалась правильной. Какой физический смысл могла иметь формула, полученная подбором, путем проб и ошибок?

Позднее Бор скажет: “Как только я увидел формулу Бальмера, мне немедленно стало все совершенно ясно”22. Спектральные линии атома определяются перескоками электронов с одной разрешенной орбиты на другую. Если атом водорода, находящийся в основном состоянии, n = 1, поглощает достаточно энергии, электрон “перескакивает” на орбиту n = 2, соответствующую более высокой энергии. Это значит, что атом находится в нестабильном, возбужденном состоянии и быстро возвращается в стабильное основное состояние, перепрыгнув из состояния с n = 2 в состояние с n = 1. Он может это сделать, только испустив квант энергии, равный разности энергий этих уровней. В данном случае это 10,2 эВ. Длину волны соответствующей спектральной линии можно вычислить, используя формулу Планка E = hν, где ν – частота испускаемого электромагнитного излучения.

Электроны, перепрыгивающие с нескольких более высоких уровней на один и тот же более низкий уровень энергии, приводят к образованию четырех спектральных линий серии Бальмера. Размер излучаемого кванта энергии зависит только от начального и конечного состояния. Именно из-за этого формула Бальмера дает возможность правильно рассчитать длины волн серии спектральных линий, если положить n = 2 и считать, что т поочередно принимает значения 3, 4, 5 или 6. Формула Бальмера позволила Бору рассчитать и другие спектральные серии, которые получаются, если зафиксировать самый низкий энергетический уровень, на который может прыгнуть электрон. Например, если перескоки электрона заканчиваются уровнем n = 3 получается серия Пашена из инфракрасной области спектра, а перескоки, заканчивающиеся на уровне n = 1, генерируют так называемую серию Лаймана в ультрафиолетовой области23.

Квант. Эйнштейн, Бор и великий спор о природе реальности


Рис. 7. Энергетические уровни, спектральные линии и квантовые прыжки (рисунок не в масштабе)


Бор обнаружил странную особенность, связанную с квантовыми скачками. Невозможно определить, где во время прыжка находится электрон. Переход между орбитами, энергетическими уровнями, должен происходить мгновенно. Иначе все время перехода с орбиты на орбиту электрон будет излучать энергию. В атоме Бора электрон не может оказаться между орбитами. Как по волшебству он исчезает с одной орбиты и возникает на другой.

“Я абсолютно уверен, что проблема спектральных линий неразрывно связана с вопросом о природе кванта”. Удивительно, но это слова из дневника Планка24. Запись сделана в феврале 1908 года. До появления атома Резерфорда это было все, на что мог решиться Планк, продолжавший борьбу за минимизацию влияния кванта. Бор использовал идею о том, что электромагнитное излучение испускается и поглощается квантами. Но в 1913 году и он еще не мог согласиться с тем, что квантовано само электромагнитное излучение. Даже в 1919 году, когда Планк в своей Нобелевской лекции заявил, что квантовый атом Бора – это “долгожданный ключ, который поможет открыть дверь в удивительную страну” под названием спектроскопия, еще мало кто верил в кванты света Эйнштейна25.


Шестого марта 1913 года Бор отправил Резерфорду первую из трех статей и попросил передать ее в редакцию “Философикал мэгэзин”. В то время (да и еще много лет спустя), чтобы статья молодого ученого была быстро напечатана в английском журнале, ее должен был представить маститый ученый вроде Резерфорда. “Мне не терпится узнать, что вы обо всем этом думаете”, – написал Бор Резерфорду26. Особенно Бора заботила реакция на смешивание квантов с классической физикой. Ответ Резерфорда не заставил себя долго ждать: “Вы проявили большую находчивость в вопросе, касающемся происхождения спектра водорода. Похоже, ваш подход удачен. Но смесь идей Планка со старой механикой очень затрудняет возможность понять, что с точки зрения физики за всем этим кроется”27.

Резерфорду, как и многим другим, трудно было себе представить, как электрон в атоме водорода “прыгает” с одного энергетического уровня на другой. Сложность состояла в том, что в модели Бора нарушался один из основных законов классической физики. Двигающийся по кругу электрон представляет собой колебательную систему: один полный оборот по замкнутой орбите есть осцилляция, а число оборотов за одну секунду – частота осцилляций. Осциллирующая система излучает энергию на частоте, равной частоте осцилляций. Но поскольку в “квантовом прыжке” электрона участвуют два энергетических уровня, мы имеем дело с двумя частотами осцилляций. Резерфорд сокрушался о том, что в теории нет связи между этими частотами, между “старой” механикой и частотой излучения при прыжке электрона с одного энергетического уровня на другой.

Резерфорд указал на еще одну, даже более серьезную, проблему: “Мне кажется, у Вашей гипотезы есть еще одно очень слабое место. Я не сомневаюсь, что Вы и сами это полностью осознаете. Как электрон решает, с какой частотой он будет колебаться, переходя из одного стационарного состояния в другое? Мне кажется, Вы должны были предположить, что электрон заранее знает, где ему надо остановиться”28. Электрон с энергетического уровня п = 3 может перепрыгнуть либо на уровень п = 2, либо на уровень п = 1. Кажется, что электрону, совершающему прыжок, чтобы испустить излучение нужной частоты, надо “знать”, на какой энергетический уровень он направляется. Эти пробелы в теории квантового атома Бор объяснить не мог.

Было еще одно, более мелкое замечание, напугавшее Бора гораздо сильнее. Резерфорд полагал, что “статью следует сократить”, поскольку “длинные статьи отпугивают читателей, которые считают, что у них нет времени вдаваться во все эти подробности”29. Резерфорд предложил исправить английский текст Бора в тех местах, где это необходимо, а в постскриптуме добавил: “Надеюсь, Вы не будете возражать, если я по собственному усмотрению выброшу из статьи то, что мне не представляется необходимым? Жду ответа”30.

Получив письмо, Бор пришел в ужас. Мучительно подбиравшему слова, написавшему множество черновиков, многократно переписавшему статью датчанину мысль о том, что кто-либо (даже сам Резерфорд!) будет менять его текст, казалась кощунственной. Через две недели Бор послал дополненный и переработанный текст. Резерфорд согласился, что изменения “очень хороши и представляются вполне уместными”, однако вновь посоветовал сократить статью. Еще до того, как Бор получил это последнее письмо, он написал Резерфорду, что собирается приехать в Манчестер на каникулы31.

Когда Бор появился у Резерфордов, у них в гостях был их друг Артур Ив. Потом он вспоминал, что Резерфорд сразу провел “худощавого паренька” к себе в кабинет, а миссис Резерфорд ему объяснила, что муж “очень высоко оценивает работу этого молодого датчанина”32. Обсуждение статьи продолжалось несколько вечеров. Потом Бор признался, что когда он пытался защищать каждое слово, Резерфорд “проявлял почти ангельское терпение”33.

Наконец Резерфорд сдался. Потом он убеждал своих коллег и друзей, что в статье ничего трогать было нельзя: “Я увидел, что он взвесил каждое слово. Меня поразило, как твердо он отстаивал каждую фразу, каждое выражение, каждую цитату. Все было на своих местах. Хотя сначала мне и казалось, что многие предложения можно опустить, после его объяснений стало ясно, как точно все было подогнано. Ничего нельзя было менять”34. Много позднее Бор признал, что Резерфорд был прав, “возражая против усложненной публикации”35.

Три статьи Бора под общим названием “О строении атомов и молекул” вышли в журнале “Философикал мэгэзин”. Первая, датированная 5 апреля 1913 года, увидела свет в июле. Вторая и третья были опубликованы в сентябре и ноябре. Они касались идей, связанных с возможным расположением электронов внутри атомов. Этот вопрос занимал Бора еще десять лет. С помощью квантового атома он пытался объяснить периодическую таблицу и химические свойства элементов.


Бор построил модель атома из головокружительной смеси классической и квантовой физики. Он попрал догмы физической науки, предположив, что а) электроны внутри атомов могут располагаться только на определенных орбитах, в стационарных состояниях; б) электроны на орбитах не могут излучать энергию; в) атом может находиться только в нескольких дискретных энергетических состояниях, самое низкое из которых является основным; г) электроны каким-либо образом могут перепрыгивать из стационарных состояний с более высокой энергией в стационарные состояния с меньшей энергией, а разница между энергиями этих состояний излучается в виде кванта энергии. Модель Бора позволяла правильно вычислять характеристики атома водорода, например его радиус. Кроме того, она давала физическое объяснение происхождению спектральных линий. Квантовый атом, скажет позднее Резерфорд, был “триумфом разума над материей”. Он был убежден, что если бы не открытие Бора, для разгадки тайны спектральных линий “потребовались бы столетия”36.

Уже первая реакция на квантовый атом показала истинное значение достижения Бора. Первое публичное обсуждение его работы состоялось 12 сентября 1913 года в Бирмингеме, на 83-м ежегодном собрании Британской ассоциации содействия развитию науки. Реакция на доклад была неоднозначной. На собрании присутствовали и Томсон, и Резерфорд, и Рэлей, а среди почетных иностранных членов – Лоренц и Кюри. “Когда человеку за семьдесят, он не должен опрометчиво высказываться о новых теориях”, – уклончиво ответил Рэлей об атоме Бора. В кулуарах он, правда, признал, что не верит в то, что “природа ведет себя так”, и заметил, что “ему трудно представить, что все именно так и происходит”37. Томсон считал, что квантовать атом не нужно. Джеймс Джинс уверял всех в обратном. В своем выступлении перед переполненным залом он заявил, что самое главное обоснование модели Бора – ее “неоспоримый успех”38.

В Европе квантовый атом был встречен с недоверием. “Это все ерунда! Уравнения Максвелла справедливы при любых обстоятельствах, – заявил в пылу дискуссии Макс фон Лауэ. – Электрон, двигающийся по круговой орбите, обязан излучать”39. Пауль Эренфест признался Лоренцу, что атом Бора “приводит меня в отчаяние”40. “Если это та цена, которую надо заплатить для достижения цели, я должен перестать заниматься физикой”41. В Геттингене, сообщал Бору его брат Харальд, работа вызвала большой интерес, но предположения, на которых она строится, считают “дерзкими” и “фантастическими”42.

Один из первых триумфальных успехов теории Бора привел в ряды его сторонников некоторых известных физиков, включая Эйнштейна. Согласно предсказанию Бора, серия линий в спектре солнечного света, приписываемая водороду, на самом деле должна принадлежать ионизированному гелию, то есть гелию, у которого забрали один из двух электронов. Но эта интерпретация линий Пикеринга – Фаулера противоречила представлениям открывших их спектроскопистов. Кто прав? Ответ на этот вопрос получил один из сотрудников Резерфорда. По настоянию Бора он детально исследовал эти линии и как раз к началу собрания в Бирмингеме обнаружил, что прав датчанин, приписавший гелию линии Пикеринга – Фаулера. Эйнштейн услышал эту новость в конце сентября от Дьёрдя фон Хевеши, друга Бора. Оба они были на конференции в Вене. “Большие глаза Эйнштейна, – рассказывал Хевеши в письме Резерфорду, – стали еще больше, и он сказал мне: Тогда это одно из величайших открытий’”43.

В ноябре 1913 года, к моменту публикации последней из трех статей Бора, Генри Мозли, еще один член команды Резерфорда, доказал, что для каждого элемента величина заряда ядра, или его атомный номер (целое число, однозначно связанное с этим зарядом), определяет место элемента в периодической таблице. После разговора с Бором, приезжавшим в июле в Манчестер, молодой англичанин начал изучать рентгеновские спектры, получающиеся в результате обстрела различных элементов пучками электронов.

К тому времени уже стало известно, что рентгеновские лучи – это электромагнитное излучение с длиной волны в тысячи раз меньшей длины волны видимого света. Они возникают при ударе о металл электронов с достаточно большой энергией. Бор был уверен, что рентгеновское излучение – результат “выбивания” из атома электрона, находящегося на одной из самых глубоко лежащих орбит. Образовавшаяся вакансия заполняется при переходе электрона с более высокого энергетического уровня на более низкий. Разность энергий двух уровней равна кванту энергии, испускаемому при таком переходе. Так появляются рентгеновские лучи. Бор понимал, что его модель атома позволяет определять заряд ядра по длине волны испускаемых рентгеновских лучей. Именно об этой интригующей возможности говорили Бор и Мозли.

Мозли обладал невероятной трудоспособностью, сравнимой разве только с его выносливостью. Он проводил в лаборатории ночи напролет. За несколько месяцев Мозли измерил частоты рентгеновских лучей, испускаемых всеми элементами периодической системы между кальцием и цинком. Он обнаружил, что чем тяжелее элемент, обстреливавшийся электронами, тем частота испускаемых рентгеновских лучей больше. Согласно предсказанию Мозли, должны были существовать элементы с атомными номерами 42, 43, 72 и 75, пропущенные в периодической таблице. Он основывался на том, что для каждого элемента характерен свой набор рентгеновских спектральных линий и что для соседних элементов периодической таблицы такие наборы очень похожи44. Позднее, после смерти Мозли, все четыре указанные им элемента были открыты. Когда началась мировая война, он пошел в инженерные войска и служил офицером связи. Мозли принимал участие в Галлиполийской операции и умер от ранения в голову 10 августа 1915 года. Ему было всего двадцать семь. Лишь ранняя смерть лишила Мозли Нобелевской премии. Резерфорд удостоил его высочайшей похвалы: он назвал Мозли “прирожденным экспериментатором”.

Квантовый атом Бора начал завоевывать сторонников. Этому способствовали правильная интерпретация линий Пикеринга – Фаулера и принципиально важная работа Мозли о заряде ядра. Поворотной точкой стала работа молодых немецких физиков Джеймса Франка и Густава Герца. Они бомбардировали атомы ртути электронами и обнаружили, что при столкновениях электроны теряют энергию, равную 4,9 эВ. Франк и Герц были уверены, что измеренная ими энергия – это энергия, необходимая, чтобы оторвать электрон от атома ртути. Поскольку работа Бора в Германии была встречена скептически, Франк и Герц ее не читали. Бору самому пришлось заниматься интерпретацией их опыта.

Ничего не происходит до тех пор, пока энергия электронов, которыми “обстреливают” атомы ртути, меньше 4,9 эВ. Но если электрон, энергия которого больше этой величины, попадает в цель, он теряет энергию, равную 4,9 эВ, а атом ртути испускает ультрафиолетовый свет. Бор показал, что 4,9 эВ – это разность энергий основного состояния атома ртути и первого возбужденного состояния. Процесс описывается перескоком электрона между двумя первыми энергетическими уровнями, а разность их энергий точно такая, как предсказывает модель квантового атома. Сначала атом ртути переходит в первое возбужденное состояние, а когда он возвращается в основное состояние, электрон возвращается на первый разрешенный уровень, испускается квант энергии, вызывающий ультрафиолетовое свечение длины волны 253,7 нм в спектре линий ртути. Опыт Франка и Герца был прямым экспериментальным свидетельством существования квантованного атома Бора и наличия атомных уровней энергии. Хотя вначале Франк и Герц неправильно интерпретировали свои результаты, в 1925 году им была присуждена Нобелевская премия.


Одновременно с выходом первой статьи “трилогии” Бор стал наконец лектором Копенгагенского университета. И очень скоро захандрил: его главной обязанностью было преподавание элементарной физики студентам-медикам. Известность Бора росла, и в начале 1914 года он попытался добиться учреждения в университете новой должности профессора теоретической физики, которую он предполагал занять сам. Однако это было трудно: нигде, кроме Германии, теоретическая физика не считалась самостоятельной дисциплиной. “По моему мнению, д-р Бор – один из самых многообещающих и талантливых молодых европейцев, занимающихся сейчас математической физикой”, – написал Резерфорд в рекомендательном письме в Министерство по делам религий и образования в поддержку Бора и его проекта45. Огромный международный интерес к работе Бора обеспечил ему поддержку и на факультете. Но университетская бюрократия уже в который раз предпочла отложить решение вопроса. Бор был в унынии. И тогда он получил письмо от Резерфорда, предлагавшего достойный путь к отступлению.

“Полагаю, Вы знаете, что закончился срок пребывания Дарвина в должности преподавателя университета. Сейчас есть вакансия, оклад – двести фунтов, – писал Резерфорд. – Пока мы не видим особенно много подающих надежды кандидатов. Мне хотелось бы, чтобы это был молодой человек с независимым мышлением”46. Поскольку Резерфорд уже говорил молодому датчанину, что в его работе чувствуется “большое своеобразие, и она заслуживает одобрения”, было очевидно, что Резерфорд, не говоря прямо, хочет видеть на этом месте Бора47.

Бор, получив годовой отпуск и понимая, что решение об учреждении места профессора, которого он добивается, вряд ли будет принято раньше, в сентябре 1914 года с женой приехал в Манчестер. Там Нильса и Маргрет ожидал радушный прием, знаменовавший счастливое завершение путешествия вокруг Шотландии по штормящему морю. Но уже началась Первая мировая война, и многое изменилось. Волна патриотизма буквально опустошила лаборатории: все годные к военной службе вступили в армию. Надежды на короткую победоносную войну растаяли после сокрушительного поражения Бельгии и Франции. Люди, которые еще недавно были коллегами, находились теперь по разные стороны фронта. Марсден скоро оказался на Западном фронте. Гейгер и Хевеши стали солдатами войск Тройственного союза.

Когда Бор прибыл в Манчестер, Резерфорда там не оказалось. В тот раз ежегодное собрание Британской ассоциации содействия развитию науки происходило в Австралии, в Мельбурне. Туда в июне и уехал Резерфорд. Незадолго до того он был посвящен в рыцарское достоинство. Из Австралии Резерфорд отправился в Новую Зеландию, чтобы навестить семью, а затем, как и планировалось, уехал в Америку и Канаду. После своего возвращения в Манчестер Резерфорд почти все время занимался проблемами, связанными с противолодочной обороной. Дания хранила нейтралитет, поэтому Бору не разрешалось принимать участие в военных разработках. Он сосредоточился на преподавании, ибо проведению дозволенных научных исследований препятствовали отсутствие журналов и военная цензура, вмешивающаяся в переписку с континентом.

Вначале Бор планировал провести в Манчестере всего год. Но он все еще был там, когда в мае 1916 года получил формальное приглашение занять учрежденную наконец должность профессора теоретической физики Копенгагенского университета. Работы Бора завоевали широкое признание, что и позволило ему занять этот пост. Но, несмотря на успех, оставались вопросы, ответить на которые с помощью квантового атома не удавалось. Результаты расчетов для атомов с числом электронов больше единицы не совпадали с экспериментами. Не получалось описать даже гелий, у которого всего два электрона. Хуже того, согласно модели атома Бора должны были существовать спектральные линии, которые обнаружить не удавалось. И хотя чтобы объяснить, почему одни спектральные линии можно наблюдать, а другие нет, пришлось придумать специальные “правила отбора”, к концу 1914 года были признаны все основные постулаты теории Бора. А именно: существуют дискретные уровни энергии, имеет место квантование углового момента орбитальных электронов, ясна причина происхождения спектральных линий. Однако было ясно, что если, даже придумав новое правило, не удается объяснить существование хоть одной спектральной линии, значит, что-то неладно с самим квантовым атомом.

В 1892 году появились достаточно точные приборы, позволившие определить, что красная α- и голубая γ-линии серии Бальмера суть не отдельные линии: каждая из них расщепляется на две. Более двадцати лет оставался открытым вопрос: являются ли эти пары линий “истинным дуплетом” или нет. Бор считал, что нет. Но в начале 1915 года ему пришлось изменить свое мнение. В результате новых экспериментов выяснилось, что все три линии Бальмера – красная, голубая и фиолетовая – дуплеты. Расщепление спектральных линий называют “тонкой структурой”. Объяснить ее, используя свою модель атома, Бор не мог. Утвердившись в новой для себя должности профессора Копенгагенского университета, Бор обнаружил, что его ожидает целая кипа статей одного немецкого физика, которому удалось решить эту задачу, “подкорректировав” его квантовый атом.

Арнольду Зоммерфельду, известному физику-теоретику, профессору Мюнхенского университета, тогда было сорок восемь лет. Ему удалось превратить Мюнхен в бурно развивающийся центр теоретической физики. Многие годы ряд блестящих молодых физиков и подающих надежды студентов работали под его руководством. Как и Бор, он любил кататься на лыжах и часто приглашал студентов и коллег в свой дом в Баварских Альпах покататься и поговорить о физике. В 1908 году Эйнштейн, еще работавший в патентном бюро, написал Зоммерфельду: “Смею Вас уверить, если бы я оказался в Мюнхене и мог бы свободно распоряжаться своим временем, я стал бы посещать Ваши лекции, чтобы усовершенствовать свои познания в математической физике”48. Этот был явный комплимент: письмо написал человек, заслуживший от своего цюрихского преподавателя математики характеристику “отъявленного лентяя”.

Для упрощения задачи Бор предположил, что движение электронов вокруг ядра происходит только по круговым орбитам. Зоммерфельд посчитал, что это ограничение можно снять. Он разрешил электронам, как планетам вокруг солнца, двигаться по эллипсоидальным орбитам. Зоммерфельд знал, что с точки зрения математики окружность – это специальный случай эллипса. Поэтому круговые орбиты, по которым двигаются электроны, – это только подмножество всех возможных квантованных эллипсоидальных орбит. Квантовое число п в модели Бора определяет стационарное состояние, разрешенную круговую орбиту электрона, и соответствующий этому состоянию энергетический уровень. Значение п также определяет и радиус данной орбиты. Однако чтобы определить форму эллипса, требуются два числа. Поэтому, чтобы проквантовать эллипсоиды, Зоммерфельд ввел еще одно “орбитальное” квантовое число k. Из всех возможных эллипсоидальных орбит число k отбирает те, которые разрешены при данном значении п.

В модифицированной модели Зоммерфельда главное квантовое число n определяет допустимые значения k49. Если n = 1, то k = 1; когда n = 2, то возможны значения k = 1 и k = 2; при n = 3 значения k = 1,2,3. Для заданного значения n число k может принимать все целочисленные значения от единицы до n. Все орбиты при k = n являются круговыми. Однако если k меньше n, то орбита – эллипс. Например, когда n = 1 и k = 1, орбита – это окружность, радиус которой r называется боровским радиусом. Если n = 2, а k = 1, то орбита – эллипс. Но если n = 2 и k = 2, то орбита – окружность, радиус которой равен 4r. Таким образом, если атом водорода находится в квантовом состоянии n = 2, его единственный электрон может находиться на одной из двух орбит, где = 1 или k = 2. В состоянии с n = 3 электрон может находиться на одной из трех орбит. Эти орбиты суть эллипс при n = 3 и k = 1; эллипс – при n = 3 и k = 2; окружность – при n = 3 и k = 3. В модели Бора при n = 3 только одна разрешенная орбита, а в модифицированной модели Зоммерфельда таких орбит три. Эти дополнительные стационарные состояния позволяют объяснить расщепление линий серии Бальмера.

Квант. Эйнштейн, Бор и великий спор о природе реальности


Рис. 8. Электронные орбиты для n = 3 и k = 1,2,3 в модели атома водорода Бора – Зоммерфельда.


Чтобы объяснить расщепление спектральных линий, Зоммерфельд обратился к теории относительности Эйнштейна. Как и скорость кометы, вращающейся вокруг Солнца, скорость электрона на эллиптической орбите возрастает, когда он приближается к ядру. Но, в отличие от кометы, скорость электрона настолько велика, что его движение надо описывать уравнениями теории относительности. Отсюда следует, что увеличивается масса электрона. Релятивистское увеличение массы приводит к очень небольшому изменению энергии. В состоянии n = 2 две орбиты, k = 1 и k = 2, имеют разные энергии, поскольку при k = 1 орбита эллиптическая, а при k = 2 – круговая. Небольшая разница энергий означает наличие двух энергетических уровней и, следовательно, двух спектральных линий там, где теория Бора предсказывает только одну. Однако было еще два явления, которые не удавалось объяснить и с помощью квантового атома Бора – Зоммерфельда.

В 1897 году голландский физик Питер Зееман обнаружил, что в магнитном поле одна спектральная линия расщепляется на несколько линий или компонент. Если магнитное поле выключить, расщепление пропадает. Этот эффект был назван эффектом Зеемана. В 1913 году немецкий физик Иоханнес Штарк обнаружил, что спектральная линия расщепляется и тогда, когда атом помещен в электрическое поле50. После опубликования статьи Штарка Резерфорд связался с Бором: “Мне кажется, что теперь самое время высказаться об эффекте Зеемана и об аналогичном эффекте в электрическом поле. Их надо, если это возможно, согласовать с Вашей теорией”51.

Еще до Резерфорда Зоммерфельд обратился к Бору с таким же предложением. Вскоре после публикации первой части своей “трилогии” Бор получил от него письмо с поздравлениями. Зоммерфельд, в частности, спрашивал: “Не собираетесь ли Вы использовать свою модель для объяснения эффекта Зеемана? Я бы очень хотел разобраться в этом”52. Однако объяснить эффект Зеемана удалось Зоммерфельду, а не Бору. Решение было очень остроумным. До этого он ввел в рассмотрение эллиптические орбиты, по которым движутся электроны. Таким образом, увеличилось число допустимых квантованных орбит, где может находиться электрон при данном энергетическом состоянии атома, например при n = 2. И Бор, и Зоммерфельд считали, что орбиты – неважно, круговые или эллиптические, – лежат в одной плоскости. Пытаясь осмыслить эффект Зеемана, Зоммерфельд понял, что ориентация орбит в пространстве и есть недостающее звено. Электрон в магнитном поле может выбирать из большего числа разрешенных орбит. Эти орбиты по-разному ориентированы относительно магнитного поля. Чтобы проквантовать ориентацию орбит, Зоммерфельд ввел так называемое “магнитное” квантовое число т. Для данного значения главного квантового числа n число m может принимать все целочисленные значения от -n до n53. Так, если n = 2, то значения m равны -2; -1; 0; 1; 2.

“Не думаю, что когда-либо чтение доставляло мне большее удовольствие, чем при знакомстве с Вашей прекрасной работой”, – написал Бор Зоммерфельду в марте 1916 года. Различная ориентация электронных орбит (пространственное квантование) было экспериментально обнаружено пятью годами позднее. Это значит, что электрону во внешнем магнитном поле доступно большее число энергетических состояний, что и приводит к эффекту Зеемана. Эти состояния нумеруются тремя квантовыми числами: n, k и m.

Для объяснения экспериментов Зоммерфельду ничего не оставалось, как ввести два новых квантовых числа – k и m. Позднее, основываясь во многом на работе Зоммерфельда, был объяснен и эффект Штарка: он обусловлен изменением в присутствии электрического поля расстояния между энергетическими уровнями. Тем не менее у модели Бора – Зоммерфельда оставались слабые места. Например, не удавалось правильно воспроизвести интенсивность спектральных линий. Но успехи модели признавались всеми. Одновременно укреплялась репутация Бора. Как признание его заслуг, в Копенгагене для него был создан специальный институт. Бор был на пути к тому, чтобы стать, по выражению Зоммерфельда, “директором атомной физики”54. Это звание он заслужил благодаря своим работам и тому воодушевляющему влиянию, которое испытал каждый, с кем ему приходилось работать.

Для Бора слова Зоммерфельда прозвучали как комплимент. Он всегда мечтал так наладить у себя работу и создать ту же атмосферу, что и в лаборатории Резерфорда. У своего учителя Бор научился не только физике. Он увидел, как Резерфорд умел подстегнуть любопытство молодых физиков, заставлявшее их работать на пределе возможностей. В 1917 году Бор приступил к осуществлению своего замысла: создать подобие той чудо-лаборатории, в которой ему посчастливилось работать в Манчестере. Он обратился к властям Копенгагена с просьбой о создании Института теоретической физики при университете. После того, как друзья помогли найти деньги на покупку земли и строительство, проект был одобрен. Место выбрали очень удачное: на краю красивого парка недалеко от центра города. К строительству приступили в следующем году, после окончания войны.

Работы только начинались, когда Бор получил письмо, выбившее его из колеи: Резерфорд предлагал ему вернуться в Манчестер и занять место постоянного профессора теоретической физики: “Я думаю, что, объединив усилия, мы сможем произвести настоящий бум в физике”55. Предложение было очень соблазнительным, но Бор не мог уехать из Дании после того, как получил все, о чем просил. Может быть, если бы Бор все-таки принял предложение Резерфорда, тот не уехал бы из Манчестера: в 1919 году Резерфорд сменил Томсона на посту директора Кавендишской лаборатории.

Формально Институт теоретической физики (сейчас его называют Институтом им. Нильса Бора) открылся 3 марта 1921 года56. К тому времени значительно увеличившаяся семья Бора переехала в квартиру из семи комнат на первом этаже институтского здания. Ужасы войны и тяжелые послевоенные годы были позади. Очень скоро институт стал, как и надеялся Бор, пристанищем созидателей. Он, как магнит, притягивал ярких физиков со всего мира, но самый талантливый из них всегда держался немного в стороне.

Глава 5.

Эйнштейн встречает Бора


“Эти сумасшедшие не занимаются квантовой теорией”, – сказал Эйнштейн зашедшему к нему коллеге, глядя в окно кабинета в Институте теоретической физики при Немецком университете в Праге1. После переезда из Цюриха в апреле 1911 года его долго мучил вопрос: почему в саду по соседству с институтом утром гуляют только женщины, а во второй половине дня – только мужчины? Наведя справки, он выяснил: чудесный сад принадлежит сумасшедшему дому. Эйнштейн и сам сражался с демонами: оказалось, ему трудно ужиться с квантом и дуальной природой света. “Смею вас заверить, что… я не тот ортодоксальный приверженец квантования света, за которого вы меня принимаете”, – заявил он Хендрику Лоренцу2. Это ложное представление, говорил Эйнштейн, связано с “неточностью выражений в моих работах”3. Вскоре он сдался и даже усомнился в том, “существуют ли вообще кванты”4. После I Сольвеевского конгресса “Излучение и кванты” он решил, что с него довольно и с квантовым безумием пора кончать. На четыре года (именно в то время, когда Бор и его атом заняли центральное место в научной жизни) Эйнштейн оставил кванты: он был занят объединением своей теории относительности с теорией гравитации.


Карлов университет в Праге был основан в середине XIV века, а в 1882 году разделен по языку и национальной принадлежности на две части – чешскую и немецкую. Такое деление соответствовало настроениям в обществе: чехи и немцы относились друг к другу с большим подозрением. После спокойной, толерантной Швейцарии и космополитичного Цюриха Эйнштейну в Праге было неуютно, хотя должность и жалование профессора позволяли ему жить вполне комфортно. Все это было только квантом утешения на фоне нараставшего чувства одиночества.

К концу 1911 года, когда Бор задумался о переезде из Кембриджа в Манчестер, Эйнштейну отчаянно захотелось вернуться в Швейцарию. К счастью, на помощь пришел старый друг. В это время Марсель Гроссман стал деканом физико-математического факультета Высшей технической школы в Цюрихе (Политехникума). Гроссман предложил Эйнштейну перейти к нему на должность профессора. Тем не менее без некоторых формальностей обойтись было нельзя: например, без рекомендаций от известных физиков. Анри Пуанкаре входил в число тех, к кому обратился Гроссман. Пуанкаре отозвался об Эйнштейне как об “одном из наиболее оригинальных умов”, которые он знает5. В Эйнштейне великого француза восхищали легкость восприятия нового, умение выйти за рамки обычных представлений и “быстро оценить все возможные пути решения поставленной физической задачи”6. В июле 1912 года Эйнштейн, уже признанный физик, вернулся туда, где прежде не мог получить даже должность ассистента.

Рано или поздно Эйнштейн должен был стать тем человеком, которого захотят видеть в Берлине. В июле 1913 Макс Планк и Вальтер Нернст сели в поезд, идущий в Цюрих. Они знали, что уговорить Эйнштейна вернуться в страну, которую он покинул почти двадцать лет назад, будет нелегко. Но они собирались сделать ему предложение, от которого он не сможет отказаться.

Эйнштейн, встречавший их на вокзале, знал, зачем приехали Планк и Нернст. Он не знал только деталей. Недавно Эйнштейна избрали в Прусскую академию наук. Теперь ему предлагали занять в ней одно из двух оплачиваемых мест. Уже это было очень престижно. Но два эмиссара немецкой науки предложили ему еще и уникальную возможность стать профессором без учебной нагрузки, а также должность директора Института теоретической физики им. кайзера Вильгельма.

Предложение трех позиций сразу было случаем беспрецедентным. Эйнштейну потребовалось время, чтобы все осмыслить. Пока он думал, Планк и Нернст отправились прокатиться на трамвае по городу. Им было сказано, что по возвращении они узнают ответ по розе в руках у Эйнштейна: если роза красная, значит, он едет в Берлин, если белая – остается в Цюрихе. Сходя с трамвая, Планк и Нернст знали, что добились своего: Эйнштейн сжимал красную розу.

Для Эйнштейна одним из соблазнов Берлина была возможность освободиться от преподавания и “целиком посвятить себя размышлениям”7. Однако это означало, что впредь он сам и его результаты должны соответствовать статусу самого ценного достояния немецкой науки. “Берлинцы ведут себя со мной так, будто я курица, несущая золотые яйца, – сказал Эйнштейн своему коллеге после прощального обеда, – а я не знаю, способен ли я еще нести яйца”8. Отпраздновав в Цюрихе свой тридцать пятый день рождения, Эйнштейн в конце марта 1914 года перебрался в Берлин. Какой бы ни была причина, побудившая его уехать в Германию, очень скоро он стал относиться к переезду с восторгом: “Здесь так много, даже слишком много, интеллектуальных стимулов”9. Все – Планк, Нернст, Рубенс – были рядом. Но не только из-за них жизнь в “ненавистном” Берлине казалась Эйнштейну столь интересной. Была еще одна причина: присутствие его двоюродной сестры Эльзы Левенталь10.

Его роман с тридцатишестилетней разведенной кузиной, воспитывающей двух дочерей (Ильзе было тринадцать, Марго – одиннадцать лет) начался двумя годами ранее, в марте 1912 года. “К жене я отношусь как к служащему, которого не могу уволить”, – говорил он Эльзе11. Переехав в Берлин, Эйнштейн стал часто, безо всяких объяснений, исчезать из дома. Вскоре он вовсе оставил семью, оговорив свое возвращение целым рядом условий. Милева, приняв эти требования, и в самом деле становилась служащим, да еще таким, которого ее муж намеревался уволить. Эйнштейн потребовал:

1. Моя одежда и белье должны быть в порядке;

2. Три раза в день мне будут приносить еду в мою комнату;

3. Моя спальня и мой кабинет будут содержаться в полном порядке, в частности, к моему столу могу прикасаться только я.

Кроме того, Милева должна была “отказаться от всех личных контактов” с мужем и воздерживаться от критики его “словом ли, делом ли, на глазах детей”. Наконец, он настаивал, что Милева должна строго придерживаться следующих правил:

1. Ты не должна ни ожидать от меня проявления каких-либо чувств, ни упрекать меня за это;

2. Ты должна немедленно прекратить обращаться ко мне, если я этого потребую;

3. Ты должна немедленно и без всякого протеста покинуть мою спальню или кабинет, если я того потребую12.

Милева со всем согласилась, и Эйнштейн вернулся. Но долго так продолжаться не могло. В конце июля, ровно через три месяца после приезда в Берлин, Милева с мальчиками уехала обратно в Цюрих. Стоя на платформе и провожая их, Эйнштейн плакал: если и не из-за отъезда Милевы и нахлынувших воспоминаний, то из-за двух своих уезжавших мальчиков. Но уже через несколько недель он был абсолютно счастлив, живя в одиночестве “в огромной квартире, где никто не нарушает твой покой”13. Однако это спокойствие было иллюзорным: Европа скатывалась к войне.


Бисмарк сказал однажды: “Если в Европе начнется война, то начнется она из-за какой-нибудь глупости на Балканах”14. Этот день пришел: 28 июня 1914 года в Сараево был убит эрцгерцог Франц Фердинанд, наследник престолов Австрии и Венгрии. Австрия, поддержанная Германией, объявила войну Сербии. Первого августа Германия объявила войну России, союзнице Сербии, а двумя днями позже – Франции. Британия, гарант бельгийского нейтралитета, объявила войну Германии 4 августа, после того, как Германия напала на Бельгию15. “В обезумевшей Европе творится нечто невероятное”, – написал Эйнштейн 14 августа своему другу Паулю Эренфесту16.

Происходящее вызывало у Эйнштейна “жалость, смешанную с отвращением”, а Нернст, которому исполнилось пятьдесят, пошел в волонтеры и работал водителем “скорой помощи”17. Планк в порыве патриотизма заявил: “Испытываешь чувство гордости, называя себя немцем”18. Уверенный, что время, в котором они живут, замечательное, Планк (ректор Берлинского университета) посылал студентов в окопы ради “справедливой войны”. Эйнштейн с трудом поверил, что Планк, Нернст, Рентген и Вин были среди девяноста трех виднейших немецких ученых, подписавших воззвание “К культурному миру”. Манифест был опубликован 4 октября 1914 года в ведущих немецких газетах и за рубежом. Подписавшие его ученые протестовали против “лжи и клеветы наших врагов, пытающихся замарать благородное дело, ради которого немцы ведут навязанную им борьбу не на жизнь, а на смерть”19. Они утверждали, что Германия не несет ответственности за развязывание войны, не нарушала нейтралитет Бельгии и не повинна в каких-либо зверствах. Немцы – “культурная нация, для которой наследие Гёте, Бетховена и Канта столь же свято, как свой дом и своя земля”20.

Планк очень скоро пожалел, что под документом стоит его подпись, и в частной переписке извинился за это перед иностранными учеными – своими друзьями. Имя Планка под “Манифестом девяноста трех” поразило Эйнштейна. Даже канцлер Германии публично признал, что нейтралитет Бельгии был нарушен: “Как только наши военные цели будут достигнуты, мы постараемся исправить причиненное нами зло”21.

Эйнштейну, гражданину Швейцарии, не предложили поставить под манифестом свою подпись. Однако его заботил разнузданный шовинизм этого документа, и он принял участие в написании контрманифеста, озаглавленного “Воззвание к европейцам”. Обращение к “образованным людям всех стран” призывало их стать гарантами того, что “устройство мира не станет источником будущих войн”22. Позиция тех, кто подписал “Манифест девяноста трех”, была названа “недостойной того, что весь мир понимает под словом ‘культура’. Катастрофично, если отныне именно так ее будут понимать образованные люди”23. Документ осуждал немецких интеллектуалов, которые ведут себя “едва ли не как люди, потерявшие всякое желание поддерживать международные отношения”24. К сожалению, вместе с Эйнштейном под манифестом подписались всего четыре человека.

К весне 1915 года позиция коллег и дома, и за рубежом окончательно разочаровала Эйнштейна: “Даже ученые в разных странах ведут себя так, как если бы им ампутировали мозг восемь месяцев назад”25. А затем исчезли и все надежды на скорое окончание войны. К началу 1917 года Эйнштейн чувствовал себя “постоянно подавленным из-за нескончаемой трагедии, свидетелями которой мы являемся”26. “Даже привычное бегство в физику не всегда помогает”, – жаловался Эйнштейн Лоренцу27. Несмотря на это, четыре года войны для него оказались одними из наиболее продуктивных. Эйнштейн опубликовал книгу, выпустил пятьдесят научных статей, а в 1915 году закончил свой шедевр – общую теорию относительности.

Еще до Ньютона считалось, что время и пространство – две неизменные сущности – являют собой подмостки, на которых разыгрывается нескончаемая космическая драма. На этой сцене масса, длина и время остаются абсолютными и неизменными. В этом театре пространственные расстояния между объектами и временные интервалы между событиями для всех наблюдателей одинаковы. Эйнштейн, однако, обнаружил, что масса, длина и время – величины, не являющиеся абсолютными и неизменными. Пространственные расстояния и временные интервалы зависят от относительного движения наблюдателей. Пусть один наблюдатель стоит на Земле, а его близнец-астронавт двигается со скоростью, близкой к скорости света. Для астронавта время замедляется (стрелки часов двигаются медленнее), пространство сжимается (длина двигающихся объектов уменьшается), а масса движущегося объекта увеличивается. В XX веке все эти выводы специальной теории относительности были подтверждены экспериментально. Но такая теория не учитывала ускорение. Это сделала общая теория относительности. Напряженно работая над ней, Эйнштейн сказал, что специальная теория относительности выглядит “детской игрушкой” по сравнению с общей28. Если квант был вызовом общепринятой точке зрения на реальность атомного мира, то Эйнштейн приблизил человечество к пониманию истинной природы пространства и времени. Общая теория относительности – это теория гравитации Эйнштейна. А Большой взрыв, в результате которого, как считается, образовалась Вселенная, – следствие этой теории.

В теории гравитации Ньютона сила, с которой притягиваются друг к другу два тела, например Солнце и Земля, пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между их центрами масс. Поскольку тела не соприкасаются, гравитация по Ньютону – мистическая сила, “действующая на расстоянии”. В общей теории относительности гравитация обусловлена деформацией пространства, вызванной присутствием большой массы. Земля двигается вокруг Солнца не потому, что ее толкает некая невидимая сила, а благодаря деформации пространства из-за огромной массы Солнца. То есть материя деформирует пространство, а деформированное пространство направляет движение материи.

В ноябре 1915 года Эйнштейн проверил общую теорию относительности, объяснив с ее помощью особенности орбитального движения Меркурия, которые не могла объяснить теория гравитации Ньютона. При каждом обороте вокруг Солнца Меркурий несколько меняет орбиту. Очень точно измеряя положение Меркурия, астрономы выяснили, что орбита этой планеты слегка вращается. Эйнштейн использовал общую теорию относительности для вычисления сдвига орбиты. Когда стало ясно, что цифры совпадают с точностью до ошибки эксперимента, он почувствовал сильное сердцебиение, ему показалось, что внутри что-то оборвалось. “Вне всякого сомнения, теория прекрасна”, – записал он29. Самые смелые мечты Эйнштейна осуществились, но титанический труд истощил его силы. Придя в себя, он занялся квантом.

В мае 1914 года еще работавший над общей теорией относительности Эйнштейн одним из первых осознал, что опыт Франка – Герца подтверждает существование уровней энергии в атоме и является “убедительным подтверждением квантовой гипотезы”30. К лету 1916 года у Эйнштейна появилась собственная “блистательная идея” о том, как атом испускает и поглощает свет31.

Это давало возможность “удивительно просто вывести – именно вывести – формулу Планка”32. Вскоре Эйнштейн пришел к выводу, что “существование квантов света можно считать установленным”33. Однако за все приходится платить. Ему пришлось пожертвовать принципом причинности, являющимся обязательным в классической физике, и ввести в мир атомов вероятность.

До этого Эйнштейн еще мог думать об альтернативах, но на этот раз ему удалось вывести формулу Планка с помощью квантового атома Бора. Начав с упрощенной модели атома, у которого есть только два энергетических уровня, он указал три возможности, которыми может воспользоваться электрон, перепрыгивая с одного уровня на другой. Прыжок электрона с более высокого энергетического уровня на более низкий при одновременном испускании кванта света Эйнштейн назвал “спонтанной эмиссией”. Она может происходить, только если атом находится в возбужденном состоянии. Квантовый скачок второго типа имеет место тогда, когда атом приходит в возбужденное состояние, поглощая квант света, и электрон перепрыгивает с более низкого уровня на более высокий. Такие скачки Бор использовал для объяснения природы атомных спектров поглощения и испускания. Эйнштейн показал, что возможен еще один перескок: “вынужденная эмиссия”. Под воздействием светового кванта атом, уже находящийся в возбужденном состоянии, вместо того чтобы поглотить падающий квант, “вынужден” перейти в состояние с более низкой энергией. Другими словами, электрон “вынужден” перескочить на более низкий уровень, испуская световой квант. Четырьмя десятилетиями позже вынужденное излучение послужило основой для создания лазера. (Это слово составлено из первых букв английского выражения light amplification by stimulated emission of radiation, что означает “усиление света при вынужденном излучении”.)

Эйнштейн, кроме того, понял, что квант света обладает импульсом. В отличие от энергии импульс – это вектор, то есть, кроме абсолютной величины, у него есть и направление. Однако из уравнений Эйнштейна явно следовало, что точное время спонтанного перехода электрона с одного энергетического уровня на другой, как и направление движения кванта света, испущенного атомом, совершенно случайны. Самопроизвольная (спонтанная) эмиссия чем-то напоминает поведение радиоактивного элемента. Известно, что через определенное время, за время полураспада, произойдет распад половины атомов. Но невозможно узнать, когда именно распадется определенный атом. Точно так же можно вычислить вероятность того, что спонтанный переход произойдет, но все детали перехода отдаются на волю случая. Никакой связи между причиной и следствием нет. Эйнштейн считал, что концепция вероятности перехода, предоставляющая “случаю” возможность распоряжаться временем перехода и направлением испускания кванта света, – “слабое место” его теории. Он мог какое-то время с этим мириться, надеясь, что с развитием квантовой физики подобное недоразумение будет устранено34.

Сделанное открытие беспокоило Эйнштейна. Получается, что в самом сердце квантового атома хозяйничают случай и вероятность. В реальности квантов он больше не сомневался, но ему казалось, что под угрозой принцип причинности35. “Положение дел с причинностью и мне доставляет много беспокойства, – написал он Планку тремя годами позднее, в январе 1920 года36. – Удастся ли когда-нибудь понять квантовое поглощение и излучение с учетом требования выполнения принципа причинности, или статистический подход восторжествует? Должен заметить, что в этом вопросе у меня нет полной уверенности. Мне будет очень неуютно, если надо будет отказаться от детального выполнения принципа причинности”.

Вопрос, волновавший Эйнштейна, можно пояснить на следующем примере. Пусть человек держит яблоко на некотором расстоянии от земли. Если ему не давать упасть, можно сказать, что оно находится в нестабильном состоянии сравнительно с состоянием, при котором оно лежит на земле. Если яблоко отпустить, немедленно начинают действовать гравитационные силы, являющиеся причиной его падения. Теперь представим себе, что яблоко ведет себя как электрон в возбужденном атоме: после того, как мы разожмем руку, оно упадет на землю не сразу, а некоторое время повисит в воздухе и упадет в непредсказуемый момент времени, оценить который можно только в терминах теории вероятности. Может оказаться, что для яблока очень велика вероятность упасть на землю почти сразу. Но имеется отличная от нуля вероятность, что оно часами будет висеть над землей. Электрон в возбужденном атоме обязательно перейдет на более низкий уровень, после чего атом окажется в основном состоянии, но точный момент перехода может определить только случай37. В 1924 году Эйнштейн все еще мучительно пытался осознать последствия своего открытия: “Для меня невыносима мысль о том, что под воздействием излучения электрон сам, по своей свободной воле, может выбрать не только время прыжка, но и его направление. Если это так, уж лучше я буду сапожником или крупье в казино, но не физиком”38.


Годы напряженной интеллектуальной работы и холостяцкий образ жизни сделали свое дело. Эйнштейну было тридцать восемь лет, когда в феврале 1917 года он почувствовал сильные боли в желудке. У него обнаружили болезнь печени. Ученому становилось все хуже. За два месяца он потерял двадцать пять килограммов. Но это было только начало. У Эйнштейна обнаружили целый букет серьезных болезней: камни в желчном пузыре, язву двенадцатиперстной кишки, гепатит. По предписанию врачей он должен был много отдыхать и хорошо питаться. Это было легче сказать, чем сделать. Годы тягот и невзгод войны до неузнаваемости изменили жизнь. В Берлине даже картошка стала редкостью. Большинство немцев голодало. Мало кто умер от голода, но недоедание угрожало жизни многих. По некоторым оценкам, в 1915 году голодали восемьдесят восемь тысяч человек, в следующем году – сто двадцать тысяч. Восстания вспыхнули в более чем тридцати немецких городах. Это и неудивительно: люди были вынуждены есть хлеб не из зерна, а из измельченной соломы.

Существовал все удлинявшийся список эрзац-провианта. Шелуха семечек, смешанная со шкурой животных, заменяла мясо. Из сушеной репы делали “кофе”. Пепел заменял перец, а смесь соды и крахмала мазали на хлеб, представляя себе, что это масло. Непрекращающийся голод привел к тому, что в Берлине кошки, крысы и лошади стали считаться лакомством. Если лошадь падала замертво на улице, ее тушу мгновенно разрубали на куски и растаскивали. По словам одного из очевидцев подобного происшествия, люди “дрались за лучшие куски, и их лица и одежда были вымазаны кровью”39.

Настоящая еда была редкостью. Она была доступна только тем, кто мог за нее платить. Эйнштейн оказался счастливее многих: жившие на юге родственники и друзья из Швейцарии передавали ему продуктовые посылки. Посреди этого моря страданий он чувствовал себя, “как капля масла в воде, отделенным от других по складу ума и взглядам на жизнь”40. Но сам вести хозяйство ученый не мог, и ему пришлось, хоть и с неохотой, переехать в пустовавшую квартиру рядом с квартирой Эльзы. Хотя Милева все еще отказывалась дать Эйнштейну развод, Эльза наконец добилась своего. Они стали близки настолько, насколько это позволяли приличия. Здоровье медленно возвращалось к Альберту. Уход за больным предоставил Эльзе прекрасную возможность заставить его сделать все, чтобы получить развод. Эйнштейн не выказывал желания торопиться со второй женитьбой. И первую он воспринимал “как десять лет заключения”, но под конец сдался41. Милева согласилась, когда Эйнштейн предложил увеличить ей содержание, пообещал, что ей будут выплачивать пенсию как его вдове, и посулил отдать деньги, когда получит Нобелевскую премию. К 1918 году он уже шесть раз становился номинантом и был абсолютно уверен, что премия почти у него в кармане.

Эйнштейн и Эльза поженились в июне 1919 года. Ему было сорок, ей – сорок три. То, что произошло потом, Эльзе не могло даже присниться. Еще до конца года жизнь молодоженов в корне изменилась: Эйнштейн стал мировой знаменитостью. Одни приветствовали его как “нового Коперника”, другие высмеивали.

В феврале 1919 года (к этому времени Эйнштейн и Милева наконец развелись) из Англии отправились две экспедиции: на остров Принсипе у берегов Западной Африки и в город Собрал на северо-западе Бразилии. Каждый из пунктов назначения был тщательно выбран астрономами: оттуда 29 мая лучше всего можно будет наблюдать солнечное затмение. Целью ученых была проверка гипотезы, на которой строилась общая теория относительности Эйнштейна – его утверждения об изгибании светового луча в гравитационном поле. Планировалось сделать фотографии близких к Солнцу звезд, которые видны всего несколько минут во время полного солнечного затмения. Конечно, эти звезды не находятся вблизи Солнца, но исходящие от них световые лучи должны пройти близко от него, прежде чем попасть на Землю.

У астрономов были снимки, сделанные ночью шесть месяцев назад, когда положение Земли относительно Солнца было таким, что свет тех же звезд заведомо не проходил вблизи Солнца. Небольшое изменение положения звезд, которое, как надеялись ученые, можно будет обнаружить, сравнивая эти два набора фотографий, обусловлено отклонением светового луча из-за искривления пространства-времени вблизи Солнца. Теория Эйнштейна точно предсказывала величину этого смещения.

Общие собрания Лондонского королевского общества и Британского королевского астрономического общества проходили редко. Но 6 ноября в Лондоне такое собрание состоялось. На нем обсуждался вопрос, прав Эйнштейн или нет42.


РЕВОЛЮЦИЯ В НАУКЕ!

НОВАЯ ТЕОРИЯ ВСЕЛЕННОЙ!

ИДЕИ НЬЮТОНА ОПРОВЕРГНУТЫ!


Это заголовок статьи на двенадцатой странице лондонской “Таймс”, вышедшей на следующее утро. А тремя днями позже, ю ноября, в “Нью-Йорк тайме” появилась статья сразу с шестью заголовками: “Свет в небе искривляется / Триумф теории Эйнштейна / Ученые взбудоражены результатами наблюдений за солнечным затмением / Звезды находятся не в тех местах, где мы их видим, и не там, где они должны быть согласно расчетам, но повода волноваться нет / Книга для двенадцати мудрецов / ‘Никто в мире не поймет ее’, – сказал Эйнштейн, когда его бесстрашные издатели решились на публикацию”43. Эйнштейн никогда ничего подобного не говорил, но это был прекрасный материал для газетчиков, бросившихся писать о необычайной сложности математического аппарата новой теории и об идее искривленного пространства.

Одним из тех, кто невольно внес вклад в создание атмосферы таинственности вокруг общей теории относительности, был президент Королевского общества Джозеф Джон Томсон. “По-видимому, теория Эйнштейна – высочайшее достижение человеческой мысли, – заявил он журналистам после заседания, – но еще никому не удалось понятным языком объяснить, что она действительно собой представляет”44. Правда, еще в конце 1916 года Эйнштейн опубликовал книгу, в которой популярно изложил и специальную, и общую теорию относительности45.

“Общая теория относительности начинает вызывать определенный энтузиазм у моих коллег”, – сообщил Эйнштейн своему другу Генриху Цангеру в декабре 1917 года46. Однако после первых сообщений в газетах нашлось и много желающих высмеять “ставшего внезапно знаменитым доктора Эйнштейна и его теорию”47. Один из критиков написал, что теория относительности – “шаманская глупость” и “плод размышлений душевнобольного”48. Эйнштейн, которого поддержали, например, Планк и Лоренц, вел себя единственно разумным образом: игнорировал клеветников.

В Германии Эйнштейн был уже хорошо известен, когда его портрет появился на обложке “Берлинер иллюстрирте цайтунг”. Подпись под фото гласила: “Новый человек в мировой истории, исследования которого, наравне с работами Коперника, Кеплера и Ньютона, означают полный пересмотр представлений о природе”. Эйнштейн отказался отвечать на выпады критиков, но он и не хотел быть миропомазанным как преемник трех величайших ученых мира. “Когда отклонение светового луча стало достоянием публики, возник такой культ моей личности, что я чувствую себя языческим идолом, – написал он после того, как “Берлинер иллюстрирте цайтунг”, один из самых крупных иллюстрированных журналов в Европе, появился в газетных киосках. – Но это, с Божьей помощью, пройдет”49. В этом ученый ошибся.

Волна восхищения, охватившая мир после известия об Эйнштейне и его теории, была в какой-то мере обусловлена тем, что люди еще не до конца пришли в себя после потрясений Первой мировой войны. Она закончилась в 11 часов утра 11 ноября 1918 года. А двумя днями ранее Эйнштейн “из-за революции” отменил курс лекций по теории относительности50. Несколько позднее в тот же день Вильгельм II отрекся от престола и бежал в Голландию, а с балкона Рейхстага была провозглашена республика. Самым уязвимым местом новой Веймарской республики была экономика. Инфляция усиливалась, немцы перестали доверять марке. Стараясь угнаться за ее быстрым падением, люди занимались перепродажей всего, что только возможно.

Это был порочный круг: репарации раскручивали спираль инфляции, а экономика пошла под откос из-за того, что Германия была не в состоянии оплатить поставки дров и угля. К концу 1922 года американский доллар стоил уже семь тысяч марок. Но это было ничто в сравнении с гиперинфляцией, начавшейся в 1923 году: в ноябре доллар стоил уже 4 210 500 000 000 марок, стакан пива —150 миллиардов, а буханка хлеба – 80 миллиардов. Страна была близка к взрыву. Ситуацию удалось взять под контроль только благодаря американским кредитам и уменьшению репарационных выплат.

На фоне этих неурядиц известия об искривлении пространства, отклонении светового луча и сдвиге звезд, доступные пониманию только “двенадцати мудрецов”, потрясли воображение публики. Ведь у каждого есть интуитивное представление о том, что представляют собой пространство и время. Когда “каждый извозчик, каждый официант начинал спорить о теории относительности”, Эйнштейну стало казаться, что мир – это “сумасшедший дом, населенный любознательными пациентами”51.

Международная слава Эйнштейна и известные всем антивоенные настроения ученого делали его легкой мишенью в разворачивающейся кампании человеконенавистничества. “Антисемитизм здесь силен, а политическая реакция просто невыносима”, – писал Эйнштейн Эренфесту в декабре 1919 года52. Вскоре стали приходить письма с угрозами, а иногда ему доводилось выслушивать прямые оскорбления прямо на пороге квартиры или рабочего кабинета. В феврале 1920 года группа студентов сорвала его лекцию в университете. Один из них крикнул: “Я перережу глотку этому грязному жиду!” 53 Но политические деятели Веймарской республики хорошо представляли себе истинную ценность Эйнштейна. После войны немецких ученых не допускали даже к участию в международных конференциях. Министр культуры заверил Эйнштейна, что Германия “гордится и всегда будет гордиться возможностью считать вас, герр профессор, одним из самых ярких представителей нашей науки”54.

Нильс Бор сделал больше, чем кто-либо другой, чтобы как можно быстрее восстановить личные контакты между учеными из враждовавших стран. Он был гражданином нейтральной страны и к немецким коллегам относился без неприязни. Бор одним из первых послал приглашение немецкому ученому: предложил Арнольду Зоммерфельду прочитать лекцию в Копенгагене. После его отъезда Бор заметил: “Мы много говорили об общих принципах квантовой теории и ее приложениях к отдельным задачам атомной физики”55. Немецкие ученые, как и принимающая сторона, хорошо понимали, что еще не скоро их позовут на международные конференции. И те, и другие знали цену подобным частным приглашениям. Поэтому когда Макс Планк попросил Бора прочесть лекцию о квантовом атоме в Берлине, тот с радостью согласился. Была назначена дата – 27 апреля 1920 года. Впервые Бору предстояло встретиться с Планком и Эйнштейном. Этой встречи он ждал с волнением.

“Это, должно быть, человек первоклассного ума, дальновидный, относящийся ко всему очень критически, никогда не теряющий нить сложного построения”, – такую оценку Эйнштейн дал датчанину в октябре 1919 года. Эйнштейн был старше Бора всего на шесть лет56. Эта похвала и стала причиной приглашения Бора в Берлин. Эйнштейн был давним его почитателем. Когда летом 1905 года несколько поутих бушевавший у него в мозгу ураган новых идей, он никак не мог найти “что-то действительно стоящее, чем можно было бы теперь заняться”57. “Конечно, открытым еще остается вопрос о спектральных линиях, – сказал он своему другу Конраду Габихту, – но, думаю, простой связи между их свойствами и известными физическими явлениями вообще нет. В данный момент возможность решить эту задачу представляется мне достаточно туманной”58.

Эйнштейн обладал удивительным чутьем, позволявшим ему понять, настал ли момент для решения той или иной физической задачи. Отказавшись от попытки раскрыть тайну спектральных линий, Эйнштейн вывел уравнение Е = mc2, утверждающее, что энергия и масса могут преобразовываться одна в другую. Но, как ему казалось, всемогущий Бог посмеялся над ним и “обвел вокруг пальца”59. Поэтому когда в 1913 году Бор показал, что его квантованный атом может дать ответ на загадку спектральных линий, Эйнштейн воспринял это как “чудо”60.

Как только Бор встретился с Планком и Эйнштейном, беспокойство – смесь возбуждения и мрачных предчувствий, – вызывавшее спазмы в животе по дороге от вокзала до университета, улетучилось. Он расслабился, когда от светских формальностей перешли к разговорам о физике. Его собеседники разительно отличались друг от друга. Планк олицетворял собой истинные прусские добродетели, а Эйнштейн – большеглазый, с непослушной шевелюрой и в коротковатых брюках – не производил впечатления человека, находящегося в согласии с самим собой, а может, и с окружающим беспокойным миром. Бор остановился у Планка.

Позднее датчанин рассказывал, что в Берлине время ушло на “разговоры о теоретической физике, с утра до вечера”61. Для человека, обожающего говорить о физике, лучшего времяпрепровождения нельзя было и представить. Особенно ему понравился завтрак, который устроили в его честь молодые университетские физики и на который никто из корифеев приглашен не был. Для молодежи это был шанс попытать Бора, поскольку после лекции “они были несколько обескуражены из-за того, что, как показалось, почти ничего не поняли”62. Эйнштейн же очень хорошо понял, о чем говорил Бор, – и ему это не понравилось.

Бор, подобно многим, не верил в существование квантов света Эйнштейна. Как и Планк, он допускал, что излучение поглощается и испускается квантами, но само излучение не квантовано. Ему представлялось, что имеется слишком много свидетельств в пользу волновой природы света, однако в присутствии Эйнштейна Бор заявил аудитории: “Природу излучения я обсуждать не буду”63. В то же время на него произвела глубокое впечатление работа Эйнштейна 1916 года о спонтанной и вынужденной эмиссии излучения и переходе электронов с уровня на уровень. Эйнштейн преуспел там, где он сам потерпел поражение: показал, что все отдано на откуп случаю и вероятности.

Эйнштейна по-прежнему беспокоило, что с помощью его теории нельзя предсказать ни время, ни направление вылета кванта света при перескоке электрона с более высокого энергетического уровня на более низкий. “Тем не менее, – писал он в 1916 году, – я совершенно убежден, что путь выбран правильно”64. Он верил, что именно этот путь рано или поздно приведет к реабилитации принципа причинности. Но Бор в своей лекции утверждал, что время и направление точно определить невозможно. Так эти два человека оказались по разные стороны баррикад. В оставшиеся дни, гуляя по Берлину или обедая у Эйнштейна, каждый из них пытался обратить другого в свою веру.

“Редко мне случалось получать такое удовольствие просто из-за того, что человек находится рядом со мной, – написал Эйнштейн Бору вскоре после возвращения последнего в Копенгаген. – Сейчас я изучаю Ваши великие работы и, чтобы не завязнуть где-нибудь, с удовольствием представляю себе Ваше веселое мальчишеское лицо. Вы улыбаетесь и разъясняете мне трудные места”65. Датчанин произвел на него неизгладимое впечатление. Несколькими днями позже Эйнштейн сказал Паулю Эренфесту: “Здесь был Бор. Я очарован им, как и вы. Он напоминает впечатлительного ребенка, передвигающегося по миру в каком-то гипнотическом состоянии”66. Бор не остался в долгу. На прекрасном немецком он постарался передать свои чувства от встречи с Эйнштейном: “Незабываемое впечатление на меня произвели встреча и разговор с Вами. Вы даже не представляете себе, как было важно для меня услышать Вашу точку зрения лично от Вас”67. Очень скоро Бор опять встретился с Эйнштейном: в августе на обратном пути из Норвегии тот ненадолго остановился в Копенгагене.

“Он высокоодаренный, блестящий человек, – написал Эйнштейн Лоренцу после встречи с Бором. – Это хорошая примета: выдающиеся физики в большинстве превосходные люди”68. Однако сам Эйнштейн стал мишенью для тех, кто не входил в число “превосходных людей”. Филипп Ленард, работу которого по фотоэлектрическому эффекту в 1905 году Эйнштейн использовал для подтверждения гипотезы о световых квантах, и Йоханнес Штарк, открывший расщепление спектральных линий в электрическом поле, стали ярыми антисемитами. Эти два Нобелевских лауреата стояли за “Рабочим объединением немецких естествоиспытателей за чистоту арийской науки”. Одной из основных целей этой организации было развенчание Эйнштейна и его теории относительности69. Двадцать четвертого августа 1920 года в зале Берлинской филармонии состоялось собрание этой группы. Теория относительности была объявлена “жидовской физикой”, а ее создатель – плагиатором и шарлатаном. Чтобы избежать прямых угроз, Эйнштейн, пошедший туда вместе с Вальтером Нернстом, наблюдал за происходящим из закрытой ложи.

Вальтер Нернст, Генрих Рубенс и Макс фон Лауэ выступили в газетах против возмутительных нападок в адрес Эйнштейна. Многие друзья и коллеги Эйнштейна, опасавшиеся за его жизнь, пришли в смятение, когда он опубликовал в газете “Берлинер тагеблатт” статью под названием “Мой ответ”. Эйнштейн писал, что не будь он евреем и интернационалистом, обошлось бы без обвинений в его адрес и нападок на его работу. Но почти сразу Эйнштейн пожалел, что поддался чувству возмущения и написал эту статью. “Время от времени каждый из нас к радости и Божьей, и человечества приносит жертву на алтарь человеческой глупости”, – написал он физику Максу Борну и его жене70. Эйнштейн полностью осознавал, что его статус “знаменитости” приводит к тому, что “если в сказке прикосновение царя к любой вещи превращало ее в золото, все, что касается меня, сводится просто к ажиотажу в газетах”71. Вскоре пошли слухи, что Эйнштейн собирается покинуть страну. Но он решил остаться в Берлине, “там, где наиболее сильны мои научные и человеческие связи”72.

Два года, последовавшие за встречами в Берлине и Копенгагене, Эйнштейн и Бор, каждый сам по себе, боролись с квантом. Бор стал ощущать усталость от этой борьбы. А Эйнштейн написал Эренфесту в марте 1922 года: “Полагаю, хорошо, что многое рассеивает мое внимание. Иначе размышления о квантах привели бы меня прямиком в сумасшедший дом”73. А месяцем позже Бор пожаловался Зоммерфельду: “Последние несколько лет я часто чувствую себя ученым-одиночкой. У меня складывается впечатление, что мои самые напряженные усилия по развитию принципов квантовой теории встречают очень мало понимания”74. Скоро его чувству одиночества пришел конец. В июне 1922 года Бор побывал в Германии и за одиннадцать дней прочитал в Геттингенском университете цикл из семи знаменитых лекций. Позднее это событие получило название “Боровский фестиваль” (Bohr Festspiele).

Более ста физиков, старых и молодых, съехались со всей страны послушать рассказ Бора о модели электронной оболочки атома. Его новая теория касалась расположения электронов внутри атома и объясняла расстановку элементов в периодической таблице. Бор предположил, что электронные оболочки окружают ядро атома наподобие слоев луковой шелухи. Фактически каждая такая оболочка состоит из набора электронных орбит. Максимальное число электронов, которые могут поместиться на каждой из орбит, фиксировано75. Бор утверждал, что элементы с похожими химическими свойствами имеют одно и то же число электронов на внешней оболочке.

Согласно модели Бора, одиннадцать электронов натрия распределены по оболочкам следующим образом: два, восемь и один, а пятьдесят пять электронов цезия образуют такую конфигурацию: два, восемь, восемнадцать, снова восемнадцать, восемь и один. Именно из-за того, что на внешних оболочках этих элементов всего один электрон, их химические свойства похожи. Во время лекций Бор, основываясь на своей теории, предсказал, что неизвестный элемент с атомным номером 72 в химическом отношении будет похож на цирконий (атомный номер 40) и титан (22). Эти два элемента находятся в одном столбце периодической таблицы. По утверждению Бора, новый элемент не будет, как считали многие, относиться к группе редкоземельных элементов, находящихся в той же строке.

Эйнштейн не приехал на лекции Бора в Геттинген. После убийства министра иностранных дел Вальтера Ратенау, еврея по происхождению, он опасался за свою жизнь. Ратенау, один из ведущих немецких промышленников, пробыл министром совсем недолго. Утром 24 июня 1922 года по дороге на работу его застрелили. Это было уже триста пятьдесят четвертое убийство, совершенное после войны ультраправыми. Эйнштейн был среди тех, кто уговаривал Ратенау не занимать пост в правительстве. Когда тот все же стал министром, правая пресса восприняла это как “абсолютно неслыханную провокацию”76.

“После постыдного убийства Ратенау наша повседневная жизнь стала меня раздражать, – писал Эйнштейн Морису Соловину. – Я всегда настороже, прекратил читать лекции и числюсь официально в отпуске, хотя все время на месте”77. Из надежных источников ему стало известно, что для террористов он превратился в одну из главных мишеней. После этого Эйнштейн по секрету сказал Марии Кюри, что подумывает оставить пост в Прусской академии и найти тихое место, где он мог бы поселиться как частное лицо78. Человек, который с юности ненавидел авторитеты, теперь стал публичной фигурой. Он уже не был просто физиком. Он был символом немецкой науки и олицетворял еврейство.

К этому времени Эйнштейн прочитал все опубликованные работы Бора, в том числе статью “Структура атомов и физические и химические свойства элементов”, появившуюся в марте 1922 года в “Цайтшрифт фюр физик”. Почти полвека спустя он вспоминал, что “электронные оболочки атома и их значение для химии казались мне, да и сейчас кажутся, чудом”79. Эйнштейн говорил, что “это была музыка небесных сфер для ума”. Действительно, то, что сделал Бор, можно в равной степени назвать наукой и искусством. Он использовал результаты настолько разных экспериментов, как измерение атомных спектров и изучение химических реакций, а потом строил атомы, добавляя по одной электронной оболочке. Это было похоже на накручивание слой за слоем шелухи на луковицу. Так Бор воспроизвел каждый из элементов периодической таблицы.

В основе подхода Бора лежала уверенность в том, что в мире атомов действуют квантовые правила, однако полученные с их помощью выводы не должны вступать в противоречие с данными наблюдений на макроскопическом уровне, где властвует классическая физика. Это положение было названо им принципом соответствия. Оно позволило оставить на атомном уровне только те предположения о событиях, которые при экстраполяции не противоречат результатам, установленным в рамках классической физики. С 1913 года принцип соответствия помогал Бору строить мост, соединяющий квантовый и классический миры. Хендрик Крамерс, ученик Бора, вспоминал, что находились те, кто считал этот принцип “волшебной палочкой, не работающей нигде, кроме Копенгагена”80. Другие пытались размахивать ею, и только Эйнштейн воспринимал Бора как собрата-волшебника.

Что бы ни говорили об отсутствии у теории Бора твердого математического фундамента, идеи датчанина произвели на всех сильное впечатление. Понятны были и задачи, требовавшие осмысления. “Пребывание в Геттингене было чудесным и очень поучительным, – написал Бор после возвращения в Копенгаген. – Не могу выразить, как я был счастлив, чувствуя исходившее ото всех дружелюбие”81. Он больше не ощущал себя недооцененным и одиноким. Если у него и оставались сомнения по этому поводу, они развеялись в том же году.


На столе Бора лежало множество поздравительных телеграмм, но ни одна не значила для него столько, сколько пришедшая из Кембриджа. “Мы все очень рады, что Вы получили Нобелевскую премию, – писал Резерфорд. – Я знал, что это только вопрос времени, и рад, что это уже свершившийся факт. Премия – заслуженное признание проделанной Вами большой работы. Все мы в восторге от этой новости”82. После присуждения премии Бор все время мысленно возвращался к Резерфорду. “Я хорошо понимаю, сколь многим обязан Вам, – сказал Бор учителю, – и не только за непосредственное влияние на мою работу и за советы. Я благодарен Вам за дружбу, которую я чувствовал все эти двенадцать лет, прошедшие с нашей первой встречи в Манчестере. Это я считаю своей самой большой удачей”83.

Еще одним человеком, о котором Бор не переставал думать, был Эйнштейн. Он был очень рад и вздохнул с облегчением, когда стало ясно, что одновременно с вручением ему самому премии за 1922 год Эйнштейн получит Нобелевскую премию за 1921 год, присуждение которой было отложено на год. “Я понимаю, как мало заслуживаю ее, – написал он Эйнштейну, – но, должен сказать, считаю добрым знаком, что Ваш фундаментальный вклад в ту важную область физики, где работаю и я, как и работы Резерфорда и Планка, были оценены прежде, чем эта честь выпала мне”84.

В тот момент, когда были объявлены имена лауреатов, Эйнштейн находился на борту корабля, идущего на другой конец света. Восьмого октября, опасаясь за свою безопасность, Эйнштейн уехал в Японию читать лекции. Эльза поехала с ним. Он был “рад возможности надолго уехать из Германии, что позволит временно не думать о нависшей опасности”85. Эйнштейн вернулся в Берлин только в феврале 1923 года. Вначале предполагалось, что поездка займет шесть недель, но она обернулась пятимесячным путешествием. В это время Эйнштейн получил письмо от Бора, на которое ответил по пути домой: “Должен сказать без преувеличения, что Ваше письмо доставило мне не меньше удовольствия, чем Нобелевская премия. Особенно меня тронуло Ваше волнение из-за того, что Вы получите премию до меня. Это так похоже на Бора”86.

Десятого декабря 1922 года шведская столица была засыпана снегом. Церемония вручения Нобелевской премии началась в пять часов в присутствии короля Густава V. Вместо Эйнштейна премию получил немецкий посол, которому пришлось для этого одержать верх в споре с швейцарскими дипломатами, настаивавшими, что Эйнштейн – гражданин Швейцарии. Спор продолжался, пока немецкий посол не выяснил, что в 1914 году, принимая приглашение стать членом Прусской академии, Эйнштейн автоматически стал гражданином Германии, хотя и не отказывался от швейцарского гражданства.

Эйнштейн, отказавшийся в 1896 году от немецкого подданства и через пять лет ставший гражданином Швейцарии, был удивлен, что в конце концов оказался немцем. Нравилось ему это или нет, официальным лицам Веймарской республики было важно, чтобы у Эйнштейна было двойное гражданство. В ноябре 1919 года в статье для лондонской “Таймс” Эйнштейн написал: “Сегодня в газетах Германии меня называют немецким ученым, а в Англии – швейцарским евреем. А если меня надо представить bite noir [пугалом], лучше поступать наоборот. Пусть я буду швейцарским евреем в Германии и немецким ученым в Англии”87. Наверное, Эйнштейн вспомнил бы эти слова, если бы присутствовал на банкете в честь Нобелевских лауреатов и слышал, что в своем тосте немецкий посол выразил “радость моих сограждан по тому поводу, что в очередной раз достижения одного из них оказались важны всему человечеству”88.

Вслед за немецким послом коротко выступил Бор. Поблагодарив Томсона, Резерфорда, Планка и Эйнштейна, он предложил тост за международное сотрудничество в целях развития науки, “которое, мне кажется, в это тяжелое время является одной из самых светлых сторон существования человечества”89. Понятно, в тот момент Бор предпочел забыть, что немецких ученых не приглашают на международные конференции. На следующий день, когда Бор читал свою Нобелевскую лекцию “О строении атомов”, он чувствовал себя гораздо увереннее. Лекция начиналась так: “Современное состояние атомной теории характеризуется тем, что мы не только полностью уверены в существовании атома, но и уверены даже в том, что с точностью до деталей понимаем, из чего каждый атом состоит”90. Рассказав о развитии атомной физики, центральной фигурой которой он являлся в последние десять лет, в заключение Бор неожиданно сделал очень важное заявление.

В Геттингене Бор, основываясь на своей теории, описал свойства еще не открытого химического элемента с атомным номером 72. В это же время в Париже была опубликована экспериментальная работа, подтверждавшая давнее конкурирующее утверждение французов: элемент принадлежит к редким землям, занимающим в периодической таблице клетки 57-71. После того, как шок прошел, у Бора появились серьезные сомнения в справедливости этих результатов. К счастью, его старый друг Дьёрдь фон Хевеши, который тогда работал в Копенгагене, и Дирк Костер поставили эксперимент, позволивший прекратить споры о семьдесят втором элементе.

Бор уже уехал в Стокгольм, когда они закончили работу. Костер позвонил Бору незадолго до начала лекции. Теперь Бор мог объявить, что выделено “достаточное количество” семьдесят второго элемента, “химические свойства которого сильно напоминают свойства цинка и полностью отличны от свойств редкоземельных элементов”91. Позднее семьдесят второй элемент был назван гафнием в честь старого названия Копенгагена. Так подтвердились выводы Бора о конфигурации электронов в атомах. Работу над этой задачей он начал десятью годами прежде, в Манчестере92.

Нобелевскую лекцию о теории относительности Эйнштейн прочитал в июле 1923 года на праздновании трехсотлетия основания Гетеборга. Выбрав темой теорию относительности, Эйнштейн нарушил традицию: премия ему была присуждена “За заслуги перед математической физикой и особенно за объяснение закона фотоэлектрического эффекта”93. Ограничившись словом “закон”, что подразумевало “формула”, комиссия по присуждению премий обошла стороной спорное физическое обоснование этого закона, предложенное Эйнштейном, – квант света. “Однако гипотеза о световых квантах, несмотря на свое эвристическое значение, полностью несовместима с так называемым явлением интерференции и не может пролить свет на природу излучения”, – заявил Бор в Нобелевской лекции94. Это повторял каждый уважающий себя физик. Но когда после почти трехлетнего перерыва Эйнштейн опять встретился с Бором, он знал: поставленный молодым американцем эксперимент означает, что теперь он не один защищает квант света. Бор услышал эту ужасающую новость еще прежде Эйнштейна.


В феврале 1923 года Нильс Бор получил от Арнольда Зоммерфельда письмо, датированное 21 января. Тот с волнением сообщал о “наиболее интересном научном событии, с которым столкнулся в Америке”95. Зоммерфельд на год сменил Мюнхен на Мэдисон (штат Висконсин). С точки зрения финансов это был ловкий ход. Он позволил Зоммерфельду уехать из Германии в самый сложный момент, когда страну захлестнула гиперинфляция. Неожиданным бонусом оказалась возможность прежде европейских коллег узнать о работе Артура Холли Комптона.

Открытие Комптона заставило усомниться в справедливости волновой теории рентгеновских лучей. Рентгеновские лучи – электромагнитные волны, коротковолновый невидимый свет. Зоммерфельд сообщил, что теперь волновая теория света, несмотря на все свидетельства в ее пользу, оказалась в серьезной опасности. “Не знаю, должен ли я рассказывать о его результатах, – предупреждал он Бора (статья Комптона еще не была опубликована). – Хочу обратить Ваше внимание, что в итоге может оказаться, что нам предстоит усвоить еще один вполне серьезный, принципиальный урок”96. Этот урок Эйнштейн с 1905 года пытался заставить усвоить всех: свет квантуется.

Комптон был одним из ведущих американских молодых экспериментаторов. В 1920 году, когда ему исполнилось двадцать семь лет, он стал профессором и деканом физического факультета Университета им. Джорджа Вашингтона в Сент-Луисе (штат Миссури). А его исследование, выполненное два года спустя, стало “поворотной точкой в физике XX века”97. Суть опыта Комптона в следующем: пучок рентгеновских лучей направлялся на небольшие образцы разных веществ, таких как углерод (в форме графита), и измерялось “вторичное излучение”. Когда рентгеновские лучи ударяются о мишень, большая их часть проходит прямо через нее, но некоторые отклоняются на различные углы. Именно эти “вторичные” (рассеянные) рентгеновские лучи интересовали Комптона. Он хотел понять, меняется ли их длина волны по сравнению с рентгеновскими лучами, ударяющимися о мишень. Он обнаружил, что длина волны рассеянных рентгеновских лучей всегда несколько больше длины волны “первичных”, или падающих, лучей. В соответствии с волновой теорией длина волны должна была оставаться точно такой же. Комптон понимал, что эта разница длин волн (следовательно, и частот) означает, что вторичные рентгеновские лучи не остаются такими же, как направленные на мишень. Это было настолько же странно, как если бы мы осветили металлическую пластинку лучом красного света и обнаружили, что отраженный свет – голубой98. После того как Комптону не удалось объяснить свои экспериментальные результаты с помощью волновой теории рентгеновских лучей, он обратился к квантам света Эйнштейна. Практически сразу он обнаружил, “что длина волны и интенсивность рассеянных лучей такие, какими они должны быть, если квант излучения отскакивает от электрона, как один бильярдный шар от другого”99.

Если рентгеновские лучи состоят из квантов, их пучок напоминает пригоршню микроскопических бильярдных шаров, ударяющих в мишень. Хотя некоторые из них, ничего не задев, пройдут сквозь мишень, другие натолкнутся на электроны в атомах мишени. Во время столкновения из-за рассеяния рентгеновский квант теряет энергию, а электрон в результате удара отскакивает. Поскольку энергия рентгеновского кванта есть E = hν, где h – постоянная Планка, любая потеря энергии приводит к уменьшению частоты, а поскольку частота обратно пропорциональна длине волны, то длина волны рассеянного рентгеновского кванта возрастает. Комптон провел тщательный математический анализ зависимости потерь энергии падающего рентгеновского луча и изменения длины волны (частоты) рассеянного рентгеновского луча от угла падения.

Никто никогда не видел отскакивающих электронов, которые, по убеждению Комптона, должны сопровождать рассеяние рентгеновских лучей. Но никто никогда и не старался их обнаружить. Когда Комптон поставил перед собой соответствующую задачу, он вскоре нашел такие электроны. “С очевидностью следует, – заявил он, – что рентгеновские лучи, как и вообще свет, состоят из отдельных элементов, двигающихся в определенном направлении. Каждый элемент обладает энергией и соответствующим ей импульсом .”100. Эффект Комптона (увеличение длины волны рентгеновских лучей при рассеянии на электронах) – неопровержимое свидетельство существования квантов света, которые многие считали в лучшем случае научной фантастикой. Предположив, что при столкновении рентгеновского кванта с электроном энергия и импульс сохраняются, Комптон смог объяснить свои экспериментальные результаты. Первым человеком, еще в 1916 году выдвинувшим предположение, что квант света обладает импульсом – характеристикой, свойственной частицам, – был Эйнштейн.

В ноябре 1922 года Комптон сделал доклад на конференции в Чикаго101. Статью он послал в “Физикал ревю” еще перед Рождеством, но редакторы не смогли осознать ее значение и напечатана она была лишь через полгода, в мае 1923 года. Из-за этой отсрочки голландский физик Петер Дебай прежде Комптона опубликовал детальный анализ его эксперимента. Дебай, в прошлом ученик Зоммерфельда, направил статью в немецкий журнал в марте, но немецкие редакторы, в отличие от своих американских коллег, сразу поняли значение работы и опубликовали ее в следующем же номере. Однако и Дебай, и все остальные отдавали должное талантливому молодому американцу и признавали его приоритет. Это признание было подкреплено Нобелевской премией: Комптон получил ее в 1927 году. К тому времени название квантов света Эйнштейна изменилось. Теперь они назывались фотонами102.


В июле 1923 года на Нобелевскую лекцию Альберта Эйнштейна пришли две тысячи человек, однако он понимал, что они явились скорее поглазеть, чем послушать. Теперь, сидя в поезде, отправлявшемся из Гетеборга в Копенгаген, Эйнштейн знал, что скоро встретится с человеком, который будет вслушиваться в каждое его слово и, возможно, не согласится с ним. Нильс Бор встретил Эйнштейна на вокзале. “Мы сели в трамвай и так заговорились, что пропустили свою остановку”, – вспоминал Бор почти сорок лет спустя103. Говорили они по-немецки, не обращая внимания на любопытные взгляды попутчиков, и несколько раз проехали туда и обратно, не замечая своей остановки. И о чем бы они ни говорили, разговор, несомненно, должен был зайти об эффекте Комптона, о котором Зоммерфельд вскоре отозвался так: это, “вероятно, самое важное из открытий, которое можно было бы сделать при современном уровне развития физики”104. Результаты Комптона не убедили Бора. Он отказывался поверить в то, что свет состоит из квантов, и теперь он, а не Эйнштейн, оказался в меньшинстве. Зоммерфельд не сомневался, что Комптон “отслужил панихиду по волновой теории излучения”105.

Бор, как обреченный герой вестернов, к которым он позднее пристрастился, предпринял последнюю попытку восстать против квантов света. Он, а также его ассистент Хендрик Крамерс и гостивший у них молодой американский теоретик Джон Слейтер, предложили пожертвовать законом сохранения энергии, на котором основывалось объяснение эффекта Комптона. Если на атомном уровне этот закон не столь обязателен для исполнения, как в классической физике, то эффект Комптона не является неопровержимым доказательством существования квантов света. Известное как теория Бора – Крамерса – Слейтера (БКС), это радикальное предложение было со стороны Бора актом отчаяния, показывающим, как он относился к квантовой теории света.

На атомном уровне закон сохранения энергии экспериментально не проверялся. Это позволяло Бору надеяться, что вопрос о его применимости в таких процессах, как спонтанная эмиссия квантов света, остается открытым. И если Эйнштейн был уверен, что законы сохранения энергии и импульса справедливы для каждого отдельного столкновения, то Бор полагал, что они выполняются только как статистическое среднее. Лишь в 1925 году эксперименты Комптона, выполненные в Чикагском университете, и Ганса Гейгера и Вальтера Боте из Имперского физико-технического института подтвердили, что при столкновении фотона и электрона энергия и импульс сохраняются. Так что прав оказался Эйнштейн, а не Бор.

Как всегда уверенный в себе, Эйнштейн еще за год до того, как эксперименты положили конец дебатам, красноречиво описал сложившуюся ситуацию читателям газеты “Берлинер тагеблатт”: “Итак, сейчас имеются две теории света, ни одной из которых нельзя пренебречь. И следует признать, что, несмотря на грандиозные усилия физиков-теоретиков в течение двадцати лет, логически связать их не удалось”106. Он имел в виду, что каждая из теорий света, волновая и квантовая, имеет собственную область применения. Кванты света нельзя использовать при объяснении таких связанных со светом волновых явлений, как интерференция и дифракция. И наоборот: не обращаясь к квантовой теории света, нельзя понять эксперименты Комптона и фотоэлектрический эффект. Свет имеет дуальную, корпускулярно-волновую природу. И с этим физики должны были примириться.

Однажды утром, вскоре после публикации статьи, Эйнштейн получил пакет с парижским штемпелем. В пакете было письмо от старого друга, который просил Эйнштейна высказать мнение о приложенной диссертации. Эта диссертация о природе материи была написана французским герцогом.

Глава 6.

Дуальный герцог


Однажды его отец сказал: “Наука – это престарелая дама, которая не боится зрелых мужчин”1. Однако его, как и его старшего брата, наука соблазнила. Предполагали, что герцог Луи Виктор Пьер Раймон де Бройль, представитель одного из самых именитых аристократических семейств Франции, последует по стопам предков. Род де Бройлей происходил из Пьемонта. С середины XVII столетия все члены этой семьи (за редким исключением) были солдатами, политиками и дипломатами на французской службе. В знак признания заслуг король Людовик XV в 1742 году пожаловал одному из предков Луи наследственный титул герцога. Виктор-Франциск, сын герцога, нанес сокрушительное поражение врагам Священной Римской Империи, и благодарный император даровал ему титул князя. С тех пор все предки де Бройля величались князьями и княгинями. Так уж получилось, что молодой ученый был одновременно немецким князем и французским герцогом2.

Такова история семьи человека, который внес фундаментальный вклад в квантовую физику. Его работу Эйнштейн характеризовал как “первый неуверенный шаг по направлению к разгадке одной из самых хитроумных головоломок современной физики”3.


Луи, младший из четырех выживших детей, родился 15 августа 1892 года в Дьеппе. Дети де Бройлей, как и полагалось отпрыскам знатной семьи, обучались учителями дома – в фамильном замке. В то время как другие мальчишки могли перечислить все марки паровых машин, Луи знал имена всех министров Третьей республики. К изумлению семьи он, начитавшись газет, стал произносить политические речи. Его дед был премьер-министром, и Луи, по воспоминаниям сестры Полины, “пророчили блестящую будущность государственного деятеля”4. Может, так и произошло бы, если бы не смерть отца в 1906 году. Луи тогда было четырнадцать лет.

Главой семьи стал его старший брат, тридцатиоднолетний Морис. По традиции, Морису следовало выбрать военную карьеру. Он предпочел военно-морской флот армии. В морском училище Морис больше всего преуспел в науках. Многообещающий молодой офицер попал на флот в эпоху перемен: приближался XX век. Учитывая интерес Мориса к наукам, его достаточно скоро привлекли к работе по налаживанию беспроводной связи между кораблями. В 1902 году Морис опубликовал свою первую работу о “радиоэлектрических волнах”, что только усилило его желание посвятить себя науке. В 1904 году, после девяти лет службы, Морис вопреки воле отца оставил флот. Два года спустя отец умер, и на плечи Мориса легла новая ноша: он стал шестым герцогом де Бройлем.

Луи послали в школу по совету Мориса. “Зная на собственном опыте, как мешает обучению молодого человека давление, на него оказываемое, я отказался от попыток строго регламентировать занятия моего брата. Правда, временами его непостоянство доставляло мне некоторое беспокойство”, – писал он почти полвека спустя5. Луи успевал по французскому языку, истории, физике и философии, а к математике и химии был равнодушен. В 1909 году семнадцатилетний Луи окончил школу, став одновременно бакалавром философии и математики. А Морис годом ранее получил в Коллеж де Франс степень доктора философии под руководством Поля Ланжевена. В семейном особняке на рю Шатобриан он устроил лабораторию. Чтобы несколько смягчить разочарование родственников из-за того, что отпрыск де Бройлей оставил военную карьеру ради занятий наукой, лучше было открыть собственную лабораторию, чем искать место в университете.

В отличие от Мориса, Луи сначала пошел по традиционному пути: он начал изучать средневековую историю в Парижском университете. Однако вскоре двадцатилетний герцог обнаружил, что изучать старые тексты, источники и документы ему неинтересно. Позднее Морис говорил, что брат “был близок к потере веры в себя”6. В какой-то мере его неудовлетворенность была связана с проснувшимся интересом к физике, подогреваемым занятиями в лаборатории вместе с Морисом. Энтузиазм, с которым его брат занимался исследованием рентгеновских лучей, оказался заразительным. Но Луи грызли сомнения в своих способностях, усугубившиеся провалом на экзамене по физике. Луи задавался вопросом: написано ли ему на роду стать неудачником? “Исчезли радость и воодушевление, свойственные юности! Блестящий ребенок-болтун замолк, подавленный своими мыслями”, – так вспоминал Морис этого ушедшего в себя человека, в котором с трудом можно было узнать его брата7. Луи превратился в “аскета, полностью погруженного в занятия”, предпочитавшего не выходить из дома8.

Луи впервые попал за границу в октябре 1911 года, когда ему было девятнадцать: он поехал с братом в Брюссель9. С тех пор как Морис покинул флот, он стал весьма уважаемым ученым, областью интересов которого были рентгеновские лучи. Когда его пригласили стать одним из двух научных секретарей, которым поручалось обеспечить работу I Сольвеевского конгресса, Морис с готовностью согласился. Хотя ему отводилась только роль администратора, слишком велик был соблазн поговорить о квантах с такими выдающимися учеными, как Планк, Эйнштейн и Лоренц. Ожидалось, что и Франция будет представлена достойно: должны были приехать и Кюри, и Пуанкаре, и Перрен, и его учитель Ланжевен.

Они поселились вместе с делегатами в “Метрополе”. Луи держался несколько в стороне. Но после возвращения домой, когда Морис рассказал ему, какие дискуссии о квантах велись в маленькой комнате на первом этаже, новая физика заинтересовала его еще сильнее. Когда труды конгресса были опубликованы, Луи проштудировал их и решил стать физиком. К этому времени он уже сменил исторические труды на книги по физике, а в 1913 году получил степень лиценциата наук. Однако сразу его планам не дано было осуществиться: подошло время военной службы. Несмотря на то, что среди предков Луи были три маршала Франции, он пошел в армию рядовым. Он попал в инженерный полк, расквартированный в пригороде Парижа10. Вскоре с помощью Мориса ему удалось перейти в Службу беспроводных коммуникаций. Надежды на скорое возвращение к занятиям физикой испарились после начала Первой мировой войны. Четыре года Луи был радиоинженером, а его радиопередатчик находился у Эйфелевой башни.

Он был демобилизован в августе 1919 года. Впоследствии де Бройль с сожалением говорил о потраченных впустую шести годах: в армии он прослужил с двадцати одного года до двадцати семи лет. Теперь, более чем когда-либо, Луи был намерен следовать избранному пути. Морис помогал и ободрял его. В хорошо оборудованной лаборатории брата де Бройль продолжил исследования рентгеновских лучей и фотоэффекта. Братья подолгу обсуждали, как правильно интерпретировать результаты выполненных экспериментов. Морис постоянно обращал внимание Луи на “важную роль экспериментальной науки” и отмечал, что “никакие теоретические построения не имеют значения, если они не подкреплены фактами”11. Размышляя о природе электромагнитного излучения, Луи опубликовал несколько статей о поглощении рентгеновских лучей. Оба брата пришли к выводу, что в каком-то смысле верны и волновая, и корпускулярная теории света, поскольку ни одна из них не может одновременно объяснить и явления дифракции и интерференции, и фотоэлектрический эффект.

В 1922 году Эйнштейн по приглашению Ланжевена приехал в Париж читать лекции. Из-за того, что он во время войны оставался в Берлине, его встретили враждебно. В том же году де Бройль написал работу, в которой открыто встал на сторону “гипотезы о квантах света”. Комптон еще только собирался рассказать о своих экспериментах, а де Бройль уже примирился с существованием “атомов света”. К тому времени, когда американец опубликовал свои экспериментальные и теоретические результаты о рассеянии рентгеновских лучей на электронах, подтверждавших реальное существование квантов света Эйнштейна, де Бройль уже научился жить с мыслью о странной двойственной природе света. Другие же шутили только наполовину, когда жаловались, что по понедельникам, средам и пятницам им приходится читать студентам волновую теорию света, а по вторникам, четвергам и субботам – корпускулярную.

Позднее де Бройль писал: “В 1923 году, после долгих уединенных размышлений и раздумий, я неожиданно подумал, что открытие, сделанное Эйнштейном в 1905 году, надо обобщить, распространив его на все материальные частицы, в первую очередь на электроны”12. Де Бройль осмелился задать себе простой вопрос: если световые волны могут вести себя как частицы, почему частицы, такие как электрон, не могут вести себя как волны? Он ответил “да” на этот вопрос, когда обнаружил, что если связать с электроном некоторую “фиктивную волну” частоты ν и длины волны λ, можно точно описать расположение орбит в квантовом атоме Бора. Электрон может находиться только на тех орбитах, где помещается целое число длин волн такой “фиктивной волны”.

В 1913 году Бору надо было спасать модель атома водорода Резерфорда. Чтобы атом не разрушился из-за излучения энергии при движении электрона по орбите и наступающего вследствие этого спиралеобразного падения на ядро, ему пришлось сделать предположение, объяснить которое он не мог: электрон, двигающийся по стационарной орбите вокруг ядра, не излучает энергию. Де Бройль предложил считать электроны стоячими волнами. Эта идея коренным образом расходилась с представлением об электроне как о движущейся вокруг атомного ядра частице.

Стоячие волны легко возбудить в закрепленных с обеих сторон струнах, например скрипичных или гитарных. Когда мы дергаем струну, возбуждается много стоячих волн, состоящих из целого числа половин длин волн. Самая длинная стоячая волна – та, у которой длина волны в два раза больше длины струны. Следующая стоячая волна состоит из двух отрезков по половине длины волны, так что полная длина волны равна длине струны. Затем имеется стоячая волна, состоящая из трех полудлин волн, и так далее. Возбуждаются только такие стоячие волны. Каждая из них характеризуется собственной энергией. Значит, поскольку частота и длина волны связаны, если тронуть струну гитары, она будет колебаться только с определенными частотами, начиная с основного тона, то есть с самой низкой частоты.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 9. Стоячие волны в струне, закрепленной с обоих концов.


Де Бройль понимал, что условие “целых чисел” оставляет только те электронные орбиты, длины окружности которых допускают образование стоячих волн. В отличие от музыкальных инструментов, такие стоячие электронные волны связаны не с концами струны, а с условием периодичности. Они образуются тогда, когда на длине окружности орбиты можно поместить целое число длин волны. Если это не получается сделать точно, не может быть и стоячей волны, а, следовательно, стационарной орбиты.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 10. Стоячие электронные волны в квантовом атоме.


Если электрон не частица, вращающаяся вокруг ядра, а стоячая волна, то он не ускоряется, и, следовательно, нет постоянного излучения, в результате которого электрон теряет энергию и падает на ядро, разрушая атом. Корпускулярно-волновой дуализм де Бройля стал обоснованием модели Бора, призванной спасти квантовый атом. Сделав вычисления, де Бройль обнаружил, что п, главное квантовое число Бора, соответствует именно таким орбитам вокруг ядра атома водорода, на которых может существовать стоячая электронная волна. Именно поэтому в модели Бора все другие орбиты запрещены.

Де Бройль изложил свои соображения о наличии у всех частиц дуальных корпускулярно-волновых свойств в трех коротких заметках, увидевших свет осенью 1923 года. Но тогда не было ясности в том, каков характер связи между похожими на бильярдные шары частицами и связанными с ними “фиктивными волнами”. Имел ли в виду де Бройль, что электрон сродни серфингисту, поймавшему волну? Позднее было установлено, что такая интерпретация не работает. Электроны, как и все другие частицы, ведут себя точно как фотоны: они одновременно и волны, и частицы.

Весной 1923 года де Бройль представил развернутое изложение своих идей на соискание степени доктора философии. Защита должна была состояться только 25 ноября из-за формальностей, связанных с приемом диссертаций к защите, и, кроме того, чтобы дать возможность экзаменаторам ознакомиться с нею. Трое из четырех экзаменаторов были профессорами Сорбонны: Жан Перрен, эксперименты которого подтвердили теорию броуновского движения Эйнштейна; Шарль Моген, известный физик, изучавший свойства кристаллов; знаменитый математик Эли Картан. Последним членом квартета был не преподававший в Сорбонне Поль Ланжевен. Он был единственным из экзаменаторов, разбиравшимся в квантовой физике и теории относительности. Прежде чем официально представить диссертацию к защите, де Бройль попросил Ланжевена оценить его выводы. Ланжевен согласился. Позднее он сказал коллеге: “Уношу с собой диссертацию младшего братца. Мне она кажется несколько крамольной”13.

Идеи Луи де Бройля казались фантастикой, но Ланжевен не отверг их сразу. Он понял, что должен с кем-нибудь посоветоваться. Ланжевен помнил, как в 1909 году Эйнштейн публично заявил: в будущем исследование излучения позволит обнаружить синтез частиц и волн. Эксперименты Комптона убедили почти всех, что в отношении света Эйнштейн был прав. Действительно, при столкновениях с электроном свет ведет себя как частица. Де Бройль предложил такого же рода синтез, корпускулярно-волновой дуализм, для всех частиц. Он даже привел формулу, связывающую длину волны “частицы” λ с ее импульсом p: λ = h/p, где h — постоянная Планка. Ланжевен попросил у герцога-физика второй экземпляр диссертации и отослал его Эйнштейну. “Он приподнял краешек завесы, скрывающей огромную тайну”, – ответил Эйнштейн14.

Для Ланжевена и других экзаменаторов было достаточно мнения Эйнштейна. Они поздравили де Бройля с тем, что он “предпринял мастерскую попытку преодолеть затруднения, возникшие перед физиками”15. Моген позднее признался, что “в то время не верил в физическую реальность волн, связанных с частичками материи”16. Единственное, в чем был уверен Перрен, так это в том, что де Бройль – “очень способный молодой человек”17. При поддержке Эйнштейна де Бройль, которому исполнилось тридцать два года, получил право титуловаться не просто герцогом Луи Виктором Пьером Раймоном де Бройлем, но и доктором Луи де Бройлем.

Одно дело высказать идею, но как ее проверить? Уже в сентябре 1923 года де Бройль понял, что если материя обладает волновыми свойствами, то пучок электронов должен распространяться как луч света: должна иметь место дифракция. В одной из коротких статей, опубликованных в том году, он предсказал, что “эффекты дифракции должны наблюдаться, когда группа электронов проходит через маленькое отверстие”18. Де Бройль безуспешно пытался убедить кого-либо из опытных экспериментаторов, работавших в частной лаборатории его брата, проверить это утверждение. Занятые другими делами, они считали, что такой эксперимент очень трудно поставить. Луи не настаивал, чувствуя, что он и так в долгу перед Морисом, которого все время отвлекал “разговорами о важности и неоспоримости дуализма корпускулярных и волновых свойств излучения”19.

Однако вскоре молодой физик из Геттенгенского университета Вальтер Эльзассер понял, что если де Бройль прав, то эффекты дифракции должны наблюдаться просто при соударении пучка электронов с хорошим кристаллом. В этом случае расстояние между соседними атомами настолько мало, что должен проявляться волновой характер частицы размером с электрон. Эйнштейн, услышав, какой эксперимент предлагает поставить Эльзассер, сказал: “Молодой человек, вы напали на золотую жилу”20. Это была не просто золотая жила, а нечто более ценное – Нобелевская премия. Но, как и во время любой золотой лихорадки, надо было действовать быстро. Эльзассер спешил, однако два других ученых обогнали его – и взяли премию сами.

Тридцатичетырехлетний Клинтон Дэвиссон работал в “Вестерн электрик компани”, позднее ставшей компанией “Белл телефон лабораториз”. Он занимался изучением соударения пучков электронов с мишенями из различных материалов. Однажды в апреле 1925 случилось нечто странное. В лаборатории взорвалась бутылка со сжиженным воздухом и повредила вакуумную трубку, в которую была помещена никелевая мишень. Воздух вызвал коррозию никеля. С помощью отжига Дэвиссон очистил никель. Вместо мелких никелевых кристалликов, первоначально составлявших образец, образовалось несколько больших кристаллов. Они и стали причиной дифракции электронов. Продолжив эксперименты после отжига, Дэвиссон вскоре обратил внимание, что картина рассеяния электронов изменилась. Не подозревая, что наблюдал дифракцию электронов, он опубликовал результаты этих экспериментов.

“Просто невозможно себе представить, что ровно через месяц мы будем в Оксфорде, не так ли? Лотти, дорогая! Мы чудесно проведем время. Это будет наш второй медовый месяц, еще прекраснее первого”, – написал Дэвиссон жене в июле 1926 года21. Они оставили детей на попечение родственников и, прежде чем направиться в Оксфорд на конференцию Британской ассоциации содействия развитию науки, поездили по Англии. В отдыхе они очень нуждались. Только приехав в Оксфорд, Дэвиссон с удивлением узнал, что многие физики верят, что его эксперименты подтверждают идею некоего французского герцога. Он никогда не слышал ни о де Бройле, ни о его идее распространить представление о корпускулярно-волновом дуализме на всю материю. И в этом Дэвиссон не был одинок.

Мало кто читал три статьи герцога в не слишком популярном французском журнале “Конт-рандю”. Еще меньше людей знали о его диссертации. Вернувшись в Нью-Йорк, Дэвиссон вместе со своим коллегой Лестером Джермером немедленно начал проверку того, действительно ли происходит дифракция электронов. К январю 1927 года у Дэвиссона были новые экспериментальные данные. Прежде чем сделать окончательный вывод о возможности дифракции материи, о том, что материя действительно ведет себя как волна, Дэвиссон вычислил длину волны дифрагирующего электрона и показал, что она в точности такая, как предсказал де Бройль на основании теории корпускулярно-волнового дуализма. Позднее Дэвиссон признавался, что на самом деле первые эксперименты явились “побочным продуктом”. Тогда у него была совсем другая задача: его работодателям надо было выиграть судебный процесс, инициированный конкурирующей компанией.

Макс Кнолль и Эрнст Руска быстро нашли применение волновым свойствам электрона. В 1931 году они изобрели электронный микроскоп. Ни одна частица, размер которой меньше или порядка половины длины волны белого света, не может поглощать или отражать световые волны. Поэтому такие частицы нельзя увидеть в обычный микроскоп. А с помощью электронных волн, длина волны которых в сто тысяч раз меньше, это можно сделать. Первый коммерческий электронный микроскоп был изготовлен в Англии в 1935 году.

Пока Дэвиссон и Джермер были заняты экспериментами, в Шотландии, в Абердине, собственные исследования электронных пучков вел физик Джордж Паджет Томсон. Вместе с Дэвиссоном он был на конференции в Оксфорде, где много говорили о работе де Бройля. Томсон, который и сам очень интересовался природой электрона, немедленно начал эксперименты, надеясь обнаружить дифракцию электронов. Но он использовал не кристаллы, а специально приготовленные тонкие пленки. Полученная картина дифракции оказалась точно такой, как предсказывал де Бройль: иногда материя ведет себя как волна, она размыта в некоторой пространственной области, а в других случаях как частица, занимающая определенное положение в пространстве.

По иронии судьбы, дуальная природа материи оказалась прочно связанной с семьей Томсонов. Джордж Томсон вместе с Дэвиссоном получил в 1937 году Нобелевскую премию по физике за открытие волновой природы электрона. Его отец, сэр Джозеф Джон Томсон, в 1906 году получил Нобелевскую премию по физике за открытие частицы электрона.


Более четверти века развитие квантовой физики, начиная с закона излучения абсолютно черного тела Планка до квантов света Эйнштейна, от квантового атома Бора до корпускулярно-волнового дуализма материи де Бройля, было попыткой “поженить” квантовые представления с классической физикой. К 1925 году этот союз оказался под угрозой. Еще в мае 1912 года Эйнштейн писал: “Чем больших успехов добивается квантовая теория, тем глупее она выглядит”22. Что действительно было необходимо, так это новая теория – новая механика квантового мира.

“Открытие квантовой механики в середине 20-х годов, – отметил американский Нобелевский лауреат Стивен Вайнберг, – было самой значительной революцией в теоретической физике с XVII столетия – со времени рождения современной физики”23. Главная роль в революции, изменившей облик мира, принадлежала молодым физикам. Это были годы knabenphysik – “физики мальчишек”.


ЧАСТЬ II. “Физика мальчишек”

В данный момент физика снова ужасно запутана. Во всяком случае, она слишком трудна для меня. Я предпочел бы снимать кинокомедии или делать что-то в этом роде – и никогда не слышать о физике.

Вольфганг Паули


Чем больше я думаю о физической стороне теории Шредингера, тем большее отторжение она у меня вызывает. Он пишет, что визуализация его теории, "вероятно, не совсем правильна". Иными словами, это просто чепуха.

Вернер Гейзенберг


Если окажется, что все эти проклятые квантовые скачки должны остаться, я буду жалеть, что вообще занялся квантовой теорией.

Эрвин Шредингер


Глава 7.

Спиновые доктора


“Задаешься вопросом, что вызвало большее восхищение: понимание психологии развития идей, строгость математических формулировок, глубина проникновения в физическую суть явления, ясность и последовательность изложения результатов, знание литературы, умение охватить проблему целиком или справедливость критических замечаний?”1 На Эйнштейна явно произвела впечатление “продуманная, абсолютно понятная работа”, которую он только что кончил рецензировать. Ему было трудно поверить, что автору этой работы по теории относительности объемом 237 страниц с 394 ссылками всего двадцать один год и что автор был девятнадцатилетним студентом, когда ему предложили написать ее. Язвительный Вольфганг Паули, позднее прозванный “бич Божий”, считался “гением, которого можно сравнить разве что с Эйнштейном”2. Макс Борн, бывший одно время его руководителем, сказал: “Честно говоря, с точки зрения чистой науки он, может быть, даже превосходит Эйнштейна”3.


Вольфганг Паули родился 25 апреля 1900 года в Вене – в городе, который хотя и процветал, но уже жил в декадентском угаре. Отец Паули (тоже Вольфганг) – врач, оставивший медицинскую практику ради занятий наукой. Ему пришлось сменить фамилию: вместо Пасхелес он стал называться Паули. Трансформация Вольфганга-старшего завершилась после перехода в католичество. Он сделал это из страха, считая, что нарастающая волна антисемитизма поставит под угрозу его академическую карьеру. Вольфганг-младший вырос, ничего не зная о своих еврейских корнях. Когда ему сказали в университете, что он, скорее всего, еврей, Паули удивился: “Я? Нет. Я в это не верю”4. Правду он узнал от родителей только в следующий приезд домой. Отец считал, что, порвав с иудаизмом, он принял правильное решение. В 1922 году он получил давно желанное звание профессора и стал директором нового института медицинской химии при Венском университете.

Берта, мать Паули, была известной в Вене журналисткой и писательницей. Ее круг знакомств был очень широк. Вольфганг и его младшая сестра Герта, ей было на шесть лет меньше, чем брату, привыкли видеть дома самых известных людей искусства, науки и медицины. Мать, социалистка и пацифистка, оказала на Вольфганга сильное влияние.

Первая мировая война пришлась как раз на подростковые годы Паули и во многом сформировала его личность. Чем дольше она тянулась, тем “больше обострялось неприятие им войны и вообще ‘истеблишмента’”, – вспоминал друг Паули5. В ноябре 1927 года умерла мать Вольфганга, не дожив две недели до своего сорокадевятилетия. В некрологе, помещенном в “Нойе фрайе прессе”, о Берте писали как “об одной из редких, истинно сильных представительниц австрийских женщин”6.

Паули был хоть и способным, но далеко не прилежным учеником. В школе ему было скучно. Для души он начал заниматься дома физикой с учителем. Очень скоро, когда урок в школе был особенно нудным, он стал читать спрятанные под парту статьи Эйнштейна по общей теории относительности. В молодости увлечение Вольфганга физикой, олицетворением которой был его крестный отец, знаменитый австрийский физик и натурфилософ Эрнст Мах, приняло угрожающие размеры. Паули, во взрослые годы общавшийся и друживший с такими людьми, как Эйнштейн и Бор, говорил, что встречи с Махом были “главным событием его духовной жизни”7. Последний раз они виделись летом 1914 года.

В сентябре 1918 года Паули уехал из Вены. Для него этот город стал “духовной пустыней”8. Австро-Венгерская империя оказалась на грани распада, и Вена утратила свое былое величие. Паули не устраивало то, что среди преподавателей Венского университета не было высококлассных физиков. Он мог поступить куда угодно, но выбрал Мюнхен, так как желал учиться у Арнольда Зоммерфельда. Незадолго до того Зоммерфельд отказался от должности профессора в Вене. Когда к нему явился Паули, он уже двенадцать лет был главой физиков-теоретиков в Мюнхенском университете. Еще в 1906 году он мечтал о создании института, который стал бы “инкубатором для физиков-теоретиков”9. Он не был таким большим, как институт Бора, вскоре открывшийся в Копенгагене: всего четыре комнаты – кабинет Зоммерфельда, лекционная аудитория, комната для семинаров и маленькая библиотека. В подвале еще была большая лаборатория, где в 1912 году были выполнены эксперименты, подтвердившие теорию Макса фон Лауэ, согласно которой рентгеновские лучи представляют собой коротковолновые электромагнитные волны. После этой работы “инкубатор” получил широкое признание.

Зоммерфельд был незаурядным учителем. Он умел ставить перед учениками задачи, которые, выявляя их способности, не превосходили их возможностей. К моменту приезда Паули Зоммерфельд воспитал много талантливых физиков. Он сразу распознал редкий дар многообещающего молодого человека. Зоммерфельда нелегко было удивить, но как раз в январе 1919 года была опубликована статья Паули об общей теории относительности, написанная незадолго до отъезда из Вены. В “инкубаторе” появился эксперт в теории относительности – первокурсник, которому не было и девятнадцати.

Паули быстро стал известен. Его боялись из-за острой критики новых умозрительных идей. Он не признавал компромиссов; позднее Паули стали называть “совестью физики”. Плотный, с глазами навыкате, он напоминал Будду физического мира; впрочем, в отличие от Будды, он был весьма язвителен. Глубоко задумавшись, Паули начинал раскачиваться взад и вперед. Все признавали: на интуитивном уровне он понимает физику лучше всех, может быть, даже лучше Эйнштейна. Свои работы он оценивал строже чужих. Случалось, Паули настолько хорошо понимал физику и стоящие перед ней задачи, что это сковывало его творческие способности. Если бы его мысли были последовательнее, а воображение свободнее, он мог бы сделать открытия, которые вместо него сделали его менее талантливые, но более раскрепощенные коллеги.

Единственным человеком, к которому Паули во время учебы и после нее относился с благоговением, был Зоммерфельд. Признанные профессора, уже на себе почувствовавшие, сколь резок может быть Паули, приходили в изумление, когда слышали, как этот “бич Божий” отвечал Зоммерфельду: “Да, герр профессор”, “Нет, герр профессор”. Они с трудом узнавали в нем человека, который однажды в запальчивости сказал коллеге: “Меня не волнует, что вы думаете медленно, но я возражаю, когда вы печатаетесь быстрее, чем думаете”10. Или в другой раз он, прочитав некую статью, выразился так: “Она даже не является неправильной”11. Паули не щадил никого. Однажды, еще будучи студентом, он сказал в переполненной аудитории: “Знаете, то, что сказал герр Эйнштейн, совсем не так глупо”12. Зоммерфельд, сидевший в первом ряду, не допустил бы такого, будь это замечание сделано кем-нибудь другим. Но он знал, что никто другой и не посмел бы произнести такое. Когда дело касалось физики, Паули даже в присутствии Эйнштейна был уверен в себе.

Зоммерфельд ясно представлял себе способности Паули. Он попросил помочь ему написать основную статью по теории относительности для Энциклопедии математических наук. (Зоммерфельд принял предложение стать редактором пятого тома, посвященного физике.) Эйнштейн написать такую статью отказался. Зоммерфельд решил сделать это сам, но понял, что у него не хватает времени. Тогда он обратился к Паули. По словам Зоммерфельда, первый же черновой вариант текста “был настолько хорош, что я отказался быть соавтором”13. Это оказалось не только блестящим изложением специальной и общей теории относительности, но еще и абсолютно полным, прекрасно выполненным обзором литературы. Статья Паули, заслужившая восторженную похвалу Эйнштейна, долгие годы оставалась основной по данному вопросу. Она вышла в 1921 году, через два месяца после присуждения ее автору степени доктора философии.

Когда Паули был студентом, он предпочитал работать ночью. Он любил ночную жизнь и проводил вечера в одном из многочисленных работавших допоздна кафе Мюнхена. Вставал он поздно и редко посещал утренние лекции. Но и этого оказалось достаточно. Он был очарован таинственным миром квантовой физики, о котором рассказывал Зоммерфельд. “Я не избежал шока, который испытал каждый привыкший к классическому способу рассуждений физик, впервые услышав основные постулаты квантовой теории Бора”, – вспоминал Паули тридцать лет спустя14. От этого шока он, однако, оправился быстро.

Зоммерфельд поставил перед Паули задачу: описать с помощью уточненных им квантовых правил Бора ионизированную молекулу водорода. Такая молекула состоит из двух атомов водорода, у одного из которых оторван электрон. Как и следовало ожидать, теоретические рассуждения Паули были безупречны. Плохо было то, что результаты не совпадали с экспериментом. Паули, избалованный непрерывной чередой успехов, был обескуражен. Однако его диссертация стала первым важным свидетельством исчерпанности модели Бора – Зоммерфельда. Прием, придуманный, чтобы соединить квантовую и классическую физику, всегда казался не слишком убедительным. Теперь же Паули показал, что с помощью модели Бора – Зоммерфельда нельзя описать даже ионизированную молекулу водорода, не говоря уже о более сложных комплексах атомов. В октябре 1921 года Паули, получив степень доктора, покинул Мюнхен и переехал в Геттинген, где занял должность ассистента профессора теоретической физики.

Тридцативосьмилетний Макс Борн, которому было суждено стать ключевой фигурой в истории развития квантовой физики, приехал в Геттинген всего за полгода до Паули. Борн вырос в Бреслау, столице прусской провинции Силезия. Математика привлекала его больше, чем физика. Отец Борна, подобно отцу Паули, был высокообразованным врачом и ученым. Профессор эмбриологии Густав Борн посоветовал сыну, поступившему в университет в Бреслау, не торопиться с выбором специализации. Макс, как послушный сын, занялся астрономией и математикой, только прослушав курсы по физике, химии, зоологии, психологии и логике. Какое-то время Борн провел в Гейдельберге и Цюрихе. Образование он закончил в 1906 году, защитив диссертацию по математике в Геттингене.

Сразу после этого Борна призвали на военную службу. Она должна была продлиться год, но из-за его астмы закончилась гораздо быстрее. Шесть месяцев он прожил в Кембридже, где вместе со студентами старших курсов посещал лекции Джозефа Джона Томсона, а затем вернулся в Бреслау. Он считал, что станет физиком-экспериментатором, но скоро выяснилось, что для этого у него нет ни навыков, ни терпения. И Борн решил заняться теоретической физикой. К 1912 году им уже было сделано достаточно, чтобы стать приват-доцентом признанного во всем мире математического факультета Геттингенского университета. На факультете считалось, что “физика слишком сложна для физиков”15.

Своим успехом Борн был обязан тому, что ряд сложных задач ему удалось решить, используя математический аппарат, не известный большинству физиков. В 1914 году он стал экстраординарным профессором в Берлине. Как раз перед войной в этом центре немецкой науки появился еще один новичок – Эйнштейн. Очень скоро эти двое (их, кроме прочего, объединяла любовь к музыке) стали близкими друзьями. В начале войны Борна призвали на службу. Какое-то время он служил радиооператором ВВС, а затем до конца войны участвовал в научных исследованиях для нужд артиллерии. К счастью, его часть стояла вблизи Берлина, так что он мог посещать университетские семинары, собрания Немецкого физического общества и музыкальные вечера в доме Эйнштейна.

Весной 1919 года Макс фон Лауэ, ординарный профессор из Франкфурта, предложил Борну поменяться с ним должностями. Лауэ, получивший Нобелевскую премию в 1914 году за теоретическое исследование дифракции рентгеновских лучей на кристаллах, хотел работать с Планком, своим бывшим руководителем. Планка он боготворил. Борн, поддержанный Эйнштейном, который посоветовал “определенно соглашаться”, решился на переезд. Для него это означало продвижение по службе (он становился полным профессором) и независимость16. Не прошло и двух лет после этого события, как Борн переехал в Геттинген, где возглавил институт теоретической физики при университете. Весь институт состоял из одной маленькой комнаты, одного ассистента и работавшего по совместительству секретаря. Но Борн собирался на этом зыбком фундаменте выстроить институт, который мог бы соперничать с институтом Зоммерфельда в Мюнхене. Вольфганг Паули возглавлял список тех, кого он хотел привлечь к работе. Он считал его “самым талантливым из появившихся за последние годы физиков”17. Один раз Борн уже пытался уговорить Паули, но тот предпочел остаться в Мюнхене, чтобы закончить диссертацию. Паули согласился.

“Сейчас В. Паули – мой ассистент. Он поразительно умен и очень талантлив”, – писал Борн Эйнштейну18. Вскоре, однако, он обнаружил, что “наемный работник” собирается все делать по-своему. Паули действительно был блестящим ученым, но он по-прежнему напряженно работал далеко за полночь, а вставал поздно. Когда Борн не мог прочесть одиннадцатичасовую лекцию, он был уверен, что Паули подменит его, только если посылал горничную разбудить того в половине одиннадцатого.

Сразу стало ясно, что “ассистентом” Паули будет номинальным. Позднее Борн заметил, что хотя Паули вел богемный образ жизни, а его распорядок дня был неправильным, он научился у него большему, чем сам мог дать этому вундеркинду. Борна огорчило расставание с Паули: в апреле 1922 года тот отправился в Гамбург и стал ассистентом в университете. Скорый отъезд был связан не только с желанием Паули сменить тишину университетского городка, которую он переносил с трудом, на суету большого города. Дело было и в том, что Паули, принимаясь за решение задачи, полагался на свою интуицию физика, а Борн гораздо охотнее прибегал к математике, считая, что именно она поможет найти правильное решение.

Через два месяца, в июне 1922 года, Паули опять приехал в Геттинген, когда Бор читал там знаменитый курс лекций, и впервые встретился с великим датчанином. Паули произвел на Бора сильное впечатление, и тот спросил, не сможет ли Паули приехать к нему на год и помочь отредактировать неоконченную работу для публикации в Германии. Предложение застало Паули врасплох: “Отвечая, я был настолько уверен в себе, как может быть уверен только очень молодой человек: ‘Мне трудно представить, что какие-то научные вопросы будут мне не под силу. Но выучить датский язык! Это выше моих сил’. Я поехал в Копенгаген осенью 1922 года и там обнаружил, что оба сделанные мною утверждения неверны”19. Позднее он понял, что тогда в его жизни начался “новый этап”20.

В Копенгагене Паули не только помогал Бору, но и тратил много времени, пытаясь ответить на вопрос, что означает “аномальный” эффект Зеемана – особенность атомного спектра, которую не удавалось объяснить в рамках модели Бора – Зоммерфельда. Если атом поместить в сильное магнитное поле, в его спектре будут видны расщепленные линии. Достаточно быстро Лоренц показал, что, согласно классической физике, расщепленная линия должна быть дуплетом или триплетом. Это явление, известное как “нормальный” эффект Зеемана, модель атома Бора объяснить не могла21. К счастью, положение спас Зоммерфельд. Он ввел еще два квантовых числа, и подправленный квантовый атом справился с задачей. Пришлось ввести несколько новых правил, управляющих прыжками электронов с одной орбиты (или энергетического уровня) на другую. Для их формулировки потребовались три “квантовых числа” п, k и т: первое описывает размер орбиты, второе – ее форму, а третье – ориентацию в пространстве относительно внешнего электрического или магнитного поля. Но победу праздновали недолго. Оказалось, что расщепление красной α-линии водорода меньше, чем предсказывала теория. Положение стало совсем скверным, когда было установлено, что некоторые спектральные линии расщепляются в квартет или появляется даже больше новых линий, а не две или три, как ожидалось.

Это явление назвали аномальным эффектом Зеемана, поскольку его нельзя было объяснить ни в рамках классической физики, ни с помощью существовавших квантовых моделей. Но фактически “аномальное” расщепление встречается гораздо чаще “нормального”. Для Паули это было сигналом, указывающим на то, что “где-то глубоко спрятана несостоятельность известных на данный момент теоретических принципов”22. Он решил разобраться в этой плачевной ситуации, но найти выход не удавалось. “Я до сих пор брожу в потемках”, – пожаловался Паули Зоммерфельду в июне 1923 года23. Позднее он признался, что задача целиком поглотила его, и некоторое время он был в отчаянии.

Однажды сотрудник института встретил Паули, бродившего по Копенгагену:

– Вы выглядите очень несчастным.

– Как можно выглядеть счастливым, если думаешь об аномальном эффекте Зеемана?!24

Правила, специально придуманные для объяснения сложной структуры атомных спектров, Паули не устраивали. Он хотел отыскать более глубокое, фундаментальное описание этого явления. Паули считал, что разгадка может быть связана с гипотезой, на основании которой Бор построил свою теорию заполнения периодической таблицы. Правильно ли она описывает расположение электронов внутри атомов?

В 1922 году считалось, что в согласии с моделью Бора – Зоммерфельда электроны атома движутся внутри трехмерных “оболочек”. Это не реальные физические оболочки, а наборы энергетических атомных уровней, на которых группируются электроны. При построении новой модели атома с электронными оболочками путеводной нитью для Бора была стабильность благородных газов: гелия, неона, аргона, криптона, ксенона и радона25. Их атомные номера таковы: 2, 10, 18, 36, 54 и 86. Для ионизации атома любого благородного газа (удаления одного из его электронов и образования положительного иона) требуется сравнительно большая энергия. Учитывая, что атомы этих элементы еще и плохо взаимодействуют с другими атомами и с трудом образуют химические соединения, предполагалось, что электронные конфигурации этих элементов очень устойчивы и состоят из замкнутых оболочек.

Химические свойства благородных газов разительно отличаются от свойств элементов, занимающих в периодической таблице места перед ними, – от свойств водорода и галогенов: фтора, хлора, брома, йода и астата (их атомные номера равны, соответственно, 1, 9, 17, 35, 53 и 85). Все эти элементы легко образуют химические соединения. В отличие от инертных в химическом отношении благородных газов водород и галогены легко вступают в реакции с другими атомами, приобретают один дополнительный электрон и заполняют таким образом единственную свободную вакансию на своей внешней электронной оболочке. В результате получается отрицательный ион, имеющий набор полностью заполненных, или “замкнутых”, оболочек, а его электронная конфигурация становится такой же стабильной, как и у благородных газов. Зеркальным отображением галогенов являются щелочи: литий, натрий, калий, рубидий, цезий и франций. При образовании соединений они легко теряют электрон, становясь положительными ионами, у которых распределение электронов такое же, как у благородных газов.

Химические свойства этих трех групп элементов – одно из свидетельств, основываясь на которых Бор предположил, что атом каждого из элементов в ряду периодической таблицы получается из атома предыдущего элемента путем добавления одного электрона в его внешнюю электронную оболочку. Каждый ряд должен заканчиваться благородным газом с полностью заполненной внешней оболочкой. Только электроны незаполненных оболочек, которые называют валентными, принимают участие в химических реакциях. Поэтому атомы с одним и тем же числом валентных электронов обладают сходными химическими свойствами и попадают в один и тот же столбец периодической таблицы. У галогенов на внешней оболочке семь электронов. Требуется всего один электрон, чтобы эта оболочка стала замкнутой, то есть такой же, как у благородных газов. С другой стороны, у щелочей всего один валентный электрон.

Именно это и услышал Паули на лекциях Бора в Геттингене в июне 1922 года. Зоммерфельд назвал оболочечную модель “самым значительным с 1913 года шагом вперед в понимании структуры атомов”26. С помощью математики удалось восстановить число элементов в каждом из рядов периодической таблицы, то есть найти числа 2, 8, 18,.... а это значит, сказал Зоммерфельд Бору, что “сбылась заветная мечта физиков”27. Но, по правде говоря, строгого математического обоснования новой модели электронных оболочек не было. Даже Резерфорд говорил Бору, что с трудом “представил себе, как вы пришли к таким выводам”28. Тем не менее к словам Бора надо было относиться серьезно, особенно после того, как подтвердилось его предсказание, сделанное во время Нобелевской лекции в декабре 1922 года: тогда оказалось, что неизвестный элемент с атомным номером 72 (его назвали гафнием) не принадлежит к группе редкоземельных элементов. Однако в обосновании оболочечной модели Бора не было ни организующего принципа, ни четкого критерия. Это была гениальная импровизация, базирующаяся на экспериментальных данных о химических и физических свойствах элементов. По большей части она позволяла объяснить химические свойства разных групп элементов в периодической таблице. Ее высшим достижением был гафний.

Аномальный эффект Зеемана и недостатки оболочечной модели продолжали волновать Паули, когда подошло к концу время его пребывания в Копенгагене. В сентябре 1923 года Паули вернулся в Гамбург. В следующем году он получил повышение: теперь он был не ассистентом, а приват-доцентом.

Но поскольку до Копенгагена было рукой подать – короткая поездка на поезде, после на пароме через Балтийское море, – он по-прежнему был частым гостем в институте Бора. Паули пришел к выводу, что модель Бора работает только тогда, когда имеется ограничение на число электронов, занимающих данную оболочку. Иначе, в противоречие данным об атомных спектрах, ничто не мешает всем электронам атома находиться в одном и том же стационарном состоянии, на одном и том же энергетическом уровне. В конце 1924 года Паули открыл фундаментальное правило, систематизирующее распределение электронов. Это “принцип запрета”, позволивший теоретически обосновать модель электронных оболочек атома. В построенной эмпирически модели Бора такого обоснования не было.

Отправным пунктом для Паули послужила работа одного аспиранта из Кембриджа. Эдмунд Клифтон Стонер, хотя ему исполнилось уже тридцать пять, еще продолжал под руководством Резерфорда работу над диссертацией, когда в октябре 1924 года в “Философикал мэгэзин” появилась его статья “Распределение электронов по атомным уровням”. Стонер утверждал, что число энергетических состояний, в которых может находиться внешний, или валентный, электрон атома щелочи, равно числу электронов на последней замкнутой оболочке атома того благородного газа, который является первым после атома щелочи в периодической таблице. Например, валентный электрон лития может занимать одно из восьми энергетических состояний – ровно столько, сколько электронов содержится во внешней заполненной оболочке атома неона. Согласно Стонеру, главное квантовое число п определяет электронную оболочку Бора, которую можно полностью заполнить, “замкнуть”, если число электронов на ней будет вдвое больше числа допустимых энергетических состояний.

Если каждому электрону атома ставятся в соответствие квантовые числа n, k и m и каждый набор этих чисел отмечает определенную электронную орбиту (энергетический уровень), то, согласно Стонеру, число возможных энергетических состояний, скажем, при n = 1, 2 и 3 будет соответственно 2, 8 и 18. Для первой оболочки n = 1, k = 1 и m = 0. Только такие значения могут принимать три квантовых числа при n = 1. Они отвечают энергетическому состоянию (1,1,0). Но, по Стонеру, первая оболочка замкнута, когда она содержит 2 электрона – удвоенное число допустимых энергетических состояний. При n = 2 либо k = 1 и m = 0, либо k = 2, а m = -1, 0, 1. Следовательно, для второй оболочки существуют четыре возможных набора квантовых чисел, которые можно связать с валентным электроном и энергетическим состоянием, в котором он находится. Это состояния (2,1,0), (2,2,-1), (2,2,0) и (2,2,1). Поэтому заполненная оболочка с n = 2 вмещает 8 электронов. Третья оболочка, n = 3, имеет 9 возможных электронных энергетических состояний: (3,1,0), (3,2,-1), (3,2,0), (3,2,1), (3,3,-2), (3,3,-1), (3,3,0), (3,3,1) и (3,3,2)29. В соответствии с правилом Стонера, максимальное число электронов на третьей оболочке равно 18.

Паули видел октябрьский номер “Философикал мэгэзин”, однако не обратил внимания на статью Стонера. Но когда он наткнулся на упоминание о ней в предисловии Зоммерфельда к книге “Строение атома и спектры”, то, хотя никогда прежде не был замечен в пристрастии к спорту, побежал в библиотеку30. Он понял, что при данном значении n число возможных энергетических состояний N, в которых может находиться электрон в атоме, то же, что и число всех возможных значений чисел k и m, и равно оно n2. Правило Стонера правильно определяло число элементов в данном ряду периодической таблицы. Получался набор чисел 2, 8, 18, 32 и так далее. Но почему число электронов в замкнутой оболочке равно удвоенному значению N, то есть 2n2? Ответ, найденный Паули, гласил: электронам в атоме надо приписать четвертое квантовое число.

В отличие от n, k и m, новое квантовое число Паули могло принимать только два значения. Поэтому он назвал его двузначностью (Zweideutigkeit). Именно двузначность удваивала число электронных состояний. Если прежде одному энергетическому состоянию однозначно соответствовал набор из трех квантовых чисел n, k и m, то теперь тому же набору соответствовало два энергетических состояния n, k, m, А и n, k, m, В. Эти дополнительные состояния объясняли загадочное расщепление спектральных линий при аномальном эффекте Зеемана. Введенное Паули четвертое “двузначное” квантовое число позволило ему сформулировать принцип запрета, одну из главных заповедей природы: никакие два электрона в атоме не могут иметь один и тот же набор из четырех квантовых чисел.

Химические свойства элемента определяются не полным числом электронов в атоме, а только распределением его валентных электронов. Если бы все электроны в атоме занимали самый низкий энергетический уровень, все элементы были бы равнозначны по химическим свойствам.

Принцип запрета Паули управляет заполнением электронных оболочек в новой модели атома Бора. Он не позволяет всем электронам собраться на самом низком энергетическом уровне. Принцип запрета обосновывает правило, согласно которому элементы заполняют клетки периодической таблицы, и объясняет, почему замкнуты оболочки химически инертных благородных газов. Несмотря на такой успех, в работе “О связи между заполнением групп электронов в атоме и сложной структурой спектров”, вышедшей 21 марта 1925 года в журнале “Цайтшрифт фюр физик”, Паули написал: “Мы не можем более точно обосновать это правило”31.

Почему требуется четыре, а не три квантовых числа, чтобы определить состояние электрона в атоме, оставалось загадкой. Начиная с работ Бора и Зоммерфельда, считалось, что электрон в атоме, двигаясь по орбите, совершает трехмерное движение. Для описания этого движения необходимо три квантовых числа. Какой физический смысл имеет введенное Паули четвертое число?

Поздним летом 1925 года два голландских аспиранта Сэмюэл Гаудсмит и Джордж Уленбек поняли, что “двузначность” Паули – не просто еще одно квантовое число. В отличие от уже существовавших трех квантовых чисел п, k и т, характеризующих соответственно энергию электрона на орбите, форму орбиты и ее пространственную ориентацию, “двузначность” была свойством самого электрона. Гаудсмит и Уленбек назвали его спином32. Название выбрано не очень удачно. В нашем воображении оно связывается с вращающимися телами. Но спин электрона – понятие чисто квантовое. Строго обосновав принцип запрета, спин позволил устранить затруднения, сохранявшиеся в теории атомных структур.


Двадцатичетырехлетнему Джорджу Уленбеку очень нравилось в Риме. Должность учителя сына голландского посла он получил в сентябре 1922 года, окончив университет в Лейдене по специальности “физика”, что было равноценно получению степени бакалавра. Для Уленбека, не желавшего больше огорчать родителей своими финансовыми проблемами, это была прекрасная возможность чувствовать себя свободно, работая над магистерской диссертацией. Он только на лето возвращался в университет. Официально Уленбек не должен был посещать лекции, и все, что ему было нужно, он узнавал из книг. В июне 1925 года Уленбек вернулся в Лейден. Он колебался и не мог решить, надо ли ему стремиться к докторской диссертации. За советом Уленбек обратился к Паулю Эренфесту, профессору физики, сменившему в 1912 году Хендрика Лоренца после того, как Эйнштейн выбрал Цюрих.

Эренфест родился в Вене в 1880 году. Он был студентом великого Больцмана. Вместе с русской женой Татьяной (она была математиком) он подготовил ряд важных работ по статистической механике. Прежде чем стать профессором в Лейдене, Эренфест работал в Вене, Геттингене и Санкт-Петербурге. За те двадцать лет, что он занимал место Лоренца, Лейден превратился в центр теоретической физики, а сам Эренфест стал одним из наиболее уважаемых теоретиков. Эренфест был известен скорее не своими оригинальными работами, а умением прояснить самые трудные вопросы. Позднее Эйнштейн, друживший с Эренфестом, описывал его как “лучшего учителя в нашей науке” и человека, “с большим вниманием следящим за продвижением вперед и судьбой ученых, особенно своих студентов”33. Именно заботой о студентах можно объяснить тот факт, что Эренфест предложил Уленбеку, которого мучила проблема выбора, пока он не уладит вопрос о докторантуре, стать на два года его ассистентом. От такого предложения невозможно было отказаться. Эренфест предпочитал, чтобы его молодые сотрудники работали попарно. Он познакомил Уленбека со своим аспирантом, Сэмюэлем Гаудсмитом.

Гаудсмит был на полтора года моложе Уленбека. Он уже успел опубликовать несколько работ по атомным спектрам. Появился Гаудсмит в Лейдене вскоре после Уленбека, в 1919 году, а первую работу напечатал, когда ему исполнилось восемнадцать. Уленбек считал, что это “дерзкое, но похвальное проявление самоуверенности”34. Такой сомнительный напарник мог испугать кого угодно, но не Уленбека. В конце жизни Гаудсмит говорил, что “физика – это не профессия, а призвание, как сочинение стихов, музыки или живопись”35. Но он выбрал физику из-за того, что в школе физика и математика были его любимыми предметами. Настоящую любовь к физике привил ему Эренфест, предложивший подростку разобраться с тонкой структурой атомных спектров. И хотя Гаудсмит был не слишком прилежен, он обладал необъяснимой способностью выявлять смысл экспериментальных результатов.

К тому времени, когда Уленбек вернулся из Рима в Лейден, Гаудсмит три дня в неделю проводил в Амстердаме, где работал в спектроскопической лаборатории Питера Зеемана. “Проблема в том, что я не знаю, о чем вас можно спрашивать. Спектральные линии – это все, что вы знаете”, – жаловался Эренфест, волновавшийся из-за того, что никак не мог заставить Гаудсмита сдать давно откладывавшийся экзамен36. Несмотря на то, что Эренфест боялся приверженности Гаудсмита к спектроскопии, которая могла помешать ему стать широко образованным физиком, он попросил его изложить Уленбеку теорию атомных спектров. Когда Уленбек был полностью введен в курс дела, Эренфест решил, что эти двое должны заняться изучением дуплета в спектре щелочей – расщеплением спектральных линий в магнитном поле. “Он не знал ничего и задавал такие вопросы, которые никогда не приходили мне в голову”, – говорил Гаудсмит37. Каковы бы ни были пробелы в знаниях Уленбека, он прекрасно понимал классическую физику и ставил правильные вопросы, приводившие Гаудсмита в недоумение. Это была именно такая пара, которую хотел видеть Эренфест: и Уленбеку, и Гаудсмиту наверняка было чему поучиться друг у друга.

За лето 1925 года Гаудсмит научил Уленбека всему, что знал о спектральных линиях. Однажды у них зашел разговор о принципе запрета. Гаудсмит считал этот принцип еще одним хитроумным правилом, с помощью которого можно попробовать навести порядок в доставляющих головную боль спектрах атомов. Но Уленбеку пришла идея, которую Паули к этому моменту уже выбросил из головы.

Электрон может двигаться вверх и вниз, взад и вперед и из стороны в сторону. Эти направления движения физики называют степенями свободы. Каждое квантовое число соответствует одной из степеней свободы. Уленбек понял, что новое квантовое число Паули должно означать, что у электрона есть еще одна степень свободы. Он считал, что наличие четвертого квантового числа предполагает вращение электрона. Но в классической физике вращение соответствует поворотам в трех измерениях. Такое движение не предполагает наличия еще одной степени свободы. Значит, если вращательное движение электрона похоже на вращение Земли вокруг собственной оси, нет нужды вводить четвертое квантовое число. Паули же утверждал, что его новое квантовое число относится к чему-то, “что нельзя описать с помощью понятий классической физики”38.

В классической физике угловой момент, описывающий обычное вращение, может быть направлен в произвольном направлении. То, что предлагал Уленбек, было квантовым вращением – спином. Это двузначная величина: спин может быть направлен “вверх” или “вниз”. Уленбек представлял себе эти два допустимые спиновые состояния как вращение относительно вертикальной оси по или против часовой стрелки электрона, двигающегося по орбите вокруг ядра. При таком движении электрон генерирует собственное магнитное поле. Он ведет себя как стержневой электромагнит субатомных размеров. Магнитный момент электрона может быть ориентирован по внешнему магнитному полю либо против него. Сразу было понятно, что на любой разрешенной электронной орбите может находиться сразу два электрона при условии, что у одного из них спин направлен “вверх”, а у другого “вниз”. Однако этим двум направлениям спина соответствуют очень близкие, но не тождественно равные энергии. Именно это и приводит к образованию в спектре щелочей дуплета, то есть не одной, а двух очень близко расположенных друг к другу линий.

Уленбек и Гаудсмит показали, что спин электрона может равняться плюс или минус одной второй. Он удовлетворяет принципу запрета Паули, в соответствии с которым четвертое квантовое число должно быть “двузначным”39.

К середине октября Уленбек и Гаудсмит написали статью размером в одну страницу и показали ее Эренфесту. Он предложил поменять местами фамилии авторов, поставив их не в алфавитном порядке. К этому времени Гаудсмит уже опубликовал несколько достаточно известных статей о спектрах атомов, и Эренфест не хотел, чтобы Уленбека приняли за ученика Гаудсмита. Гаудсмит согласился, поскольку “именно Уленбек ввел понятие ‘спин’”40. Но в разумности самой концепции Эренфест уверен не был. Он написал Лоренцу, чтобы узнать его “мнение об этой очень остроумной идее”41.

Хотя Лоренцу, жившему на пенсии в нидерландском Харлеме, было уже семьдесят два года, он приезжал в Лейден раз в неделю читать лекции. Однажды утром в понедельник после лекции с ним встретились Уленбек и Гаудсмит. “Лоренц не разочаровал нас, – рассказывал Уленбек. – Он был немногословен, сказал, что все это интересно и что он подумает”42. Через неделю или две Уленбек отправился к Лоренцу, чтобы выслушать вердикт. Тот вручил ему ворох бумаг с расчетами. Они должны были показать, что сама идея спина недопустима. Одно из возражений лежало на поверхности: вращающийся электрон будет двигаться со скоростью, превышающей скорость света. А согласно теории относительности Эйнштейна, это запрещено. Обнаружилась и еще одна проблема. Величина расщепления линий щелочи, рассчитанная с использованием спина электрона, была в два раза больше наблюдаемой. Уленбек попросил Эренфеста не отправлять статью в печать. Но было слишком поздно: статья уже была послана. “Вы оба еще слишком молоды и можете позволить себе один раз сморозить глупость”, – утешил его Эренфест43.

Бор, прочитавший статью от 20 ноября, был настроен очень скептически. В декабре он поехал в Лейден, где праздновалась полувековая годовщина защиты Лоренцем докторской диссертации. Когда поезд прибыл в Гамбург, на платформе его ждал Паули. Ему не терпелось узнать, что Бор думает о спине электрона. Идея “очень интересная”, сказал Бор. За этой банальностью скрывалась уверенность, что спин – ошибка. Бор спросил, как может электрон, двигающийся в электрическом поле положительно заряженного ядра, чувствовать магнитное поле, необходимое для образования тонкой структуры спектра? На вокзале Лейдена Бора встретили два человека, которые тоже жаждали услышать его мнение о спине: Эйнштейн и Эренфест.

Бор еще раз высказал свои соображения, связанные с магнитным полем, и был поражен, когда Эренфест сказал, что Эйнштейн с помощью теории относительности эту проблему уже решил. Бор позднее признался, что объяснение Эйнштейна стало “настоящим откровением”. Теперь он был уверен, что все возникшие в связи со спином вопросы скоро удастся снять. Возражения Лоренца базировались на классической физике, великим знатоком которой он был. Однако спин – величина квантовая, и этот частный вопрос не был таким серьезным, каким казался сначала. Несостоятельность второго возражения Лоренца доказал английский физик Люэлин Хиллет Томас. Он показал, что ошибка, вкравшаяся в расчет относительного движения электрона по орбите вокруг ядра, стала причиной появления лишнего, равного двум, множителя в выражении для величины расщепления линий дуплета. “Теперь я непоколебимо уверен, что конец нашим неприятностям уже виден”, – написал Бор в марте 1926 года44.

На обратном пути Бора также ожидали физики, страстно желавшие узнать, что он скажет о квантовом спине. Когда он сошел с поезда в Геттингене, на платформе его встречали Вернер Гейзенберг, всего несколько месяцев назад уехавший из Копенгагена, и Паскуаль Йордан. Бор заявил, что введение спина электрона – огромный шаг вперед. Затем он отправился в Берлин, где отмечалась двадцать пятая годовщина знаменитого доклада Планка в Немецком физическом обществе, сделанного в декабре 1900 года. Этот день официально считался днем рождения кванта. На станции Бора ждал Паули, специально приехавший из Гамбурга, чтобы еще раз расспросить датчанина. Как он и боялся, Бор изменил свое мнение и теперь был страстным защитником спина электрона. Первые попытки Паули обратить Бора в свою веру окончились неудачей. Не поколебленный, он назвал квантовый спин “новой копенгагенской ересью”45.

Впервые идею о существовании спина у электрона Паули отверг за год до этого. Ее выдвинул двадцатиоднолетний американец немецкого происхождения Ральф Крониг. После защиты диссертации в Колумбийском университете он за два года объехал ведущие европейские физические центры. В Тюбинген Крониг явился 9 января 1925 года. Следующие десять месяцев он намеревался провести в институте Бора. Кронига интересовал аномальный эффект Зеемана, поэтому он очень обрадовался, когда принимавший его Альфред Ланде сообщил, что назавтра ожидается приезд Паули. Тот, прежде чем направить статью в печать, хотел обсудить с Ланде принцип запрета. Паули очень уважал Ланде, ученика Зоммерфельда, работавшего позднее ассистентом Борна во Франкфурте. Ланде показал Кронигу письмо, написанное Паули в ноябре прошлого года.

За свою жизнь Паули написал тысячи писем. Слава его росла, а число корреспондентов увеличивалось. К письмам его начинали относиться все серьезнее. Их передавали друг другу и изучали. Для Бора, не обращавшего внимания на язвительный тон Паули, каждое такое письмо было событием. Бор прятал письмо в карман пиджака, носил с собой несколько дней и показывал всем, кто хоть отдаленно интересовался задачей или идеей, о которой писал Паули. Под предлогом написания черновика ответа Бор вел воображаемый диалог с Паули, как если бы тот сидел перед ним и курил трубку. Однажды он шутливо заметил: “Наверное, каждый из нас боится Паули, но, похоже, не так уж мы его и боимся, если осмеливаемся сознаться в этом”46.

Крониг позднее вспоминал, что письмо Паули к Ланде, которое он прочитал, “возбудило его любопытство”47. Достаточно кратко Паули писал, что каждому электрону в атоме должен однозначно соответствовать набор из четырех квантовых чисел, и объяснял, что это означает. Крониг начал обдумывать возможную физическую интерпретацию четвертого квантового числа. У него возникла идея связать его с вращением электрона вокруг оси. Крониг очень быстро оценил, какие трудности прилагаются в нагрузку к вертящемуся электрону. Но, “придя в восторг от идеи”, он провел остаток дня за расчетами, пытаясь построить теорию такого явления48. Крониг сделал многое из того, о чем Уленбек и Гаудсмит заявили в ноябре. Он рассказал о своих результатах Ланде, и они оба стали нетерпеливо ожидать приезда Паули, надеясь заручиться его поддержкой. Крониг был поражен, когда Паули высмеял идею о вращении электрона: “Идея действительно разумная, но природа устроена не так”49. Ланде постарался смягчить удар: “Ну, если уж Паули так говорит, значит, этого быть не может”50. Расстроенный Крониг оставил свою идею.

Когда очень скоро существование спина у электрона было всеми признано, Крониг, не в силах сдержать гнев, написал ассистенту Бора Хендрику Крамерсу. Он напомнил Крамерсу, что первым предположил существование спина у электрона, но не опубликовал это открытие из-за саркастической реакции Паули. “В будущем я буду доверять своим суждениям больше, чем чьим-либо еще”, – жаловался он51. Встревоженный письмом Кронига, Крамерс показал его Бору. Тот наверняка помнил, что в разговоре с Кронигом, гостившим в Копенгагене, он сам отказал спину в признании. Бор написал Кронигу письмо с выражением “огорчения и глубокого сожаления”52. “Я бы вообще не касался этого вопроса, если бы не хотел как-то повлиять на физиков, с важным видом раздающих указания по всем вопросам, столь безгранично уверенных в правоте собственного мнения и столь чванливых”, – ответил Крониг53.

Хотя Крониг и чувствовал себя ограбленным, он был достаточно щепетилен и попросил Бора не выносить этот вопрос на публику, поскольку был уверен, что Гаудсмит и Уленбек “не придут от этого в восторг”54. Он знал, что их нельзя было ни в чем упрекнуть. Однако и Гаудсмит, и Уленбек узнали, что произошло. Позднее Уленбек открыто признал, что он и Гаудсмит “вовсе не были первыми, кто предложил квантовать вращение электрона. Нет сомнений, что Ральф Крониг первым заговорил о том, что, конечно, было основным в высказанных нами весной 1925 года идеях. И не напечатал он свои результаты главным образом из-за неодобрения Паули”55. Как сказал один из физиков Гаудсмиту, это можно рассматривать как доказательство того, что “непогрешимость Бога не распространяется на его самозваного наместника на земле”56.

В глубине души Бор считал, что Крониг “повел себя как дурак”57. Если уж он был уверен в своей правоте, надо было опубликовать работу. “Опубликовать или кануть в Лету”, – правило, которое в науке нельзя забывать. Крониг сам должен был прийти к такому выводу. Его раздражение по отношению к Паули и разочарование из-за упущенной возможности стать первооткрывателем спина электрона улеглись к концу 1927 года. Паули, которому тогда было всего двадцать восемь лет, стал профессором теоретической физики Высшей технической школы в Цюрихе. Он предложил Кронигу, опять приехавшему в Копенгаген, стать его ассистентом. “Всякий раз, когда я буду что-нибудь говорить, аргументированно возражайте мне”, – написал Паули Кронигу после того, как тот принял его предложение58.

К марту 1926 года были найдены ответы на все вопросы, мешавшие Паули признать наличие спина у электрона. “Мне не остается ничего другого, как полностью капитулировать”, — написал он Бору59. Даже годы спустя большинство физиков считало, что Гаудсмит и Уленбек должны были получить Нобелевскую премию: в конце концов, спин электрона – одно из самых важных понятий физики XX века. Но именно из-за инцидента с Паули и Кронигом Нобелевский комитет уклонился от присуждения награды Гаудсмиту и Уленбеку. Паули всегда чувствовал себя виноватым перед Кронигом за то, что смутил его. Как и за то, что в 1945 году он получил Нобелевскую премию за открытие принципа запрета, а кандидатура голландского физика была отклонена. Позднее он признался: “Когда я был молодым, я был таким глупым”60.

Седьмого июля 1927 года Уленбек и Гаудсмит один за другим в течение часа защитили диссертации. Злые языки утверждали, что это было устроено заботами Эренфеста. Он же обеспечил обоим ученым работу в Мичиганском университете. В то время получить место было очень трудно. В конце жизни Гаудсмит сказал, что для него работа в Америке была “гораздо более значимой наградой, чем Нобелевская премия”61.

Работа Гаудсмита и Уленбека – первый пример, четко обозначивший, что имевшаяся на тот момент квантовая теория достигла границ своей применимости. Теоретики больше не могли пользоваться классической физикой как точкой опоры, поскольку с ее помощью не все явления можно было “проквантовать”: квантовое понятие “спин электрона” не имеет классического аналога. Открытие Паули и голландских “спиновых докторов” остановило победное шествие “старой” квантовой теории. Пришло ощущение кризиса. “С методологической точки зрения” физика скорее напоминала “никуда не годную мешанину из гипотез, принципов, теорем и алгоритмов, а не логически непротиворечивую теорию”62. Часто продвижение вперед было обусловлено интуицией, а не рассуждениями.

“В данный момент физика опять слишком мутная наука; во всяком случае, для меня она слишком сложна. Я хотел бы играть комические роли в кино или заниматься чем-то в этом роде, но никогда ничего не слышать о физике. Тем не менее я очень надеюсь, что какая-нибудь новая идея Бора спасет нас. Я умоляю его сделать это незамедлительно. Большой ему привет и благодарность за доброту и проявленное ко мне терпение”, – написал Паули в мае 1925 года, примерно через шесть месяцев после открытия им принципа запрета63. Однако и Бору нечем было ответить “на наши теперешние теоретические заботы”64. Той весной казалось, что только квантовый кудесник может, взмахнув волшебной палочкой, сотворить столь желанную “новую” квантовую теорию: квантовую механику.

Глава 8.

Квантовый кудесник


О квантово-теоретическом истолковании кинематических и механических соотношений” – так называлась статья, появления которой ждали все, а некоторые надеялись написать сами. Редакция журнала “Цайт-шрифт фюр физик” получила ее 29 июля 1925 года. В аннотации автор заявлял о своей амбициозной задаче: он собирается “получить основы квантово-теоретической механики, базирующиеся исключительно на соотношениях между принципиально наблюдаемыми величинами”. За аннотацией следовало пятнадцать страниц текста. Автор статьи – Вернер Гейзенберг – выполнил свое намерение и тем самым заложил основы физики будущего.


Вернер Карл Гейзенберг родился 5 декабря 1901 года в Вюрцбурге. Ему было восемь лет, когда его отец занял единственное в стране место профессора византийской филологии в Мюнхенском университете. Семья переехала в столицу Баварии.

Вернер и его брат Эрвин (почти на два года старше) жили в фешенебельном квартале Швабинг на севере Мюнхена и учились в престижной гимназии им. Максимилиана, которую за сорок лет до того окончил Планк. Ко всему, директором гимназии был их собственный дед. Может, преподаватели и желали проявить снисходительность к внукам своего начальника, но очень скоро стало ясно, что в этом нет никакой необходимости. “Всегда видит существенное и не путается в деталях. Быстро усваивает материал по грамматике и по математике, ошибок обычно не допускает”, – сообщил учитель родителям первоклассника Вернера Гейзенберга1.

Дед придумывал интеллектуальные игры для маленьких внуков, например математические. Когда братья, соревнуясь, решали задачи на скорость, сразу было видно, что как математик Вернер талантливее брата. Он начал изучать математический анализ в неполные двенадцать лет и попросил отца приносить ему книги из университетской библиотеки. Отец решил, что это поможет сыну быстрее выучить иностранные языки, и начал снабжать его трудами, написанными на греческом и латыни. Так Вернер увлекся греческой философией. А потом началась Первая мировая война, положившая конец беззаботной и комфортной жизни.

После войны в Германии царил хаос, но мало где он ощущался настолько сильно, как в Баварии, особенно в Мюнхене. Седьмого апреля 1919 года радикальные социалисты провозгласили Баварию советской республикой. Пока дожидались правительственных войск из Берлина, противники революции организовали военизированные отряды. Гейзенберг и некоторые из его друзей присоединились к одному из них. Он занимался главным образом сочинением рапортов и исполнением мелких поручений. “Наши приключения закончились через несколько недель, – вспоминал позднее Гейзенберг, – выстрелы затихли, и военная служба стала рутиной”2. К концу первой недели мая республика была разгромлена. Более тысячи человек погибли.

В противовес суровой послевоенной реальности тинейджеры из среднего класса старалась сохранить романтические идеалы. Одни становились членами молодежных организаций вроде бойскаутов, другие, те, кто хотел большей независимости, создавали собственные группы и клубы. Гейзенберг возглавил одну из таких групп, в которую входили ребята, учившиеся в его школе. Они называли себя “группой Гейзенберга”. Молодые люди ходили в походы, устраивали летние лагеря и обсуждали устройство нового мира, который их поколение должно построить.

Летом 1920 года, блестяще окончив гимназию и получив престижную стипендию, Гейзенберг решил изучать математику в Мюнхенском университете. Но для этого надо было пройти собеседование, которое закончилось катастрофой: надежд на поступление не осталось. В отчаянии Гейзенберг обратился за советом к отцу. Тот договорился, что с сыном поговорит его старый друг Арнольд Зоммерфельд. Хотя этот “небольшого роста плотный человек с темными усами военного выглядел достаточно строгим”, страха у Гейзенберга он не вызвал3. Юноша почувствовал, что, несмотря на свой внешний вид, этот человек “принимал искреннее участие в судьбе молодежи”4. Август Гейзенберг уже рассказал Зоммерфельду, что сына особенно интересуют теория относительности и атомная физика. “Вы сразу хотите слишком многого, – сказал Зоммерфельд. – Нельзя начинать с самого сложного, надеясь, что все остальное само приложится”5. Но, поскольку Зоммерфельд всегда хотел ободрить молодых и помочь им реализовать талант, смягчившись, он сказал: “Может, вы, юноша, что-то и знаете, а может, не знаете ничего. Посмотрим”6.

Зоммерфельд разрешил восемнадцатилетнему Вернеру посещать семинары, на которых студенты старших курсов обсуждали свои работы. Гейзенбергу повезло. Институт Бора в Копенгагене, группа Борна в Геттингене, институт Зоммерфельда – эти три вершины “золотого треугольника” еще много лет определяли развитие квантовой физики. Когда Гейзенберг впервые пришел на семинар, он заметил “в третьем ряду темноволосого студента, сидевшего с каменным лицом”7. Это был Вольфганг Паули. Во время первого знакомства Зоммерфельд, показывая Вернеру институт, уже познакомил его с этим представительным венцем. Когда они отошли так, что Паули уже не мог их слышать, профессор не преминул сказать, что считает этого молодого человека своим самым талантливым студентом. Вспомнив слова Зоммерфельда о том, что он многому может научиться у Паули, Гейзенберг сел рядом с ним.

“Разве он не выглядит как гусарский офицер?” – прошептал Паули соседу, когда вошел Зоммерфельд8. Так начались профессиональные отношения длиною в жизнь, никогда, однако, не переходившие в личную дружбу. Они были слишком разные: Гейзенберг – более спокойный, дружелюбный, менее открытый и требовательный, чем Паули. Он был романтиком, любил природу, походы и походную жизнь. Паули тянуло в кабаре, ресторанчики и кафе. Пока Паули крепко спал по утрам, Гейзенберг успевал сделать половину намеченной на день работы. Однако Паули всегда оказывал сильное влияние на Гейзенберга и никогда не упускал случая лукаво сообщить ему: “Ты болван”9.

Именно Паули, который в то время писал свой удивительный обзор теории относительности, отговорил Гейзенберга от занятий теорией Эйнштейна. Он посоветовал ему заняться квантовым атомом, поскольку на этой благодатной почве было легче сделать себе имя. “В атомной физике много необъясненных экспериментальных результатов, – сказал он Гейзенбергу. – Кажется, что указания, оставленные нам природой в одном месте, противоречат другим ее же свидетельствам. Поэтому не удается составить хоть сколько-нибудь логически последовательную картину того, как связаны между собой разные явления”10. Паули казалось, что пройдут годы, а физики все еще будут “бродить в густом тумане”11. Когда Гейзенберг это услышал, его потянуло в квантовый мир.

Вскоре Зоммерфельд предложил Гейзенбергу “простенькую задачку” по атомной физике. Он попросил проанализировать новые данные о расщеплении спектральных линий в магнитном поле и придумать формулу, которая описывала бы эти расщепления. Паули предупредил Гейзенберга: Зоммерфельд надеется, что расшифровка этих данных позволит сформулировать новые физические законы. Для Паули такой подход к решению задачи граничил с “мистической игрой с числами”, но, как он заметил, “лучшего никто предложить не может”12. В то время и принцип запрета, и спин электрона еще принадлежали будущему.

Гейзенберг пребывал в неведении относительно правил и методов, принятых в квантовой физике. Это привело его туда, куда другие, более предусмотрительные и связанные инструкциями, заходить боялись. Он предложил теорию, которая, как казалось, объясняла аномальный эффект Зеемана. Первый вариант статьи Зоммерфельд отверг, но затем, после исправлений, к радости Гейзенберга одобрил публикацию. Хотя, как выяснилось позднее, работа была неправильной, первая научная публикация привлекла к Гейзенбергу внимание ведущих физиков Европы. Бор был одним из тех, кто заинтересовался молодым человеком, и взял его на заметку.

Впервые они встретились в июне 1922 года в Геттингене, куда Зоммерфельд привез нескольких своих студентов послушать лекции Бора по атомной физике. Гейзенберга поразило, насколько точен был Бор в выборе слов: “За каждым из тщательно сформулированных предложений чувствовались продуманность и долгие философские размышления. Они подразумевались, но явно никогда не формулировались”13. Не один Гейзенберг почувствовал, что выводы Бора основаны главным образом на интуиции и вдохновении, а не на точных расчетах. В конце третьей лекции он, поднявшись с места, указал на неясности, оставшиеся в работах, которые заслужили похвалу Бора. После лекции, когда Бор ответил на вопросы и слушатели стали расходиться, он отыскал Гейзенберга и спросил у двадцатилетнего юноши, не хочет ли тот после обеда прогуляться с ним. Восхождение на гору в окрестностях Геттингена продолжалось около трех часов. Позднее Гейзенберг записал: “В тот день началась моя настоящая научная карьера”14. Тогда он впервые увидел, что “один из творцов квантовой теории глубоко озабочен трудностями, возникшими на ее пути”15. Когда Бор пригласил его провести семестр в Копенгагене, Гейзенберг неожиданно для себя осознал, что будущее “полно надежд и новых возможностей”16.

Но до Копенгагена очередь дошла не сразу. Зоммерфельд должен был поехать в Америку. Он договорился, что на это время Гейзенберг отправится к Максу Борну в Геттинген. Хотя новый студент выглядел как “простой деревенский мальчишка с короткими светлыми волосами, ясными, сияющими глазами и обворожительной улыбкой”, Борн быстро обнаружил, что за обманчивой внешностью кроется нечто большее17. “Он такой же способный, как Паули”, – написал Борн Эйнштейну18. Вернувшись в Мюнхен, Гейзенберг закончил докторскую диссертацию, посвященную турбулентности. Тема, которую Зоммерфельд выбрал для Гейзенберга, должна была послужить расширению и углублению знаний последнего по физике. Во время устного экзамена тот не смог ответить на простые вопросы, например о разрешающей способности телескопа, что чуть не стоило ему диссертации. Вильгельм Вин, один из ведущих экспериментаторов, пришел в смятение, когда Гейзенберг пытался объяснить ему, как работает батарея. Вин собирался поставить начинающему теоретику оценку “неудовлетворительно”, но Зоммерфельду удалось склонить его к компромиссу. Гейзенбергу было позволено защитить диссертацию, но он получил III – самую низкую проходную оценку. Паули защитил диссертацию на “отлично”: его оценка была I.

Чувствуя себя униженным, Гейзенберг в тот же день собрал вещи и сел на ночной поезд в Геттинген. Ему было невыносимо оставаться в Мюнхене. “Я был удивлен, когда однажды утром, задолго до назначенного срока, он, очень смущенный, появился у меня”, – вспоминал Борн19. Гейзенберг рассказал о провале на экзамене. Он боялся, что теперь его услуги в качестве ассистента не потребуются. Но Борн, страстно желавший поддержать растущую славу Геттингена как центра теоретической физики, был уверен, что Гейзенбергу придется вернуться в Геттинген.

Борн был убежден в том, что физику следует пересмотреть снизу доверху. Ту “окрошку” из квантовых правил и классической физики, на которой основывалась модель квантового атома Бора – Зоммерфельда, нужно заменить логически самосогласованной теорией, которую Борн назвал “квантовой механикой”. Для физиков, пытавшихся разобраться в сложных вопросах атомной теории, ничего нового в такой постановке задачи не было. Однако в 1923 году все свидетельствовало о надвигающемся кризисе, связанном с неспособностью перейти атомный Рубикон. Паули уже громогласно заявлял всем, кто готов был слушать, что поскольку объяснить аномальный эффект Зеемана не удается, возникает насущная потребность “создать нечто абсолютно новое”20. После встречи с ним Гейзенберг поверил, что именно Бору удастся совершить прорыв.

С осени 1922 года Паули был ассистентом Бора в Копенгагене. Они с Гейзенбергом регулярно обменивались письмами, и каждый из них был в курсе последних достижений обоих институтов. Гейзенберг, как и Паули, занимался аномальным эффектом Зеемана. В канун Рождества 1923 года он написал Бору письмо, рассказал, над чем работает, и получил приглашение провести несколько недель в Копенгагене. В субботу, 15 марта 1924 года Гейзенберг стоял перед крытым красной черепицей трехэтажным зданием по адресу: Блегдамсвей, 17. Вывеска над входом гласила: “Институт теоретической физики”.

Вскоре Гейзенберг понял, что физикой занимаются только в полуподвале и на первом этаже. Остальная часть здания была жилой. В обставленной со вкусом квартире, занимавшей весь второй этаж, жил Бор со своей разросшейся семьей. Горничная, сторож и почетные гости размещались на верхнем этаже. На первом этаже, кроме лекционной аудитории с шестью длинными рядами деревянных скамеек, помещались хорошо подобранная библиотека, а также кабинеты Бора и его ассистентов. Там же была небольшая комната, в которой работали гости. Несмотря на название, в институте были две небольших лаборатории на первом этаже, а основная лаборатория размещалась в полуподвале.

Институт задыхался из-за нехватки места. Обычно в нем одновременно работало от шести до двенадцати гостей. Бор уже планировал расширение. В следующие два года были выкуплены соседние участки земли и построены два новых здания, что позволило вдвое увеличить количество работавших в институте. Бор с семьей переехал в дом, специально выстроенный по соседству. Перестроено было и старое здание. В нем появились новые кабинеты, столовая и трехкомнатная квартира. Позднее здесь часто останавливались Паули и Гейзенберг.

В жизни института было одно событие, которое никто не хотел пропустить: доставка утренней почты. Очередное письмо от родителей или друзей всегда приятно, но, главное, надо было как можно скорее получить известия от коллег из других институтов и свежие журналы. Впрочем, не все сводилось к физике: случались музыкальные вечера, турниры по пинг-понгу, вылазки на природу или в кино.

Гейзенберг возлагал очень большие надежды на поездку в Копенгаген, но первые несколько дней разочаровали его. Он ожидал, что, едва переступив порог, начнет общаться с Бором, а получалось, что он едва видел его. Гейзенберг привык быть лучшим, а здесь он столкнулся с международной командой блестящих молодых физиков. И Гейзенберг испугался. Все они говорили на нескольких языках, а ему иногда было сложно точно сформулировать свои мысли даже по-немецки. Гейзенберг ничто так не любил, как загородные прогулки с друзьями, а теперь ему казалось, что он окружен настоящими светскими львами. И ему ничего не оставалось, как признать, что в атомной физике они понимают больше, чем он.

Пытаясь вновь обрести уверенность, Гейзенберг спрашивал себя, удастся ли ему вообще поработать с Бором. Однажды он сидел у себя в комнате, когда в дверь постучали. Вошел Бор. Он извинился за то, что был занят, и предложил недальний пеший поход: в институте им почти наверняка помешают, а в походе у них будет достаточно времени для общения. Ведь чтобы поближе познакомиться, нет ничего лучше, чем провести вместе несколько дней на природе. Это было любимое времяпрепровождение Бора.

На следующий день рано утром они на трамвае добрались до северной окраины города. Здесь и началась прогулка. Бор расспрашивал Гейзенберга о детстве, о том, что он помнит о войне. Они шагали на север и, вместо того чтобы говорить о физике, рассуждали об аргументах за и против войны. Бора интересовало молодежное движение в Германии, то, как живет страна после войны. Гейзенберг и Бор переночевали в гостинице, а после добрались до загородного дома Бора в Тисвильде. В институт они явились лишь на третий день. Эта прогулка длиною в сто миль привела к тому, чего хотел Бор и о чем мечтал Гейзенберг: они познакомились.

В походе разговор шел и о физике, однако когда они вернулись в институт, Гейзенберг понял, что очарован Бором скорее как человеком, а не как физиком. “Я в полном восторге от пребывания здесь”, – написал он Паули21. Прежде ему не доводилось встречать человека, с которым можно было говорить абсолютно обо всем. Конечно, и Зоммерфельд проявлял неподдельную заботу о каждом, кто работал в его институте, но он вел себя, как типичный немецкий профессор, несколько дистанцируясь от своих сотрудников. И в Геттингене Гейзенберг никогда бы не осмелился обсуждать с Борном вопросы, которые он непринужденно обсуждал с Бором. Гейзенберг, казалось, шел по стопам Паули. Именно ему он был обязан теплым приемом Бора.

Паули всегда живо интересовался тем, что делает Гейзенберг. Они делились друг с другом планами. Паули уже вернулся в университет в Гамбурге и, узнав, что Гейзенберг собирается провести несколько недель в Копенгагене, написал Бору. Письмо произвело на Бора глубокое впечатление. Человек, известный своим ехидством, писал, что Гейзенберг – “гениально одаренная личность” и что “однажды он существенно раздвинет границы науки”22. Но Паули был уверен: прежде чем наступит предсказанный им день, физике Гейзенберга потребуется внутренне непротиворечивое обоснование.

Паули считал, что преодолеть трудности, возникшие на пути развития атомной физики, можно, только перестав прибегать к ухищрениям в тех случаях, когда экспериментальные результаты вступают в конфликт с существующей теорией. Такой подход лишь затушевывает проблему. Детально разобравшись в теории относительности, Паули стал страстным почитателем Эйнштейна: его восхищало то, что при построении этой теории в ход пошли всего несколько основополагающих принципов и предположений. Паули верил, что именно такой подход надо использовать и в атомной физике. Он хотел, как Эйнштейн, прежде сформулировать философские и физические принципы, лежащие в основе атомной физики, а уже затем придумывать математические формулы, условия и соотношения – гайки и болты, скрепляющие теорию. В 1923 году Паули был близок к отчаянию: не используя изначально необоснованные предположения, ему не удавалось логически и последовательно объяснить причину аномального эффекта Зеемана.

“Будем надеяться, что Вам когда-нибудь удастся настолько продвинуться в атомной теории, что Вы сможете решить задачи, над которыми я бьюсь. Они слишком сложны для меня, – писал Паули Бору. – Надеюсь также, что и мысли Гейзенберга, когда он вернется домой, будут направлены на философские аспекты этой проблемы”23. К моменту приезда в Копенгаген молодого немца Бор уже много слышал о нем. Во время прогулок в Фелледпарке рядом с институтом или за бутылкой вина вечером они говорили главным образом не о частных задачах, а об основополагающих физических принципах. Много лет спустя Гейзенберг назвал “подарком небес” две недели, проведенные в Копенгагене в марте 1924 года24.

“Конечно, мне его не будет хватать (он обаятельный, достойный, яркий человек, которого я полюбил всем сердцем), но его интересы важнее, а Ваше желание имеет для меня решающее значение”, – написал Борн Бору после того, как Гейзенберг получил приглашение провести длительное время в Копенгагене25. Зимой Борн должен был поехать в Америку с лекциями, поэтому до мая следующего года он не нуждался в помощи ассистента. В конце июля 1924 года, пройдя процедуру хабилитации (высшей академической квалификации) и приобретя право преподавать в немецких университетах, Гейзенберг отправился в трехнедельный поход по Баварии.

Семнадцатого сентября 1924 года Гейзенберг вернулся в институт Бора. Ему было всего двадцать два года, однако он уже являлся автором или соавтором достаточно большого числа статей по квантовой физике. Ему еще предстояло узнать и понять многое из того, чему мог научить его именно Бор. Позднее Гейзенберг скажет: “У Зоммерфельда я научился оптимизму, в Геттингене – математике, а у Бора – физике”26. Следующие семь месяцев он находился под влиянием Бора, мучительно искавшего путь, на котором удалось бы преодолеть трудности, ставшие бедствием для квантовой теории. Зоммерфельда и Борна волновали те же самые несообразности и сложности, но никого это не мучило так, как Бора. Он с трудом мог заставить себя говорить о чем-то другом.

В ходе этих напряженных дискуссий Гейзенбергу “стало ясно, насколько трудно согласовать между собой результаты разных экспериментов”27. Говорили в том числе и о комптоновском рассеянии рентгеновских лучей электронами, указывавшем на существование квантов света Эйнштейна. Казалось, трудности только множатся, если принять, что корпускулярно-волновой дуализм де Бройля относится ко всей материи. Бор, научивший Гейзенберга всему, что знал сам, очень надеялся на своего протеже: “Теперь все в руках Гейзенберга. Он должен найти выход, понять, как выпутаться из всех этих сложностей”28.

К концу апреля 1925 года Гейзенберг опять оказался в Геттингене. Поблагодарив Бора за гостеприимство, он написал:"… грущу, что в будущем я, бедный, должен продолжать заниматься всем этим в полном одиночестве”29. Тем не менее один важный урок из разговоров с Бором и непрекращающегося диалога с Паули он усвоил: придется сделать что-то основополагающее. И когда Гейзенберг взялся за решение давно поставленной задачи, он верил, что знает, как надо действовать. Речь шла об интенсивности спектральных линий водорода. Квантовый атом Бора – Зоммерфельда позволяет определить частоты спектральных линий водорода, но не их яркость. Идея Гейзенберга состояла в том, что надо разделить то, что можно наблюдать, и то, что наблюдать нельзя. Орбиту электрона, двигающегося вокруг ядра атома водорода, наблюдать нельзя. Поэтому Гейзенберг решил отказаться от представления об электронах, вращающихся вокруг ядер атомов. Это был решительный шаг, но он был готов его сделать. Уже давно ему были невыносимы попытки сделать наглядным то, что наблюдать невозможно.

Еще в Мюнхене юного Гейзенберга потрясла “возможность с помощью математики описать самые маленькие частицы материи”30. Примерно в то же время в одном из учебников он наткнулся на иллюстрацию, которая произвела на него отталкивающее впечатление. Чтобы объяснить, как атом углерода и два атома кислорода образуют молекулу двуокиси углерода, атомы были нарисованы с глазками и с крючочками вместо ручек, чтобы они могли цепляться друг за друга. Гейзенберг считал, что представление о движении электронов по орбитам внутри квантового атома столь же неестественно. Он отказался от попытки представить происходящее внутри атома, решив, что все, что нельзя наблюдать, надо игнорировать, а уделять внимание стоит только тем свойствам, которые можно измерить в лаборатории. В данном случае это частоты и интенсивности спектральных линий, связанные с испусканием и поглощением света при перескоке электрона с одного энергетического уровня на другой.

Больше чем за год до того, как Гейзенберг принял на вооружение эту стратегию, Паули выразил сомнение в пользе введения орбит электронов. “Самым важным мне представляется вопрос, насколько определенно вообще можно говорить об орбитах электронов в стационарных состояниях”, — написал он Бору в феврале 1924 года31. Хотя Паули уже прошел большую часть пути к открытию принципа запрета и его беспокоил вопрос о заполненных электронных оболочках, в другом письме Бору он так ответил на собственный вопрос: “Мы не должны менять представление об атомах в угоду нашим пристрастиям. По моему мнению, это относится и к предположению о существовании орбит электронов, таких же, как в обычной механике. Напротив, мы должны приспосабливать наши представления к опыту”32. Физики должны были отказаться от компромиссов, перестать обустраивать квантовые явления в рамках комфортной классической физики и совершить прорыв к свободе. Первому это удалось Гейзенбергу, ставшему на путь позитивизма: наука должна основываться на наблюдаемых фактах. И он предпринял попытку построить теорию, исходя только из наблюдаемых величин.


В июне 1925 года, спустя чуть больше месяца после возвращения из Копенгагена в Геттинген, Гейзенберг совсем пал духом. Он не мог продвинуться в расчетах интенсивности спектральных линий водорода и, жалуясь, так описывал свое состояние родителям: “…здесь каждый делает свое, но никто не делает ничего стоящего”33. На его настроение повлиял и жестокий приступ сенной лихорадки. “Я ничего не видел и был в ужасном состоянии”, – рассказывал позднее Гейзенберг34. Ему надо было уехать, и пожалевший его Борн предложил взять двухнедельный отпуск. Седьмого июня, в воскресенье, Гейзенберг сел на ночной поезд, идущий в порт Куксхафен. Приехал он туда рано утром, усталый и голодный. Позавтракав в гостинице, Гейзенберг сел на паром, идущий к скалистому островку Гельголанд. Прежде он принадлежал Великобритании, а в 1890 году был передан Германии в обмен на Занзибар. Остров площадью менее квадратной мили лежит в тридцати милях от побережья Германии. Гейзенберг надеялся, что здесь, на свежем, свободном от пыльцы воздухе, он почувствует облегчение.

“Похоже, когда я появился, моя распухшая физиономия имела тот еще вид. Во всяком случае, хозяйка, взглянув на меня, решила, что я участвовал в драке, и обещала вылечить меня от ее последствий”, – вспоминал Гейзенберг, когда ему было семьдесят лет35. Гостиница стояла на высокой южной оконечности расколовшегося надвое острова из красного песчаника. С балкона открывался чудный вид на деревню внизу, на пляж и темное море. Теперь у Гейзенберга было время обдумать “замечание Бора, говорившего, что, возможно, вечность становится хоть немного понятнее тому, кто смотрит на море”36. Вокруг все располагало к размышлениям. Он отдыхал, читал Гёте, гулял по маленькому курорту, купался и вскоре почувствовал себя гораздо лучше. Практически ничто не отвлекало его, и Гейзенберг опять вернулся к проблемам атомной физики. Но на Гельголанде он не испытывал тревоги, еще недавно мучавшей его. Здесь Гейзенберг, пытаясь разгадать загадку спектральных линий, быстро избавился от привезенного из Геттингена математического балласта37.

В поисках новой механики квантованного мира атома Гейзенберг сконцентрировался на частотах и относительных интенсивностях спектральных линий, являющихся результатом мгновенного прыжка электрона с одного энергетического уровня на другой. Иного выбора у него не было: это были единственные доступные данные о том, что происходит внутри атома. Несмотря на образ, навязанный бесконечными разговорами о квантовых прыжках и скачках, электрон не “перепрыгивает”, как мальчишка, некое пространственное расстояние. Он просто находится в одном месте, а потом вдруг неожиданно возникает в другом, причем без того, чтобы по дороге оказаться где-то между этими двумя местами. Гейзенберг принял, что все наблюдаемые величины (или величины, зависящие от них) связаны с таинственным фокусом, который демонстрирует электрон при квантовом прыжке с одного энергетического уровня на другой. Он отказался от наглядного представления об атоме как о Солнечной системе в миниатюре, где электроны вращаются вокруг Солнца – ядра.

На Гельголанде, в этом рае без пыльцы, Гейзенберг изобрел метод, позволяющий учитывать все мыслимые скачки электронов, иначе – допустимые переходы между разными энергетическими уровнями атома водорода. Единственный способ, который он смог придумать, чтобы учесть каждую из наблюдаемых величин, связанных с определенной парой энергетических уровней, – это составить таблицу:

Квант. Эйнштейн, Бор и великий спор о природе реальности

Таблица представляет собой полный набор всех возможных частот спектральных линий, которые теоретически могли бы испускаться электроном, перепрыгивающим с одного энергетического уровня на другой. Электрону, совершающему квантовый прыжок с энергетического уровня E2 на лежащий ниже энергетический уровень E1, в таблице соответствует частота спектральной линии ν21, определяющая частоту света, испускаемого при таком переходе. Спектральную линию частоты ν12 можно наблюдать только в спектре поглощения, поскольку она связана с поглощением электроном, находящемся на энергетическом уровне E1, кванта энергии, достаточного для его перехода на уровень E2. Спектральная линия испускания частоты νmn соответствует скачку электрона с энергетического уровня Em на уровень En, где m больше n. Не все частоты νmn можно наблюдать. Например, измерить частоту ν11 невозможно, поскольку это частота спектральной линии, соответствующей испусканию при “переходе” с энергетического уровня E1 на энергетический уровень E1, что физически невозможно. Следовательно, частота ν11 равна нулю, как и все остальные частоты при m = n. Набор отличных от нуля частот νmn соответствует линиям, которые действительно наблюдаются в спектре испускания данного элемента.

Другую таблицу можно составить, рассчитав скорости переходов между разными энергетическими уровнями. Если вероятность amn перехода с уровня Еm на уровень Еn велика, то такой переход произойдет скорее, чем тот, вероятность которого меньше. В результате спектральная линия частоты νmn обладает большей интенсивностью, чем линия, соответствующая менее вероятному переходу. Гейзенберг понял, что введя вероятности переходов аmn и частоты νmn, удается с помощью неких довольно хитроумных теоретических преобразований найти квантовые аналоги таких известных в механике Ньютона наблюдаемых величин, как координата и импульс.

Больше всего Гейзенберга занимал вопрос об орбитах электронов. Он представил себе атом, в котором электрон движется по орбите на большом расстоянии от ядра, что скорее напоминает вращение вокруг Солнца не Меркурия, а Плутона. Бор ввел представление о стационарных орбитах, чтобы не допустить падения электрона по спирали на ядро и связанного с этим излучения энергии. Однако, в соответствии с классической физикой, частота вращения по такой очень большой орбите (число полных оборотов за секунду) равна частоте испускаемого излучения.

Это не был просто полет фантазии. Гейзенберг умело использовал принцип соответствия – концептуальный мост, который Бор перебросил между квантовым и классическим мирами. Орбита вращения рассматриваемого им электрона была настолько велика, что проходила по границе, разделяющей квантовое и классическое царства. В этой приграничной области частота вращения электрона по орбите равна частоте испускаемого излучения. Гейзенберг знал, что такой электрон атома сродни гипотетическому осциллятору, который может колебаться с любой частотой из входящих в спектр. Четвертью века ранее Макс Планк использовал сходный прием. Однако если он применил “грубую силу”, то есть сделал специальное предположение, позволившее получить формулу, справедливость которой была заранее известна, то Гейзенберг на пути к привычным для нас классическим представлениям руководствовался принципом соответствия. Идя этим путем, он смог вычислить такие характеристики осциллятора, как его импульс p, смещение из положения равновесия q и частоту колебаний. Спектральная линия частоты νmn соответствует колебанию одного осциллятора. Кроме того, Гейзенберг знал, что поскольку он работает на территории, где соприкасаются квантовые и классические представления, для исследования неизвестной области внутри атома он может прибегнуть к экстраполяции.

Однажды поздно вечером на Гельголанде все фрагменты пазла начали вставать на свои места. Теория, построенная целиком с помощью наблюдаемых величин, позволяла, похоже, воспроизвести все известные результаты. Но не приведет ли она к нарушению закона сохранения энергии? Если это так, все разрушится как карточный домик. Оставалось совсем немного, и если все сходится, то будет доказано, что его теория непротиворечива и с точки зрения физики, и с точки зрения математики. Гейзенбергу было двадцать четыре года. Он был возбужден, нервничал и, проверяя расчеты, начал делать арифметические ошибки. Было уже почти три часа ночи, когда удовлетворенный Гейзенберг отложил ручку. Его теория не противоречила ни одному из фундаментальных законов физики: “Я был воодушевлен, и у меня было ощущение, что через поверхность атома я смотрю на его удивительно прекрасный внутренний мир. У меня начала кружиться голова от мысли, что теперь я должен изучить все изобилие математических структур, которые природа так щедро раскинула передо мной”38. Заснуть он не мог. Когда стало светать, Гейзенберг отправился на южную оконечность острова. Там была выступающая в море скала, на которую он уже много дней хотел забраться. Чувствуя прилив адреналина, он вскарабкался на нее “без особого труда и стал ждать восхода”39.

Лучи солнца несколько уменьшили эйфорию Гейзенберга. Получалось, что его теория работает, только если справедливо очень странное правило умножения: надо, чтобы X, умноженное на Y, не было равно Y, умноженному на X. Для обычных чисел не имеет значения, в каком порядке они перемножаются: 4 x 5 = 20 и 5 x 4 = 20. Когда при умножении результат не зависит от перестановки сомножителей, математики говорят о коммутативности умножения. Для обычных чисел коммутативный закон выполняется, так что всегда (4 x 5) – (5 x 4) = 0. Это правило знает и ребенок. Поэтому Гейзенберг сильно встревожился, когда понял, что для введенных им таблиц результат зависит от того, в каком порядке они перемножаются. Это значит, что разность  x В) – (В x A) не всегда равна нулю40.

Так и не поняв, что могло бы значить это необычное правило умножения, Гейзенберг вернулся на материк 19 июня, в пятницу, и сразу отправился в Гамбург к Вольфгангу Паули. Через несколько часов, получив одобрение самого строгого своего критика, он уехал в Геттинген. Ему предстояло закончить работу и записать результаты. Уже через два дня Гейзенберг, решивший было, что дело пойдет быстро, известил Паули, что “построение квантовой механики продвигается очень медленно”41. Шли дни, надежды рушились, а ему все не удавалось описать атом водорода с помощью нового подхода.

Какие бы сомнения ни мучили Гейзенберга, он был уверен в одном: при любых вычислениях имеют смысл только соотношения, связывающие “наблюдаемые” величины, то есть те, которые в принципе, если не в реальном эксперименте, могут быть измерены. В своих уравнениях требованию наблюдаемости всех величин он присвоил статус постулата, а все его, как он считал, “недостаточные усилия” были направлены на “вытравливание памяти об орбитах, которые наблюдать нельзя, и замене этого понятия на более подходящее”42.

“Сейчас моя работа продвигается не слишком хорошо”, – в конце июня написал Гейзенберг отцу. Но прошло всего чуть больше недели, и он закончил статью, возвестившую начало новой эры в квантовой физике. Все еще не до конца уверенный в результатах и в том, что они означают, Гейзенберг послал экземпляр статьи Паули. Извиняясь, он просил прочесть статью и вернуть ее через два-три дня. Спешка была связана с тем, что на 28 июля у Гейзенберга была назначена лекция в Кембриджском университете. Принимая во внимание и другие обязательства, было маловероятно, что он вернется в Геттинген до конца сентября. Поэтому ему хотелось “закончить статью за те несколько дней, что я еще здесь, либо сжечь ее”43. Паули “восторженно” приветствовал статью44. Он написал товарищу, что эта работа “возрождает надежду и возвращает радость жизни… Хотя это еще не ответ на загадку, я верю, что снова появилась возможность двигаться вперед”45. Человеком, начавшим движение в правильном направлении, был Макс Борн.

Борн имел слабое представление о том, чем занимался Гейзенберг после возвращения с моря. Поэтому он был удивлен, когда тот вручил ему статью и потребовал, чтобы он вынес свой приговор: стоит ее печатать или нет. Борн устал и на какое-то время отложил статью в сторону. Однако через несколько дней, взявшись за чтение этой, как ее назвал Гейзенберг, “сумасшедшей статьи” и разобравшись в ней до конца, Борн пришел в восторг. Он понимал: Гейзенберг, что совсем на него не похоже, сомневается в своей теории. Не связано ли это с тем, что ему пришлось использовать такое странное правило коммутации? В заключении статьи Гейзенберг написал: “Можно ли считать удовлетворительным предложенный здесь метод определения квантово-механических данных по соотношениям для наблюдаемых величин, или в конце концов он окажется слишком грубым для построения теоретической квантовой механики, что представляется очень актуальной задачей, можно будет решить только при более углубленном математическом исследовании метода, используемого здесь без достаточного обоснования”46. Из этого было ясно, что он продолжает двигаться на ощупь.

Что же означает это загадочное правило умножения? Этот вопрос настолько заинтриговал Борна, что следующие несколько дней и ночей он и думать не мог ни о чем другом. У него возникло неясное ощущение, что он уже встречал это правило, но указать точно, о чем идет речь, не мог. “Последняя работа Гейзенберга (она скоро будет опубликована) представляется достаточно таинственной, но наверняка она правильна и содержательна”, – написал Борн Эйнштейну, хотя все еще не мог объяснить происхождение такого странного правила умножения47. Воздавая должное молодым сотрудникам своего института, особенно Гейзенбергу, Борн заметил, что “иногда мне трудно даже просто быть в курсе того, что их занимает”48. Несколько дней он думал только о статье Гейзенберга. И был вознагражден. Однажды утром он вспомнил давно забытую лекцию, услышанную в студенческие годы. Он сообразил, что Гейзенберг неожиданно для себя столкнулся с умножением матриц. В этом случае X, помноженное на Y, не всегда равно Y, помноженному на Х.

Когда Гейзенбергу сказали, что тайна странного правила умножения раскрыта, он пожаловался: “Я никогда даже не слышал о матрицах”49. Матрица – это таблица из чисел, помещенных в определенных местах строк и столбцов, точно такая же, как построенная Гейзенбергом на острове Гельголанд. В середине XIX века английский математик Артур Кэли сформулировал правила, позволяющие складывать, вычитать и перемножать матрицы. Если А и В – матрицы, то при умножении А х В может получиться иной ответ, нежели чем для В х А. Точно так же, как таблицы Гейзенберга, матрицы не обязательно коммутируют. Хотя матрицы уже были прочно вписаны в математический ландшафт, они были терра инкогнита для теоретиков поколения Гейзенберга.

После того как Борн правильно определил, с чем связано странное правило умножения, он понял, что если он хочет поместить схему Гейзенберга в рамки логически последовательной теории, охватывающей все разнообразные аспекты атомной физики, ему понадобится помощь. Борн знал, кто лучше всего подходит для такой работы. Этот человек хорошо разбирался в сложных вопросах и квантовой физики, и математики. По счастью, он тоже будет в Ганновере на собрании Немецкого физического общества, куда собирался Борн. Оказавшись там, он сразу принялся разыскивать Вольфганга Паули. Борн предложил бывшему ассистенту работать вместе. Паули отказался. Он ни в какой мере не желал участвовать в планах Борна: “Я знаю, вы безумно любите сложные и запутанные расчеты. Вы только испортите физические рассуждения Гейзенберга вашей бесполезной математикой”50. В отчаянии, чувствуя, что сам дальше продвинуться не может, Борн обратился к одному из своих студентов.

Похоже, для предстоящей работы нельзя было придумать лучшего помощника, чем двадцатидвухлетний Паскуаль Йордан, выбранный Борном фактически наугад. В 1921 году Йордан поступил в Ганноверский технический университет. Сначала он хотел изучать физику, но лекции показались ему неинтересными, и Йордан занялся математикой. А через год он перевелся в Геттинген, где опять занялся физикой. Однако на лекции Йордан попадал редко: они начинались в семь или восемь часов утра. Затем он познакомился с Борном. Серьезно заниматься физикой он начал под его руководством. “Он был не только учителем, открывшим мне, студенту, замечательный мир физики. В его лекциях чудесным образом сочетались ясность мышления и способность к обобщению, раскрывающая перед нами новые горизонты… Этот человек наряду с моими родителями всю жизнь оказывал на меня самое сильное влияние”, – позднее отзывался Йордан о Борне51.

Под руководством Борна Йордан вскоре начал интересоваться задачами, связанными с атомными структурами. Несколько неуверенный в себе, заикающийся, Йордан высоко ценил терпение, которое проявлял Борн, обсуждая последние работы по атомной теории с учениками. Случайно вышло так, что в Геттингене он присутствовал на знаменитом “фестивале” Бора. Как и на Гейзенберга, на Йордана большое впечатление произвели и лекции, и следовавшие за ними дискуссии. После защиты докторской диссертации в 1924 году Йордан недолго работал с другими сотрудниками Геттингенского университета. Вскоре Борн предложил ему работать с ним и попытаться вместе найти способ, позволяющий объяснить, чем определяется ширина спектральных линий. “Йордан удивительно умен и сообразителен. Он может думать значительно быстрее и совершать меньше ошибок, чем я”, – написал Борн Эйнштейну в июле 1925 года52.

К тому времени Йордан уже слышал о последних идеях Гейзенберга. В конце июля, до своего отъезда из Геттингена, Гейзенберг провел семинар для узкого круга студентов и друзей. Он рассказал о своих попытках построить квантовую механику, основываясь только на соотношениях между наблюдаемыми величинами. Когда Борн предложил сотрудничать, Йордан ухватился за возможность переформулировать и доработать идеи Гейзенберга, превратив их в систематическую теорию – квантовую механику. Посылая статью Гейзенберга в журнал “Цайтшрифт фюр физик”, Борн не знал, что Йордан, хорошо разбирающийся в математике, знаком и с теорией матриц. С ее помощью Борн и Йордан за два месяца заложили основы новой квантовой механики. Позже ее назовут матричной механикой53.

Когда Борн понял, что Гейзенберг заново открыл правило умножения матриц, ему сразу удалось вывести матричную формулу, связывающую координату q и импульс p: pq – qp = (ih/2π) I. Сюда входит постоянная Планка и величина I, которую математики называют единичной матрицей. Она позволяет записать правую часть этой формулы в матричном виде. В следующие месяцы на этом равенстве была построена квантовая механика. Борн гордился тем, что оказался “первым, кто записал физические законы с помощью некоммутирующих символов”54. Но, вспоминал он позже, “это была только догадка, а мои попытки доказать ее окончились неудачей”55. Когда же эту формулу он показал Йордану, тот через несколько дней представил ее строгий математический вывод. Неудивительно, что вскоре после этого Борн сказал Бору, что считает Йордана “самым одаренным из моих молодых коллег”, за исключением Гейзенберга и Паули56.

В августе Борн с семьей уехал на каникулы в Швейцарию, а Йордан остался в Геттингене, чтобы к концу сентября подготовить статью. Но прежде чем статья была напечатана, они отправили экземпляр Гейзенбергу, который в это время был в Копенгагене. “Ну вот, я получил статью от Борна, которую совсем не понимаю. Там полно матриц, а я с трудом могу себе представить, что это такое”, – сказал Гейзенберг Бору, вручая ему рукопись57.

Скорее всего, не только Гейзенберг не знал, что такое матрицы. Но он с удовольствием засел за учебу и вскоре настолько разобрался в новых методах, что, даже оставаясь в Копенгагене, мог работать с Борном и Йорданом. Гейзенберг вернулся в Геттинген в середине октября. Он успел вовремя, чтобы помочь написать окончательный вариант статьи, которая стала известна как Drei-Manner-Arbeit, “работа трех”. Здесь он, Борн и Йордан впервые представили логически непротиворечивую формулировку квантовой механики – так давно ожидаемой новой физики атома.

Однако были сомнения в справедливости исходной работы Гейзенберга. Эйнштейн написал Паулю Эренфесту: “В Геттингене в это верят (я нет)”58. Бор верил, что, “вероятно, это жизненно важный шаг”, но “пока еще невозможно использовать эту теорию для решения вопросов, связанных с атомными структурами”59. В то время, когда Гейзенберг, Борн и Йордан были заняты построением матричной теории, сомнения Бора развеял Паули. В начале ноября, еще до того, как “работа трех” была окончена, он с успехом применил новую механику и добился потрясающего результата. Для новой физики Паули сделал то, что Бор сделал для старой квантовой теории: рассчитал положение спектральных линий атома водорода. Специально, чтобы поддеть Гейзенберга, Паули рассчитал и эффект Штарка – влияние внешнего электрического поля на спектр. “Я и сам был немного огорчен, что мне не удалось получить спектр водорода исходя из новой теории”, – вспоминал Гейзенберг60. Паули первым на конкретном примере доказал справедливость новой квантовой механики.


Заголовок статьи гласил: “Фундаментальные уравнения квантовой механики”. Борн приехал в Соединенные Штаты по приглашению на пять месяцев читать лекции. Он провел около месяца в Бостоне, когда однажды в декабре утренняя почта преподнесла ему “один из самых больших сюрпризов” в его научной жизни61. Прочитав работу некоего П.А.М. Дирака, аспиранта Кембриджского университета, Борн понял, что “все обстоит великолепно”62. Более того, Борн вскоре обнаружил, что Дирак послал свою работу, в которой излагались основы квантовой механики, в журнал “Труды Королевского общества” на девять дней прежде, чем была завершена “работа трех”.

В 1925 году Полю Адриену Морису Дираку было двадцать три года. Его отец Чарльз был франкоговорящим швейцарцем, а мать Флоренс – англичанкой. Поль был вторым из трех детей. Его отец был настолько властным человеком, что когда в 1935 году он умер, Дирак написал: “Теперь я чувствую себя гораздо свободнее”63. В детстве в присутствии отца он предпочитал молчать. Детская травма привела к тому, что и взрослым Дирак говорил очень мало. Его отец был учителем французского: “Отец постановил, что я должен разговаривать с ним только по-французски. Он думал, что это лучший способ научить меня этому языку. Поскольку на французском я не мог ясно выражать свои мысли, то для меня было лучше молчать, чем переходить на английский”64. Молчаливость Дирака, наследие глубоко несчастливых детства и юности, вошла в легенду.

Хотя Поль интересовался наукой, он, поступив в 1918 году в Бристольский университет, по совету отца начал изучать электротехнику. Тремя годами позже он окончил курс, однако даже несмотря на свой диплом с отличием работу инженера найти не смог. В послевоенной Англии перспектива остаться без работы выглядела безрадостно, и Дирак принял решение: еще два года бесплатно изучать математику в своем старом университете. Он бы предпочел Кембридж, но небольшая стипендия, которую он получал, не покрывала там все расходы на обучение. Лишь в 1923 году, когда Дирак получил диплом математика и грант от правительства, он приехал в Кембридж готовить докторскую диссертацию. Его руководителем стал Ральф Говард Фаулер, зять Резерфорда.

Дирак хорошо знал и понимал теорию относительности Эйнштейна, о которой в 1919 году, когда он был студентом-электротехником, говорил весь мир. Однако он почти ничего не знал о квантовом атоме Бора (тот был на десять лет старше). До приезда в Кембридж Дирак считал, что атом – это нечто совершенно гипотетическое, о чем и думать не стоит65. Но затем он изменил свое мнение и постарался нагнать упущенное время.

Спокойная, уединенная жизнь физика-теоретика в Кембридже была словно специально устроена для застенчивого, погруженного в себя Дирака. Обычно аспиранты работали в кабинетах либо в библиотеке. Может, кому-то и было трудно день за днем оставаться наедине с самим собой, но Дирак был счастлив, что его оставили в покое. Даже по воскресеньям, отдыхая и гуляя в окрестностях Кембриджа, он предпочитал одиночество.

Как и Бор, с которым он впервые встретился в июне 1925 года, Дирак и в разговоре, и на письме тщательно подбирал слова. Если во время лекции его просили объяснить непонятное, он нередко дословно повторял уже сказанное им. В Кембридж Бор приехал читать лекции по квантовой теории. На Дирака произвел впечатление сам ученый, а не его аргументация. “Я хотел услышать утверждения, которые можно было бы подкрепить уравнениями, – сказал он позже, – а в работах Бора такие утверждения встречались крайне редко”66. С другой стороны, приехавший из Геттингена с лекцией Гейзенберг потратил много месяцев на занятия именно той физикой, которая могла воодушевить Дирака. Но о результатах Гейзенберга он услышал не от него самого: тот в лекции о спектроскопии атомов предпочел не упоминать о них.

Внимание Дирака к работе Гейзенберга привлек Фаулер. Он дал ему прочесть гранки статьи молодого немца, которая вскоре должна была выйти из печати. Гейзенберг во время своего краткого визита в Кембридж жил у Фаулера. Он обсуждал с хозяином свои последние идеи, и тот попросил у него текст. Когда Фаулер получил статью, времени тщательно изучить ее у него не нашлось. Он передал статью Дираку, попросив разобраться и высказать свое мнение. Статью Дирак получил в начале сентября. Сначала он ее не совсем понял и не смог оценить значение сделанного открытия. Но через две недели Дирак вдруг сообразил, что основным в новом подходе Гейзенберга является то, что A x B не равно B x A. Именно это и был “ключ к разгадке тайны”67.

Дирак построил математическую теорию, которая тоже привела его к формуле pq – qp = (ih/2π) I. Он использовал различие между объектами, названными им q-числами и с-числами, то есть между величинами, которые не коммутируют (AB не равно BA), и теми, которые коммутируют (AB равно BA). Дирак показал, что квантовая механика отличается от классической тем, что переменные q и p (координата и импульс частицы) не коммутируют между собой, а подчиняются формуле, независимо полученной Борном, Йорданом и Гейзенбергом. В мае 1926 года Дирак защитил докторскую: впервые темой диссертации стала квантовая механика. Теперь физикам стало немного легче дышать. Им предстояло иметь дело с матричной механикой. Ее было трудно использовать, невозможно себе представить, однако она давала верные ответы.

“Идеи Гейзенберга – Борна заставили нас затаить дыхание и произвели глубокое впечатление на всех, кто интересуется теоретической физикой. Теперь вместо состояния тупой покорности мы, медленно соображающие индивиды, находимся в необычном напряжении”, – написал Эйнштейн в марте 1926 года68. Из ступора их вывел австрийский физик, который, несмотря на любовное приключение, нашел время и представил совсем другую версию квантовой механики. Здесь не требовались, как их назвал Эйнштейн, “подлинно магические расчеты Гейзенберга”69.

Глава 9.

“Позднее извержение эротического вулкана”


“Я даже не знаю, что такое матрицы”, – пожаловался Гейзенберг, когда ему объяснили, с чем связано странное правило умножения, лежащее в основании его новой физики. Услышав о матричной механике, многие реагировали так же. Однако уже через несколько месяцев Эрвин Шредингер предложил принятый с энтузиазмом альтернативный вариант теории. Его друг, великий немецкий математик Герман Вейль позднее описывал удивительные достижения Шредингера как результат “позднего извержения эротического вулкана”1. Любитель женщин, герой многих романов, тридцативосьмилетний австриец открыл волновую механику во время рождественских праздников 1925 года. Он провел их на лыжном швейцарском курорте Ароза, где у него было назначено тайное романтическое свидание. После прихода к власти нацистов, когда он решил уехать из Германии, Шредингер шокировал сначала Оксфорд, а затем Дублин, поселившись под одной крышей с женой и любовницей.

“Таким буржуа, как мы, его личная жизнь казалась странной, – вспоминал Борн через несколько лет после смерти Шредингера в 1961 году. – Но все это не имело значения. Он был очень симпатичным человеком, независимым, занятным, темпераментным, добрым и щедрым. Его ум был безукоризнен и очень эффективен”2.


Эрвин Рудольф Йозеф Александр Шредингер родился 12 августа 1887 года в Вене. Мать хотела назвать его Вольфгангом в честь Гёте, но уступила мужу, и сына назвали именем старшего брата отца, умершего в детстве. По причине смерти брата отец Шредингера стал наследником процветающего семейного предприятия – фабрики, производившей линолеум и клеенку. Это положило конец его надеждам стать ученым после окончания Венского университета, где он изучал химию. Шредингер знал, что своей комфортной и беззаботной жизнью он обязан отцу, пожертвовавшему личными желаниями ради семейных обязанностей.

Еще прежде того, как научиться читать и писать, Эрвин стал пытаться зафиксировать все, что случилось с ним за день. Свои заметки он диктовал взрослым, соглашавшимся его слушать. Не по годам развитой, Шредингер до одиннадцати лет занимался дома с частными учителями, а затем поступил в Академическую гимназию. С первого дня и до окончания гимназии через восемь лет Шредингер прекрасно учился. Безо всяких видимых усилий он оставался лучшим учеником. Одноклассники вспоминали, что “он обладал даром, особенно это относилось к физике и математике, сразу схватывать новый материал и до выполнения домашних заданий осмыслить и использовать его прямо на уроке”3. Он был прилежным учеником и много работал дома, сам, в личной классной комнате.

Шредингеру, как и Эйнштейну, очень не нравилась зубрежка. Тем не менее он любил строгую логику греческой и латинской грамматики. Поскольку его бабушка со стороны матери была англичанкой, он рано начал учить английский язык и говорил на нем почти так же свободно, как по-немецки. Позднее он выучил французский и испанский и, если требовалось, мог читать лекции на этих языках. Хорошо разбиравшийся в литературе и философии, он любил театр, поэзию и искусство. Шредингер был именно тем человеком, который мог заставить Вернера Гейзенберга почувствовать себя неуверенно. Однажды Поля Дирака спросили, может ли он играть на каком-нибудь инструменте. Тот ответил, что не знает, потому что никогда не пробовал. И Шредингер никогда не пробовал. От отца он унаследовал нелюбовь к музыке.

После окончания гимназии в 1906 году Шредингер намеревался изучать физику в Венском университете под руководством Людвига Больцмана. По трагическому совпадению, за несколько недель до того, как Шредингер должен был приступить к учебе, легендарный теоретик совершил самоубийство. Шредингер – молодой человек с серо-голубыми глазами и копной зачесанных назад волос – производил очень приятное впечатление, хотя и был небольшого роста: всего 167 сантиметров. Он прекрасно проявил себя в гимназии, поэтому от него ждали многого. Он оправдал ожидания: экзамены, один за другим, он сдавал лучше всех в группе. Удивительно, что хотя Шредингер предпочитал теоретическую физику, степень доктора в мае 1910 года он получил за экспериментальное исследование “Об условиях электрической проводимости на поверхности изоляторов во влажном воздухе”. В отличие от Паули и Гейзенберга Шредингер очень уверенно чувствовал себя и в лаборатории. Теперь до поступления на военную службу 1 октября 1910 года у двадцатитрехлетнего доктора Шредингера впереди было целое свободное лето.

В Австро-Венгрии годные к военной службе молодые люди должны были служить три года. Но, будучи выпускником университета, Шредингер мог выбрать годичные офицерские курсы, после которых он становился офицером запаса. Вернувшись к гражданской жизни в 1911 году, Шредингер получил должность ассистента профессора экспериментальной физики в своем университете. Он понимал, что не рожден экспериментатором, но никогда не жалел о потраченном времени. Позднее Шредингер писал: “Я принадлежу к тем теоретикам, которые на основании собственного опыта понимают, что значит производить измерения. Думаю, хорошо бы, таких было больше”4.

В январе 1914 года двадцатишестилетний Шредингер становится приват-доцентом. Как и везде, у тех, кто занимался теоретической физикой, возможностей карьерного роста почти не было. Шредингер хотел стать профессором, но путь к этой должности казался долгим и трудным. Поэтому он подумывал, не бросить ли вообще физику. А затем, в августе, началась мировая война, и Шредингер был призван на фронт. С самого начала ему везло. Поскольку он был артиллерийским офицером, его направили на хорошо укрепленные позиции на Итальянском фронте. Единственной опасностью в тех местах, где служил Шредингер, была скука. Отвлечься помогали только книги и журналы, которые он вскоре стал получать. “Разве это жизнь: спать, есть, играть в карты?” – записал он в дневнике перед тем, как пришла первая посылка5. Философия и физика – только они как-то поддерживали дух Шредингера: “Я уже не спрашиваю, когда кончится война. Хотел бы я знать, кончится ли она когда-нибудь?”6

Шредингер почувствовал облегчение, когда весной 1917 года его вернули в Вену, где он должен был преподавать физику в университете и метеорологию зенитчикам. Шредингер писал, что он закончил войну “без ранений, болезней и с очень малым числом наград”7. Как и для большинства, первые послевоенные годы для него и его родителей были очень сложными. Положение усугублялось тем, что фабрика семьи Шредингеров была разрушена. После падения Габсбургов стало еще хуже: победившие союзники начали блокаду, которая привела к дефициту продуктов. Зимой 1918/1919 годов тысячи людей в Вене голодали и мерзли. В семье практически не было денег на покупку продуктов на черном рынке, и Шредингерам часто приходилось обедать в ближайшей бесплатной столовой для бедняков. Положение стало выправляться после того, как в марте 1919 года блокада была снята, а император отправился в изгнание. В начале следующего года Шредингеру предложили работу в Йенском университете, что явилось спасением. Жалования как раз хватало, чтобы он смог жениться – на двадцатитрехлетней Аннемари Бертель.

Пара приехала в Йену в апреле, а ровно через шесть месяцев, в октябре, Шредингер получил должность экстраординарного профессора Высшей технической школы в Штутгарте. Зарплата там была больше, а опыт последних нескольких лет убедил его в важности денег. Весной 1921 года сразу нескольким университетам (в Киле, Гамбурге, Бреслау и Вене) потребовались профессора теоретической физики. Кандидатура Шредингера, который уже был хорошо известен, везде рассматривалась вполне серьезно. Он выбрал Бреслау.

Казалось, к тридцати четырем годам Шредингер достиг всего, о чем мог мечтать ученый. Однако хотя в Бреслау он и назывался профессором, его жалованье этому званию не соответствовало. Поэтому, получив приглашение из Цюриха, Шредингер сразу отказался от места. В октябре 1921 года, вскоре после переезда в Швейцарию, врачи поставили ему диагноз “бронхит”; подозревали даже туберкулез. Сказалось нервное напряжение последних двух лет – неустроенность и смерть родителей. “Я чувствовал, что мне капут, ничего путного в голову не приходило”, – рассказывал он позднее Вольфгангу Паули8. По настоянию врачей Шредингер поехал в Арозу, в санаторий. На этом высокогорном альпийском курорте недалеко от Давоса он провел следующие девять месяцев. Шредингер там не бездельничал: у него хватило энергии и энтузиазма написать несколько статей.

Время шло, и Шредингер начал сомневаться в том, удастся ли ему когда-нибудь сделать нечто выдающееся. В начале 1925 года ему было тридцать семь лет. Многие думали, что тридцать лет – это рубеж, за которым кончается творческая жизнь теоретика. Сомнения в собственной состоятельности как физика усугублялись и проблемами в личной жизни: любовные связи были и у него, и у жены. Но к концу года, когда брак Шредингера был хрупок как никогда, он сделал открытие, обеспечившее ему место в пантеоне физиков.


Шредингер проявлял все больший интерес к новейшим результатам в области атомной и квантовой физики. В октябре 1925 года он прочитал написанную годом ранее статью Эйнштейна. Его внимание привлекла сноска, где упоминалась диссертация Луи де Бройля о корпускулярно-волновом дуализме. Как это почти всегда бывает, на сноску мало кто обратил внимание. Шредингера, однако, заинтриговал одобрительный отзыв Эйнштейна, и он постарался заполучить экземпляр диссертации. Шредингер не был уверен, будет ли работа французского герцога опубликована ранее, чем через два года. А несколькими неделями позже, 3 ноября, он написал Эйнштейну: “Недавно я с величайшим интересом прочитал талантливую диссертацию де Бройля, которую мне в конце концов удалось получить”9.

Эту работу заметили многие, но поскольку никаких экспериментальных свидетельств в ее пользу не было, мало кто отнесся к идеям де Бройля так серьезно, как Эйнштейн и Шредингер. В Цюрихе физики из университета и Высшей технической школы каждые две недели устраивали совместный семинар. Ведущий семинара Петер Йозеф Вильгельм Дебай, профессор физики из Высшей технической школы, попросил Шредингера рассказать о работе де Бройля. В глазах коллег Шредингер был состоявшимся теоретиком, автором более сорока работ. Он занимался радиоактивностью, статистической физикой, общей теорией относительности и теорией света. Его работы считались вполне достойными, но не выдающимися. Среди них было несколько заслуживших всеобщее одобрение обзоров, которые показали, что он способен усвоить, проанализировать и изложить чужие идеи.

Двадцать третьего ноября двадцатиоднолетний студент Феликс Блох присутствовал на докладе Шредингера. Тот “очень понятно рассказал, как де Бройль связывает волну и частицу и как можно получить правила квантования Бора и Зоммерфельда, потребовав, чтобы целое число длин волн помещалось на стационарной орбите”10. Поскольку до 1927 года корпускулярно-волновой дуализм не был экспериментально подтвержден, Дебай нашел эту работу абсолютно неестественной и “недостаточно зрелой”11. Физические свойства волны (любой волны, звуковой или электромагнитной, даже волны, распространяющейся по скрипичной струне) описываются соответствующим уравнением. Шредингер о “волновом уравнении” не упомянул. Де Бройль никогда и не пытался его вывести. Не сделал этого и Эйнштейн, прочитавший диссертацию французского герцога. Дебай заявил, что с его точки зрения все это “звучит вполне тривиально и не производит глубокого впечатления”12. Эти слова Блох помнил даже через пятьдесят лет.

Шредингер знал, что Дебай прав: “Не может быть волны без волнового уравнения”13. Практически сразу он решил, что должен отыскать недостающее уравнение для волн де Бройля. И после Нового года, уже на следующем семинаре, Шредингер, вернувшийся с рождественских каникул, был вправе заявить: “Коллега Дебай предложил найти волновое уравнение. Так вот, я его нашел”14. В промежутке между двумя семинарами Шредингеру удалось превратить незрелые идеи де Бройля в полноценную теорию: квантовую механику.

Шредингер точно знал, с чего надо начинать, куда двигаться. Проверяя концепцию корпускулярно-волнового дуализма, де Бройль воспроизвел разрешенные орбиты атома Бора. Разрешены только те орбиты, на которых помещается целое число длин стоячих электронных волн. Шредингер знал, что неуловимое волновое уравнение, которое он ищет, должно воспроизводить трехмерную модель атома водорода с трехмерными стоячими волнами. Атом водорода был лакмусовой бумажкой для этого волнового уравнения.

Вскоре после того, как началась охота за уравнением, Шредингер решил, что “поймал” его. Но для атома водорода ответ получился неправильный. Неудача объяснялась тем, что теория корпускулярно-волнового дуализма де Бройля строилась в согласии со специальной теорией относительности Эйнштейна. Следуя за де Бройлем, Шредингер попытался отыскать релятивистское уравнение и потерпел неудачу. К этому времени Уленбек и Гаудсмит уже открыли спин электрона, но их работа появилась в печати только в конце ноября 1925 года. Шредингер релятивистское волновое уравнение нашел, но спин в нем не учитывался, так что неудивительно, что оно не могло правильно описать результаты экспериментов15.

В канун рождественских каникул Шредингер отставил в сторону теорию относительности. Он понимал, что таким образом он получит уравнение, которое не будет справедливо для электронов, двигающихся со скоростью, близкой к скорости света, когда релятивистскими эффектами пренебрегать нельзя. Но для его целей и такого уравнения было достаточно.

Однако вскоре его стала занимать не только физика. В очередной раз вспыхнул конфликт с женой Анни. Подобные сражения обычно длились долго, однако это оказалось особенно затяжным. Несмотря на адюльтер и разговоры о разводе, создавалось впечатление, что ни один из них не может и не хочет уйти. Шредингер намеревался исчезнуть на пару недель. Неизвестно, что он сказал жене, но, покинув Цюрих, он отправился в Альпы, на курорт Ароза, чтобы встретиться с давней любовницей.

Шредингер был в восторге: он снова оказался в привычной, удобной обстановке виллы Хервиг. Сюда он с Анни приезжал два предыдущих года на Рождество. Но за следующие две недели у Шредингера вряд ли нашлось время почувствовать себя виноватым: он был поглощен романом с этой не известной нам дамой. Однако у него нашлось время и на то, чтобы продолжить поиск волнового уравнения. “В настоящий момент я сражаюсь с новой теорией атома, – написал он 27 декабря. – Если бы только лучше знать математику! Я очень оптимистично настроен… если только мне удастся решить эту задачу, то будет великолепно”16. За этим “поздним извержением эротического вулкана” последовало еще шесть месяцев напряженной работы17. Шредингеру, воодушевленному таинственной музой, удалось получить некоторое волновое уравнение. Но было ли оно тем самым волновым уравнением, которое он искал?

Шредингер не “вывел” волновое уравнение: это было невозможно сделать логически, исходя из представлений классической физики. Вместо этого он построил его на основании формулы де Бройля, связывающей длину волны, которая ставится в соответствие частице, с ее импульсом, и надежно обоснованных уравнений классической физики. Формула выглядит очень просто, но чтобы ее получить, Шредингеру потребовался весь его опыт и все искусство физика-теоретика. Это был тот фундамент, на котором в последовавшие за тем месяцы он возвел здание новой волновой механики. Но прежде всего надо было показать, что получено именно нужное волновое уравнение. Получатся ли правильные энергетические уровни, если его применить к атому водорода?

Вернувшись в январе в Цюрих, Шредингер проверил, как его уравнение воспроизводит набор энергетических уровней атома водорода Бора – Зоммерфельда. Теория Шредингера сложнее теории де Бройля, которая требует, чтобы одномерная стоячая электронная волна правильно укладывалась на круговых орбитах. В результате решения уравнения Шредингера получается трехмерный аналог орбит – электронные орбитали, – а соответствующие им энергии однозначно связаны с допустимыми решениями волнового уравнения. Отметались все специально придуманные для атома Бора – Зоммерфельда условия, естественным образом исчезала прежде необходимая и вызывавшая неудовлетворенность подгонка формул. Казалось, даже мистические квантовые скачки электрона с одной орбиты на другую вытесняются плавными и непрерывными переходами от одной разрешенной трехмерной стоячей электронной волны к другой. Статья “Квантование как задача о собственных значениях” поступила в редакцию журнала “Аннален дер физик” 27 января 1926 года18. Напечатанный 13 марта текст Шредингера описывал его собственный вариант квантовой механики и ее приложение к атому водорода.

За время своей почти пятидесятилетней научной карьеры Шредингер ежегодно публиковал около пятидесяти страниц научного текста. В 1926 году он напечатал 256 страниц, на которых рассказал, как волновая механика может успешно решить целый ряд задач атомной физики. Кроме того, он предложил вариант волнового уравнения, которое позволяет рассматривать “системы”, меняющиеся со временем. Это давало возможность исследовать такие процессы, как поглощение, испускание и рассеяние излучения на атомах.

Двадцатого февраля, во время работы над гранками первой статьи, Шредингер впервые назвал свою новую теорию Wellenmechanik — волновой механикой. Она во всем отличалась от неприступной, строгой матричной механики, не допускавшей даже намека на наглядность. Шредингер предлагал физикам спокойную, надежную альтернативу, позволяющую объяснить квантовый мир в терминах, близких к терминам физики XIX века, не прибегая к помощи слишком абстрактных формулировок Гейзенберга. Вместо таинственных матриц предлагалось использовать дифференциальные уравнения – важнейшую часть математического аппарата, известную каждому физику. Матричная механика Гейзенберга имела дело с квантовыми прыжками и нарушениями непрерывности. В ней не было ничего, что могло бы предстать перед мысленным взором, если попытаться хоть одним глазком взглянуть на то, что происходит внутри атома. Шредингер говорил физикам: теперь нет нужды “отбрасывать в сторону интуицию и оперировать такими абстрактными понятиями как вероятности переходов, энергетические уровни и так далее”19. Нет ничего удивительного, что волновую механику горячо приветствовали и очень быстро признали.

Как только Шредингер получил оттиски своей статьи, он разослал их коллегам, мнение которых волновало его сильнее всего. Планк ответил ему 2 апреля. Он писал, что прочитал статью, “как ребенок, жаждущий узнать ответ на давно мучившую его загадку”20. Двумя неделями позднее Шредингер получил письмо от Эйнштейна: “Идея Вашей работы могла прийти в голову только истинному гению”21. “Ваше одобрение и мнение Планка значат для меня больше, чем реакция практически всего остального мира”, – отозвался Шредингер22. Эйнштейн был убежден, что прорыв Шредингера имеет решающее значение, а также что “метод Гейзенберга – Борна ведет в тупик”23.

Остальным потребовалось больше времени, чтобы до конца оценить результат “позднего извержения эротического вулкана”. Зоммерфельд сначала был уверен, что волновая механика – “абсолютное безумие”. Затем он изменил свое мнение: “Хотя истинность матричной механики несомненна, она очень сложна и пугающе абстрактна. Теперь нам на помощь пришел Шредингер”24. Многие вздохнули с облегчением, когда начали пользоваться более привычной волновой механикой. Не надо было пробиваться через абстрактные чуждые формулировки Гейзенберга и его геттингенских коллег. “Появление уравнения Шредингера – огромное облегчение, – написал молодой ‘спиновый доктор’ Джордж Уленбек. – Теперь больше не надо учить эту странную математическую теорию матриц”25. Вместо этого Эренфест, Уленбек и многие другие их коллеги в Лейдене в течение многих недель подряд “часами стояли у доски”, разбираясь во всем великолепии возможностей, заложенных в волновую механику26.

Паули (казалось, близкий к геттингенским физикам) оценил значение работы Шредингера, которая произвела на него глубокое впечатление. Паули пришлось использовать все свое серое вещество, чтобы с помощью матричной механики описать атом водорода. Все были поражены скоростью и виртуозностью его работы. Семнадцатого января, всего за десять дней до того, как Шредингер отправил в печать свою первую работу, Паули послал статью в “Цайтшрифт фюр физик”. Когда Паули осознал, насколько проще Шредингер с помощью волновой механики может управиться с атомом водорода, он был изумлен. “Я верю, – сказал он Паскуалю Йордану, – что эта работа – одна из самых важных, напечатанных в последнее время. Прочти ее внимательно и отнесись к ней с уважением”27. Вскоре после этого, в июне, Борн описывал волновую механику “как самое глубокое проникновение в смысл квантовых законов”28.

Гейзенберг говорил Йордану, что ему “не очень-то приятно” отступничество Борна и его переход на сторону волновой механики29. Хотя он и признавал работу Шредингера, в которой используется более привычный математический аппарат, “необычайно интересной”, но все-таки считал, что с точки зрения физики его матричная механика лучше подходит для описания процессов, происходящих на атомном уровне30. “Гейзенберг с самого начала не разделял мою точку зрения, что Ваша волновая механика физически более значима, чем наша квантовая механика”, – доверительно сообщил Борн Шредингеру в мае 1927 года31. Но это уже ни для кого не было секретом. Да и Гейзенберг не хотел ничего скрывать: на кону было слишком многое.

Летом 1925 года квантовой механики, то есть науки, которая для атомной физики играла бы такую же роль, как механика Ньютона для классической физики, все еще не существовало. Зато годом позднее имелись сразу две соревнующиеся между собой теории, отличающиеся друг от друга так, как частица от волны. И обе давали правильные ответы на одни и те же вопросы. Но какова была, если вообще была, связь между матричной и волновой механикой? Над этим Шредингер начал размышлять сразу по окончании своей первой, принципиально важной работы. Прошло две недели, но отыскать звено, связывающее две теории, ему не удалось. “Поэтому, – написал он Вильгельму Вину, – я сдаюсь и прекращаю поиски”32. Шредингер вряд ли был разочарован. Он признавался, что “матричные расчеты были для меня невыносимы еще до того, как у меня появились первые мысли о новой теории”33. Правда, остановиться Шредингер все-таки не смог, и в начале марта ему удалось обнаружить связь между теориями.

Две теории, казалось бы, столь разные по форме и по содержанию (одна использовала волновое уравнение, вторая – матричную алгебру), оказались с точки зрения математики эквивалентными34. Неудивительно, что обе они приводили к абсолютно одинаковым результатам. Очень быстро стали очевидны преимущества существования двух различных, но эквивалентных формулировок квантовой механики. Для большинства стоящих перед физиками задач ответ проще найти с помощью волновой механики Шредингера. Но в тех случаях, когда необходимо учитывать спин, преимущество на стороне матричного подхода Гейзенберга.

Поскольку споры о том, которая из теорий верна, улеглись, практически не начавшись, все сосредоточились не на математической стороне дела, а на физической интерпретации результатов. Технически обе теории оказались эквивалентны, но характер физической реальности, скрывающейся за математическими формулами, был абсолютно разным: с одной стороны – волны Шредингера и непрерывность, с другой – частицы Гейзенберга и скачки. Каждый из них был уверен, что разгадал истинную природу физической реальности. Но оба быть правыми не могли.


И Шредингер, и Гейзенберг сомневались в правильности предложенной другим интерпретации квантовой механики. Сначала личной неприязни друг к другу они не испытывали. Но вскоре эмоции взяли верх. На публике и в печати обоим удавалось контролировать себя. Но в письмах не было необходимости оставаться тактичным и сдержанным. Когда Шредингер попытался доказать эквивалентность волновой и матричной механики, а это ему не удалось, он до какой-то степени успокоился и решил, что, возможно, ее и нет. Он писал: “Меня бросает в дрожь от мысли, что впоследствии, описывая истинную природу атома, я должен буду рассказывать студентам о матрицах”35. В работе “Об отношении квантовой механики Гейзенберга – Борна – Йордана к моей” Шредингер всячески пытался отделить волновую механику от матричной. “Моя теория основывается на работе Л. де Бройля и коротких, но крайне дальновидных, замечаниях Эйнштейна. Я совершенно не уверен в существовании какой-либо ее генетической связи с Гейзенбергом”, – объяснял он36. В заключение Шредингер пишет, что “из-за отсутствия наглядности” матричная механика “отпугивает, если не сказать больше, – отталкивает”37.

Гейзенберг был еще менее дипломатичен, говоря о непрерывности, которую Шредингер пытался вернуть в царство атомов, где, с его точки зрения, господствовали скачки. “Чем больше я думаю о физической стороне теории Шредингера, тем более отталкивающей я ее нахожу”, – заявил он Паули в июне38. “Рассуждая о наглядности собственной теории, Шредингер пишет, что “она, вероятно, ‘не совсем правильна’, другими словами, его теория – это чушь”. Двумя месяцами ранее Гейзенберг был настроен миролюбивее. Говоря о волновой теории, он называл ее “невероятно интересной”39. Знавшие Бора отмечали, что Гейзенберг использует его фразеологию. Когда датчанин не был согласен с какой-либо идеей или доводом, он называл их “интересными”. Чувство разочарования у Гейзенберга росло, поскольку все больше его коллег отказывалось от матричной механики в пользу более легкой в использовании волновой механики, и в конце концов он сорвался. Гейзенберг с трудом мог поверить, что даже Борн стал использовать волновое уравнение Шредингера, и в гневе назвал его “предателем”.

Даже если Гейзенберг и завидовал растущей популярности альтернативной теории Шредингера, именно он принес волновой механике следующую триумфальную победу. Возможно, Гейзенберга раздражало поведение Борна, но и его самого соблазняла простота математического аппарата теории Шредингера. В июле 1926 года он использовал волновую механику для расчета спектральных линий гелия40. Чтобы никто не заподозрил его в переходе на сторону противника, Гейзенберг оговорился, что так просто удобнее считать. Тот факт, что две теории эквивалентны с точки зрения математики, означал, что Гейзенберг может пользоваться волновой механикой, игнорируя “интуитивные картинки”, нарисованные с ее помощью Шредингером. Но еще до того, как Гейзенберг отправил свою статью в печать, Борн, взяв в руки палитру Шредингера, нарисовал на том же холсте совсем другую картину. Он обнаружил, что основой волновой механики и атомного мира являются вероятности.

Шредингер не старался нарисовать новую картину: он пытался реставрировать старую. Квантовые скачки с одного энергетического уровня внутри атома на другой для него не существовали. Были только плавные, непрерывные превращения одной стоячей волны в другую с испусканием излучения. Это был результат некоего экзотического резонансного явления. Шредингер верил, что волновая механика позволяет восстановить классическую “интуитивную” физическую картину мира с ее непрерывностью, принципом причинности и детерминизмом. Борн с этим был не согласен. “Достижения Шредингера относятся только к математике, – говорил он Эйнштейну. – Предлагаемая им физическая картина никуда не годится”41. Борн воспользовался волновой механикой и нарисовал сюрреалистическую картину со скачками, отсутствием причинно-следственных связей и вероятностями. Она сильно отличалась от полотна Шредингера, написанного по мотивам физики Ньютона в манере старых мастеров. Различие этих двух картин было связано с разной интерпретацией так называемой волновой функции в уравнении Шредингера. Обычно ее обозначают греческой буквой пси (ψ).

Шредингер с самого начала знал, что в его интерпретации квантовой механики что-то не так. Согласно законам движения Ньютона, если одновременно известны положение и скорость электрона, то теоретически возможно определить, где по прошествии времени будет находиться этот электрон. Однако положение волны определить гораздо труднее, чем положение частицы. Если бросить камень в пруд, на поверхности воды появится рябь. Как точно сказать, где находится волна? В отличие от частицы волна не локализована в определенном месте. Это просто переносящее энергию возмущение. Как при “волне” болельщики по всему стадиону один за другим встают, а затем садятся, волна на поверхности воды – это просто колебания вверх и вниз ее отдельных молекул.

Все волны, вне зависимости от их размера и формы, можно описать одним математическим уравнением, точно так же, как уравнения движения частицы описываются уравнениями Ньютона. Волновая функция ψ представляет волну: она описывает ее форму в данный момент времени. На покрытой рябью поверхности пруда волновая функция указывает как велико возмущение, так называемая амплитуда волны, в данной точке x в момент времени t. Но когда Шредингер вывел волновое уравнение для волн материи де Бройля, не было понятно, что собой представляет его волновая функция. Ее можно вычислить, решив волновое уравнение для какой-то определенной физической системы, например для атома водорода. Но открытым оставался вопрос, на который Шредингер ответить затруднялся: а что именно колеблется?

В случае волн на поверхности воды или звуковых волн ответ очевиден: колеблются молекулы воды или воздуха. В XIX столетии физиков поставил в тупик свет. Считая, что необходима какая-то среда, через которую свет мог бы распространяться, им пришлось придумать таинственный “эфир”. Это продолжалось до тех пор, пока не стало понятно, что свет – это электромагнитная волна, описывающая колебания связанных электрических и магнитных полей. Шредингер верил, что волны материи столь же реальны, как и более привычные типы волн. Но что собой представляет среда, в которой распространяется электронная волна? Можно поставить вопрос иначе: что представляет собой волновая функция в уравнении Шредингера? Летом 1926 года ходила даже шутливая песенка, описывающая положение, в которое попали Шредингер и его коллеги:

Эрвин пси свою берет —

Делает любой расчет,

Но поди его спроси,

Что такое эта пси?42

В конце концов Шредингер выдвинул предположение, что волновая функция – например, электрона – тесно связана с похожим на облако распределением его электрического заряда при движении в пространстве. В волновой механике волновая функция – не та величина, которую можно измерить непосредственно. Дело в том, что она, как говорят математики, является комплексным числом. Например, число 4 + 3i состоит из двух частей: “действительной” и “мнимой”. Обычное число 4 – “действительная” часть комплексного числа 4 + 3i. Его “мнимая” часть, 3i, физического смысла не имеет, поскольку i – квадратный корень из -1. По определению, квадратный корень из числа – это другое число, которое, будучи помноженным само на себя, дает исходное. Квадратный корень из 4 равен 2, поскольку 2 х 2 = 4. Но такого числа, которое, будучи помноженным само на себя, давало бы -1, нет. Ведь и 1 х 1 = 1, и -1 х -1 = 1, так как согласно законам алгебры минус на минус дает плюс.

Волновая функция не является наблюдаемой величиной. Она представляет собой нечто неосязаемое, что измерить невозможно. Но квадрат модуля комплексного числа – это действительное число. Оно должно быть связано с чем-то, что можно измерить в лаборатории43. Так, квадрат модуля 4 + 3i равен 2544. Шредингер считал, что квадрат модуля волновой функции электрона, |ψ (x, t)|2 – это мера размазанной плотности электрического заряда в точке x в момент времени t.

Чтобы обосновать такую интерпретацию, Шредингер ввел понятие “волнового пакета”, заменяющего собой электрон. Он противился самой идее существования частиц. Он утверждал, что электрон только “кажется” похожим на частицу, но на самом деле частицей не является, хотя подавляющее число экспериментальных данных свидетельствует в пользу этого. Шредингер верил, что электрон как частица – плод воображения, а в действительности существуют только волны. Если электрон ведет себя как частица, это просто означает, что волны материи, накладываясь друг на друга, образуют волновой пакет. Двигающийся электрон – это не что иное, как волновой пакет, распространяющийся наподобие импульса, посланного слабым движением руки вдоль натянутой веревки, один конец которой мы привязали, а другой держим в руке. Чтобы волновой пакет вел себя как частица, требуется набор волн с разной длиной волны, которые, интерферируя, гасят друг друга в области пространства вне волнового пакета.

Шредингер считал, что если полный отказ от частиц и сведение всего только к волнам избавит физику от нарушений непрерывности и скачков, то это того стоит. Однако его интерпретация вскоре столкнулась с трудностями, поскольку противоречила физическому смыслу. Первый удар ей был нанесен, когда стало ясно, что если электрон – это волновой пакет, то чтобы не вступать в противоречие с экспериментами, в которых он ведет себя как частица, волны, входящие в этот пакет, должны быть размазаны по такой большой области пространства, что будут вынуждены двигаться со скоростью, превышающей скорость света.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 11. Волновой пакет, образованный суперпозицией нескольких волн.


Как Шредингер ни старался, ничего поделать с таким расширением волнового пакета он не мог. Пакет состоит из волн с разными длинами и частотами. Перемещаясь в пространстве, он вскоре начинает неизбежно разбухать, поскольку составляющие его отдельные волны двигаются с разными скоростями. Чтобы волновой пакет вел себя наподобие частицы, волны должны практически мгновенно собираться вместе, быть локализованы в одной и той же точке пространства. К тому же использование волнового уравнения для гелия и других атомов приводило к тому, что представление о реальности, скрывавшееся за математическими выкладками Шредингера, исчезало. На его месте возникало абстрактное многомерное пространство, представить которое было невозможно.

В волновой функции электрона закодировано все, что надо знать об одной трехмерной волне. Однако волновую функцию двух электронов атома гелия нельзя трактовать как две трехмерные волны в обычном трехмерном пространстве. Математика показывает, что надо рассматривать одну волну, существующую в странном шестимерном пространстве. При переходе от одной клетки периодической таблицы к другой, от одного элемента к следующему число электронов возрастает на единицу. А это означает, что при каждом переходе возникает потребность в лишних трех измерениях. Если в случае лития, третьего элемента периодической таблицы, пространство должно иметь девять измерений, то уран надо снабдить пространством с 276 измерениями. Волны, распространяющиеся в таких абстрактных многомерных пространствах, не могут быть реальными физическими волнами, с помощью которых Шредингер надеялся восстановить непрерывность и избавиться от квантовых скачков.

Кроме того, интерпретация Шредингера не справлялась ни с фотоэлектрическим эффектом, ни с эффектом Комптона. Были и другие вопросы, на которые не было ответа. Как волновой пакет может обладать электрическим зарядом? Совместима ли волновая механика с квантовым спином? Если волновая функция Шредингера не является реальной волной в обычном трехмерном пространстве, то что эти волны вообще собой представляют? Ответ нашел Макс Борн.

Пятимесячное пребывание Борна в Америке подходило к концу, когда в марте 1926 года была опубликована первая статья Шредингера. Он прочитал ее по возвращении в Геттинген в апреле и, как и многие другие, почувствовал, что “захвачен врасплох”45. За время его отсутствия обстановка в квантовой физике радикально изменилась. Практически сразу Борн понял, что Шредингер построил “удивительно мощную и красивую” теорию46. Он быстро признал “превосходство математического аппарата волновой механики”, поскольку она позволяет сравнительно легко справиться с “фундаментальной задачей атомной физики” – вычислением спектра атома водорода47. Чтобы применить матричную теорию к атому водорода, потребовался человек такого таланта, как Паули. Может быть, Борн и оказался захвачен врасплох, но с волнами материи он был знаком уже давно – задолго до того, как Шредингер опубликовал свою работу.

“Вскоре после публикации диссертации де Бройля письмо Эйнштейна привлекло к ней мое внимание, но я был поглощен своими мыслями и не отнесся к ней достаточно внимательно”, – вспоминал Борн более чем через полвека48. В июле 1925 года Борн нашел время изучить работу де Бройля и написал Эйнштейну, что “волновая теория материи может оказаться очень важной”49. Он начал “понемногу размышлять о волнах де Бройля”50. Но тогда оставил эти размышления и занялся странным правилом умножения, появившимся в работе, которую принес ему Гейзенберг. Теперь, почти год спустя, Борну удалось преодолеть некоторые трудности, с которыми столкнулась волновая механика. Однако цена, которую ему пришлось заплатить, оказалась гораздо выше той, на которую соглашался Шредингер, принося в жертву частицы.

Отрицать частицы и квантовые прыжки, на чем настаивал Шредингер, было выше его сил. В Геттингене Борн часто становился свидетелем “плодотворности концепции частиц” при объяснении экспериментов, в которых изучаются атомные столкновения51. Борн оценил богатые возможности формализма Шредингера, но отрицал интерпретацию, предложенную австрийцем. “Необходимо, – писал Борн в конце 1926 года, – полностью отвергнуть физическую картину Шредингера, который хочет оживить теорию классического континуума. Надо оставить только его формализм и наполнить его новым физическим содержанием”52. Уверенный в том, “что частицы нельзя просто упразднить”, Борн нашел способ соединить вместе волны и частицы. Используя понятие вероятности, он предложил новую интерпретацию волновой функции53.

Во время своего пребывания в Америке Борн пытался понять, как с помощью матричной механики можно описать атомные столкновения. Вернувшись в Германию и неожиданно получив в свое распоряжение волновую механику Шредингера, он вновь обратился к этому вопросу и написал две основополагающие работы, носящие одно и то же название: “Квантовая механика процессов столкновений”. Первая – всего четыре страницы – была опубликована 10 июля в “Цайтшрифтфюр физик”. Вторую работу, более подробную и уточненную, он закончил и отправил через десять дней54. Шредингер не признавал существования частиц, а Борн, пытаясь их спасти, предложил интерпретацию волновой функции, ставившую под сомнение основное положение физики – детерминизм.

Вселенная Ньютона полностью детерминирована. Случайностям в ней нет места. Здесь частица в любой момент времени имеет определенный импульс и координату. Силы, действующие на частицу, определяют то, как со временем меняются ее импульс и координата. Но чтобы описать свойства газа, состоящего из огромного числа частиц, таким физикам, как Джеймс К. Максвелл и Людвиг Больцман, пришлось воспользоваться вероятностями и перейти к статистическому описанию. Вынужденное отступление в область статистического анализа они объясняли невероятными трудностями, возникающими в том случае, когда требуется проследить за движением всех частиц. В детерминированной Вселенной вероятность есть следствие недостаточной осведомленности о событиях, происходящих в строгом соответствии с законами природы. Если в настоящее время состояние системы и действующие на нее силы известны, то ее будущее предопределено. В классической физике детерминизм неразрывно связан с причинностью – утверждением, что каждое событие имеет свою причину.

Электрон, ударяющийся об атом, может отскочить почти в любом направлении, как и бильярдный шар, столкнувшийся с другим шаром. Но на этом, утверждал Борн, сходство кончается. Он предлагал нечто абсолютно невероятное: когда речь идет об атомных столкновениях, физика не может дать ответ на вопрос: “Каким будет состояние после столкновения?”, можно только спросить: “Какова вероятность данного результата столкновения?”55 “Здесь и встает вопрос о детерминизме”, – признается Борн56. Определить точно, где окажется электрон после столкновения, невозможно. Борн утверждал: единственное, на что способна физика – вычислить вероятность рассеяния электрона под заданным углом. Таков был предложенный Борном “новый смысл физики”, непосредственно связанный с его интерпретацией волновой функции.

Сама по себе волновая функция не является физической реальностью. Она существует в мистическом, призрачном мире возможного и имеет дело с абстрактными возможностями, такими как, например, возможные значения всех углов, на которые может рассеяться электрон после столкновения с атомом. Между понятиями “возможное” и “вероятное” лежит огромная пропасть. Борн утверждал, что квадрат модуля волновой функции, в отличие от нее самой, – это действительное число, принадлежащее миру вероятного. Например, зная квадрат модуля волновой функции, нельзя определить реальное положение электрона, а можно только оценить вероятность, шанс найти его в данном, а не в другом, месте57. Так, если значение волновой функции электрона в точке X в два раза больше, чем в точке Y, то вероятность обнаружить его в точке X в четыре раза больше, чем в точке Y. При этом электрон можно обнаружить и в точке X, и в точке Y, и где-нибудь еще.

Вскоре Нильс Бор пришел к выводу, что до тех пор, пока не выполнено наблюдение или измерение, микроскопический физический объект, такой как электрон, не существует вообще нигде. Между двумя измерениями он существует только в смысле абстрактных возможностей волновой функции. Только когда выполнено наблюдение или измерение, “коллапс волновой функции” приводит к тому, что одно из “возможных” состояний электрона становится “актуальным”, а вероятность реализации остальных возможных состояний обращается в нуль.

Согласно Борну, уравнение Шредингера описывает волну вероятности. Реальных электронных волн нет, есть только абстрактные волны вероятности. “Исходя из нашего понимания квантовой механики, не существует величины, которая в соответствии с принципом причинности определяет результат отдельного столкновения”, – пишет Борн58 и признается: “Я сам склонен отказаться от детерминизма в квантовом мире”59. И хотя, как указывал Борн, “движение частиц определяется вероятностными законами, распространение самой вероятности подчиняется принципу причинности”60.

За время, прошедшее между выходом двух своих статей, Борн до конца осознал, что он ввел в физике вероятность нового типа. “Квантовая вероятность”, как ее назвали за отсутствием лучшего термина, – совсем не то, что классическая вероятность, связанная с недостаточностью знания. Теоретически недостаточность знания можно восполнить. А квантовая вероятность – неотъемлемая черта атомной реальности. Например, тот факт, что невозможно предсказать, когда распадется определенный атом радиоактивного образца, связан не с недостатком знаний. Это результат вероятностного характера квантовых законов, управляющих радиоактивным распадом.

Шредингер отверг вероятностную интерпретацию Борна. Он не мог поверить, что столкновение электрона или α-частицы с атомом “абсолютно случайно”, то есть “полностью не определено”61. Если это так и Борн прав, то квантовые скачки неизбежны, и снова возникает угроза принципу причинности. В ноябре 1926 года Шредингер написал Борну: “У меня, тем не менее, создается впечатление, что Вы и многие другие, разделяющие в главном Вашу точку зрения, слишком поддались обаянию идей (таких как введение понятия о стационарных состояниях, квантовых скачках и так далее), натурализовавшихся в наших головах за последние десять лет. Поэтому Вы не можете отдать должное попыткам отойти от такого способа рассуждений”62. Шредингер никогда не отказывался от своей интерпретации волновой механики и попыток придать наглядность атомным явлениям. Одно его высказывание запомнилось надолго: “Я не могу себе представить, что электрон скачет как блоха”63.


Цюрих отстоял довольно далеко от вершин квантового “золотого треугольника”: Копенгагена, Геттингена и Мюнхена. Когда новая волновая механика, как лесной пожар, охватила все физическое сообщество Европы, многим захотелось услышать изложение теории Шредингера из уст самого автора. Получив от Арнольда Зоммерфельда и Вильгельма Вина приглашение прочесть две лекции в Мюнхене, Шредингер с готовностью согласился. Первая лекция состоялась 21 июля. На традиционном “семинаре по средам” Зоммерфельда выступление Шредингера прошло спокойно. Совсем не так обстояло дело со второй лекцией, прочитанной 23 июля на заседании Баварского отделения Немецкого физического общества. Гейзенберг, который в это время обосновался в Копенгагене и служил ассистентом у Бора, вовремя вернулся в Мюнхен. Он собирался в пеший поход, но до того успел побывать на обеих лекциях Шредингера.

Сидя во второй раз в переполненном лекционном зале, Гейзенберг спокойно дослушал до конца доклад, называвшийся “Новые результаты волновой механики”. Потом стали задавать вопросы. Гейзенберг волновался все больше и под конец не выдержал. Когда он поднялся и заговорил, все глаза были направлены на него. Теория Шредингера, указал он, не может объяснить ни закон излучения Планка, ни эксперимент Франка – Герца, ни эффект Комптона, ни даже фотоэлектрический эффект. Без учета нарушений непрерывности и квантовых скачков объяснить нельзя ничего. А это именно те понятия, от которых хочет избавиться Шредингер.

Часть аудитории открыто выражала несогласие с замечаниями двадцатичетырехлетнего ученого, но еще до того, как Шредингер смог ответить, вмешался раздраженный Вин. Позднее Гейзенберг рассказал Паули, что старик его “фактически вышвырнул из зала”64. (История отношений этой пары восходила еще к временам, когда Гейзенберг был студентом в Мюнхене. На устном экзамене перед защитой диссертации он не смог сказать ничего путного об экспериментальной физике.) “Молодой человек! Несомненно, профессору Шредингеру удастся в свое время дать ответы на эти вопросы, – произнес Вин, заставив Гейзенберга сесть65. – Вы должны понять, что теперь покончено со всем этим вздором, связанным с квантовыми прыжками”. Шредингер, не участвовавший в этом обмене репликами, подтвердил, что уверен в возможности справиться с оставшимися трудностями.

Гейзенберг, который никак не мог остановиться, потом жаловался, что Зоммерфельд, бывший свидетелем этого инцидента, “попался на удочку убедительных математических выкладок Шредингера”66. Потрясенный Гейзенберг, которому пришлось покинуть поле битвы побежденным еще до того, как она началась, должен был перегруппировать силы. “Несколько дней назад я прослушал две лекции Шредингера, – написал он Йордану, – и остался неколебим в уверенности, что его физическая интерпретация квантовой механики некорректна”67. Он уже знал, что одной убежденности недостаточно. Приходилось учитывать, что “математический аппарат Шредингера предвещает значительный прогресс”68. После бесславно закончившейся интервенции Гейзенберг отправил Бору донесение с передовой линии фронта квантовой физики.

Ознакомившись с его версией мюнхенских событий, Бор пригласил Шредингера в Копенгаген сделать доклад и принять участие “в дискуссиях в узком кругу специалистов, работающих сейчас в институте. У нас будет возможность более подробно обсудить открытые вопросы, стоящие перед атомной теорией”69. Когда 1 октября 1926 года Шредингер сошел с поезда, на станции его ожидал Бор. Примечательно, что встретились они впервые.

Битва началась сразу после обмена любезностями. По словам Гейзенберга, “она продолжалась целыми днями, с раннего утра до позднего вечера”70. Все дни визита Шредингера Бор практически не давал ему передышки. Чтобы проводить с ним как можно больше времени, он поселил его у себя дома, в гостевой комнате. Хотя обычно Бор был чрезвычайно приветливым и любезным хозяином, он, желая убедить Шредингера, что тот ошибается, даже с точки зрения Гейзенберга вел себя, “как беспощадный фанатик, не готовый ни на какие уступки и даже не помышлявший о том, что может ошибаться сам”71. Каждый страстно защищал собственную физическую интерпретацию новой физики, будучи в ней абсолютно уверен. Ни один не был готов уступить хоть в чем-то без боя. Они бросались в атаку, если замечали хоть малейшую брешь или непоследовательность в аргументации противника.

Однажды Шредингер назвал “квантовые переходы абсолютной фантастикой”. “Но это не доказывает, что квантовых переходов не существует, – парировал Бор. – Это доказывает только, что мы не можем их себе представить”. Атмосфера накалялась. “Вы не можете всерьез пытаться ниспровергнуть основы квантовой теории!” – восклицал Бор. Шредингер признал, что многое еще остается не до конца понятным, но, по его мнению, и Бору тоже “не удалось сформулировать удовлетворительную физическую интерпретацию квантовой механики”. Бор продолжал давить, и Шредингер под конец выпалил: “Если все эти чертовы квантовые переходы действительно есть, я вынужден буду пожалеть, что вообще связался с квантовой теорией!” “При этом все мы останемся чрезвычайно рады, что вы это все-таки сделали, – заметил Бор. – Ваша волновая механика придала математическим расчетам столько простоты и ясности. Это большой успех по сравнению со всеми предыдущими формами квантовой механики”72.

После нескольких дней нескончаемых споров Шредингер заболел и слег. Жена Бора самоотверженно ухаживала за больным, а хозяин дома, присев на краешек кровати, продолжал: “Но, Шредингер, вы должны видеть, что…”. Он и видел, но только сквозь очки, которые носил уже давно, и не собирался менять их на другие, сделанные по рецепту Бора. Очень невелик был шанс, если был вообще, что этим двоим удастся договориться. Каждый из них оставался при своем мнении. “Нельзя было ожидать, что удастся достичь настоящего взаимопонимания, поскольку в то время ни одна из сторон не могла предложить полную и последовательную интерпретацию квантовой механики”, – писал позднее Гейзенберг73. Шредингер не мог согласиться с тем, что квантовая теория означает полный разрыв с классической реальностью. А что касается Бора, он был уверен: обратного пути к привычным для нас представлениям об орбитах и непрерывных траекториях в квантовом мире нет. И здесь есть квантовые прыжки, нравится это Шредингеру или нет.

Сразу после возвращения в Цюрих Шредингер подробно изложил в письме Вильгельму Вину “поистине поразительный” подход Бора к атомным проблемам: “Он абсолютно убежден, что здесь любое объяснение – в обычном смысле этого слова – невозможно… Поэтому разговор практически сразу переходит на обсуждение философских вопросов. И скоро уже перестаешь понимать, действительно ли ты занимаешь ту позицию, которую он атакует, и действительно ли ты должен атаковать позицию, которую защищает он”74. Но, не считая расхождений по теоретическим вопросам, Бор и “особенно” Гейзенберг вели себя “трогательно, заботливо и внимательно”, и “в целом все было безоблачно, дружелюбно и сердечно”75. Расстояние и прошедшие со дня отъезда несколько недель смягчили впечатление от копенгагенского кошмара.


В конце 1926 года, за неделю до Рождества Шредингер с женой отправились в Америку. Он принял приглашение прочесть несколько лекций в Университете Висконсина. Гонорар был баснословным – две с половиной тысячи долларов. Затем он объездил страну, прочитав около полусотни лекций. К моменту возвращения в Цюрих в апреле 1927 года Шредингер отказался от нескольких предложений работы. Он надеялся получить главный приз: место Планка в Берлине.

Должность профессора Берлинского университета Планк занимал с 1892 года. Первого октября 1927 года он должен был покинуть свое место и стать заслуженным профессором в отставке. Гейзенбергу было всего двадцать четыре года, и он был слишком молод, чтобы занять этот высокий пост. Главным претендентом являлся Арнольд Зоммерфельд, но ему было пятьдесят девять лет, и он решил не покидать Мюнхен. Оставались Шредингер и Борн. Наследником Планка был избран Шредингер. Открытие волновой механики решило дело. В августе 1927 года Шредингер переехал в Берлин. Здесь он встретил человека, которому тоже не нравилась предложенная Борном вероятностная интерпретация волновой функции. Этим человеком был Эйнштейн.

Эйнштейн первым ввел в квантовую физику вероятность. В 1916 году он показал, что спонтанная эмиссия световых квантов объясняется прыжками электронов с одного атомного энергетического уровня на другой. Через десять лет Борн предложил интерпретацию волновой функции и волновой механики, в которой учитывался вероятностный характер квантовых прыжков. Но на ее ценнике указывалась сумма, платить которую Эйнштейн не хотел: отказ от принципа причинности.

В декабре 1926 года Эйнштейн высказал в письме Борну свое беспокойство по поводу отрицания причинности и детерминизма: “Несомненно, квантовая механика впечатляет. Но внутренний голос говорит мне, что это еще не истина в последней инстанции. Теория объясняет многое, но не приближает нас к разгадке секрета ‘старика’. Во всяком случае я убежден, что он в кости не играет”76. После того как линия фронта была обозначена, Эйнштейн невольно оказался вдохновителем ее ошеломляющего прорыва, одного из величайших и самых кардинальных достижений в истории кванта – открытия принципа неопределенности.

Глава 10. Неопределенность в Копенгагене


Среда, 28 апреля 1926 года. Вернер Гейзенберг, стоя перед доской, нервничает. Бумаги разложены на столе. У блестящего двадцатипятилетнего физика были причины для беспокойства. Сейчас начнется его доклад о матричной механике на прославленном семинаре в Берлинском университете. Каковы бы ни были успехи Мюнхена и Геттингена, именно Берлин Гейзенберг справедливо считал “оплотом физики в Германии”1. Он оглядывает аудиторию, и его взгляд останавливается на четырех профессорах в первом ряду. К имени каждого надо было добавлять – “лауреат Нобелевской премии”. Это Макс фон Лауэ, Вальтер Нернст, Макс Планк и Альберт Эйнштейн.

Нервозность Гейзенберга, “впервые имевшего возможность увидеть сразу столько знаменитостей”, быстро прошла после того, как он начал (“ясно”, по его мнению) “излагать концепцию и математическое обоснование того, что тогда считалось самой нестандартной теорией”2. После лекции Эйнштейн пригласил Гейзенберга в гости. Полчаса, пока они шли до Хаберландштрассе, Эйнштейн расспрашивал его о семье, образовании, ранних работах. Но настоящий разговор начался, вспоминал Гейзенберг, когда они удобно расположились у Эйнштейна. Хозяина интересовало “философское обоснование последней работы” Гейзенберга3. “Вы предполагаете, что внутри атома имеются электроны, – сказал ему Эйнштейн. – Вероятно, вы имеете на это право. Но вы отказываетесь рассматривать их орбиты, хотя в туманной камере можно видеть след, оставленный электроном. Мне бы очень хотелось услышать больше о том, на основании чего вы делаете такое странное предположение”4. Именно такой вопрос Гейзенберг и надеялся услышать. Это был шанс одержать верх над сорокасемилетним повелителем квантов.

“Мы не можем наблюдать орбиты электронов внутри атомов, – ответил Гейзенберг, – но по величине испускаемого атомом излучения можем сделать вывод о частотах и соответствующих амплитудах его электронов”5. Он объяснил: “Поскольку хорошая теория должна использовать только наблюдаемые величины, я подумал, что лучше всего ими и ограничиться, трактуя их… как характеристики орбит электронов”6. “Но вы ведь не считаете всерьез, – возразил Эйнштейн, – что в теорию должны входить только наблюдаемые величины?”7 Это был удар прямо в основание, на котором Гейзенберг возвел здание своей новой механики. “Но разве это не то, что вы сделали с теорией относительности?” – парировал он.

“Хорошую шутку нельзя повторять дважды, – улыбнулся Эйнштейн. – Возможно, именно так я и рассуждал, но все равно это глупость”8. Хотя не исключено, что с точки зрения эвристики и полезно держать в уме, какие именно величины можно наблюдать реально, заметил он, но в принципе “совершенно неправильно стараться построить теорию, используя только наблюдаемые величины”: “В действительности происходит обратное. Именно теория показывает, что можно будет наблюдать”9. Что же имел в виду Эйнштейн?

В 1830 году французский философ Огюст Конт пришел к выводу, что поскольку всякая теория должна основываться на наблюдениях, необходима теория и для выполнения наблюдений. Эйнштейн пытался объяснить, что наблюдение представляет собой сложный процесс, включающий в себя предположения, которые используются в теориях: “Наблюдаемые явления оказывают определенное влияние на наши измерительные приборы. В результате в приборах происходят процессы, сложным путем приводящие… к чувственному восприятию и помогающие зафиксировать в нашем сознании результат эксперимента”10. Эти результаты, утверждал Эйнштейн, зависят от наших теорий. “А вы, строя свою теорию, – заявил он Гейзенбергу, – прямо предполагаете, что весь механизм распространения света от колеблющегося атома до спектрометра или глаза работает именно так, как ожидалось, то есть, по существу, в соответствии с законами Максвелла. Если бы это было не так, вы, вероятно, не могли бы наблюдать ни одну из величин, которую вы называете наблюдаемой”11. Эйнштейн продолжал нападать: “Вы утверждаете, что качество теории, которую вы пытаетесь построить, определяется тем, что вы не вводите ничего, кроме наблюдаемых величин”12. “Эйнштейн застал меня врасплох, и я нашел его аргументы убедительными”, – признался позднее Гейзенберг13.

Когда Эйнштейн еще работал в патентном бюро, он прочитал работу австрийского физика Эрнста Маха, по мнению которого цель науки – не выяснение природы реальности, а наиболее экономичное описание результатов экспериментов, “фактов”. Каждое научное понятие должно рассматриваться в терминах инструментализма: надо определить, как его можно измерить. Под влиянием этой философии Эйнштейн пришел к выводу о необходимости пересмотра общепринятой концепции абсолютного пространства и абсолютного времени. Впрочем, он уже давно отошел от философии Маха, которая “в значительной ее части отвергает тот факт, что мир реально существует, что наши чувственные впечатления основаны на объективно существующих явлениях”14.

Надежды Гейзенберга переубедить Эйнштейна не оправдались. Он ушел разочарованным. Но именно теперь ему предстояло принять важное решение. Через три дня, 1 мая, он должен был быть в Копенгагене. Там его ждали двойные обязанности: работа ассистентом Бора и чтение лекций в университете. В то же время ему, такому молодому, предложили должность ординарного профессора в Лейпцигском университете. Гейзенберг понимал, что это огромная честь. Вопрос был только в том, стоит ли соглашаться. Гейзенберг рассказал Эйнштейну о трудном выборе, который ему предстояло сделать. Совет был таким: поезжайте к Бору и работайте с ним. На следующий день Гейзенберг написал родителям, что отказывается от места в Лейпциге. “Если я по-прежнему буду делать хорошие работы, – подбадривал он себя и родителей, – то всегда будут поступать и другие предложения; иначе я их не заслуживаю”15.


“Гейзенберг сейчас здесь. Мы все погружены в дискуссии о новых направлениях развития квантовой теории и огромных возможностях, которые они обещают”, – написал Бор Резерфорду в середине мая 1926 года16. Гейзенберг жил при институте “в небольшой уютной квартире в мансарде” с видом на Фелледпарк17. К этому времени Бор с семьей перебрался на новую шикарную виллу, построенную по соседству. Гейзенберг так часто бывал у них в гостях, что скоро почувствовал себя “почти как дома”18. Расширение и реконструкция института затянулись, и Бор был вконец измучен. Напряжение истощило его силы, и он заболел тяжелым гриппом. На выздоровление ушло два месяца. Гейзенбергу за это время удалось с помощью волновой механики рассчитать положение спектральных линий гелия.

Вскоре Бор пришел в форму. Жизнь по соседству с ним стала настоящим испытанием: “После восьми или девяти часов вечера Бор неожиданно входил в мою комнату: ‘Гейзенберг! Что вы думаете об этой задаче?’ И начинался разговор, нередко продолжавшийся до двенадцати, до часа ночи”19. Или Бор приглашал Гейзенберга к себе поболтать, и опять разговор, подогреваемый вином, длился допоздна.

Кроме работы с Бором, в обязанности Гейзенберга входило чтение по-датски два раза в неделю лекций по теоретической физике в университете. Он был немногим старше своих студентов. Один из них вспоминал, что с трудом мог поверить, что “Гейзенберг настолько умен, потому что выглядел он как способный ученик столяра, только что закончивший обучение”20. Гейзенберг быстро приспособился к ритму жизни института. Вместе с новыми товарищами он в конце недели с удовольствием рыбачил, катался на лошадях и ходил в походы. Но после визита Шредингера в октябре 1926 года на развлечения оставалось все меньше времени.

Шредингеру и Бору не удалось достичь согласия относительно физической интерпретации ни волновой, ни матричной механики. Гейзенберг понимал, что Бор “ужасно озабочен” и “намерен добраться до самой сути”21. Следующие несколько месяцев Бор и его ученик, пытаясь согласовать теорию с экспериментом, говорили только об интерпретации квантовой механики. Позднее Гейзенберг рассказывал, что “часто поздно вечером Бор приходил ко мне в комнату, чтобы поговорить о волновавших нас обоих трудностях квантовой теории”22. Ничто не заботило их так сильно, как корпускулярно-волновой дуализм. Эйнштейн однажды сказал Эренфесту: “С одной стороны – волны, с другой – кванты. И то, и другое – несомненная реальность. Но дьявол делает из этого поэму (и она у него складывается)”23.

В классической физике объект может быть либо частицей, либо волной, но не тем и другим сразу. При создании своего варианта квантовой механики Гейзенберг использовал частицы, а Шредингер – волны. Но даже после того, как было показано, что матричная и волновая механика с точки зрения математики эквивалентны, ясности в том, что представляет собой корпускулярно-волновой дуализм, не прибавилось. По словам Гейзенберга, суть проблемы заключалась в том, что никто не мог ответить на вопросы, что в данный момент представляет собой электрон – волну или частицу; как он ведет себя, являясь тем или другим одновременно, и так далее24. Чем дольше Бор и Гейзенберг думали о корпускулярно-волновом дуализме, тем, казалось, больше все запутывалось. “Как химик старается как можно лучше очистить раствор от яда, – вспоминал Гейзенберг, – так и мы старались выпарить отравляющую примесь из парадокса”25. По ходу дискуссии напряжение между ними нарастало: каждый предлагал свой выход из тупика.

При поиске физической интерпретации квантовой механики, пытаясь понять, что может рассказать нам теория о природе реальности на атомном уровне, Гейзенберг оставался приверженцем частиц, квантовых прыжков и отсутствия непрерывности. С его точки зрения, в корпускулярно-волновом дуализме доминировали частицы, и не было места, куда удалось бы поместить нечто, хоть отдаленно напоминающее интерпретацию Шредингера. К ужасу Гейзенберга, Бор предлагал “поиграть с обеими схемами”26. В отличие от молодого немца, матричная механика была не его детищем, а сам он не оказался в плену математического формализма. Для Гейзенберга математика всегда являлась тихой гаванью, в которой можно было укрыться, а Бор, находясь в пути, предпочитал, прежде чем зайти в эту гавань, бросить якорь и спокойно подумать, что за физика кроется за математическими формулами. Рассматривая квантовые понятия, например, корпускулярно-волновой дуализм, он больше всего хотел понять их физическое содержание, а не стоящую за ними математику. Бор верил, что для полного описания атомных процессов надо отыскать возможность сосуществования частиц и волн. Для него примирение этих противоречащих друг другу идей было ключом, который должен открыть дверь, ведущую к построению согласованной физической интерпретации квантовой механики.

Сразу после открытия Шредингером волновой механики стало ясно, что хватило бы и одной квантовой теории. Нужна была единая ее формулировка, особенно в связи с тем, что математически они оказались эквивалентными. Той осенью Полю Дираку и Паскуалю Йордану независимо друг от друга удалось обнаружить формализм, объединяющий две теории. Дирак, в сентябре 1926 года приехавший на шесть месяцев в Копенгаген, показал, что матричная и волновая механики – частные случаи еще более абстрактной формулировки квантовой механики (так называемой теории преобразований). Единственное, чего не хватало, – физической интерпретации теории. Отрицательные последствия такого положения дел не замедлили сказаться.

“Хотя несколько месяцев наши разговоры длились далеко за полночь, ни к каким положительным результатам они не приводили, – вспоминал Гейзенберг. – Мы были раздражены, и оба чувствовали себя опустошенными”27. Бор решил, что пора поставить точку, и в феврале 1927 года отправился кататься на лыжах в Норвегию, в Гудбрандсдален. Гейзенберг был рад, что он уехал. Теперь можно было “спокойно подумать над этими безнадежно сложными проблемами”28. Ничего так не смущало его, как траектория электрона в камере Вильсона.

В 1911 году, когда Бор встретил Резерфорда на Рождественской аспирантской вечеринке, он был поражен тем, какие похвалы расточал новозеландец конденсационной камере, недавно изобретенной Чарльзом Томсоном Рисом Вильсоном. Шотландский физик научился создавать облачка в небольшой стеклянной камере, содержащей воздух, смешанный с водяным паром. Увеличение объема камеры приводит к охлаждению воздуха, и пар в виде крошечных водяных капелек осаждается на частичках пыли, в результате чего образуется облако. Вскоре Вильсон смог создать “облако”, даже удалив все следы пыли из камеры. Объяснить это можно было только тем, что облако образуется при конденсации на ионах, уже имеющихся в воздухе внутри камеры. Однако существовала еще одна возможность: излучение, проходящее через камеру, “обдирает” электроны с атомов в воздухе, приводит к образованию ионов и оставляет на своем пути след из капелек воды. Вскоре было обнаружено, что излучение производит именно такой эффект. Вильсон дал физикам инструмент, позволяющий наблюдать траектории α- и β-частиц, испускаемых радиоактивными веществами.

Частица, в отличие от размазанной по пространству волны, двигается по четко определенному пути. Но квантовая механика не допускает существования траектории частицы, которую можно увидеть в камере Вильсона. Проблема казалось неразрешимой. Гейзенберг, однако, был убежден, что установить связь между тем, что наблюдается в конденсационной камере, и квантовой теорией можно, “как бы трудно это ни было”29.

Однажды поздно вечером, работая в своей мансарде под крышей института, Гейзенберг в который раз размышлял о решении загадки трека электрона в камере Вильсона, где в согласии с квантовой теорией его быть не должно. Неожиданно в его голове эхом отозвалось замечание Эйнштейна о том, что “именно теория решает, что мы можем наблюдать”30. Гейзенберг был убежден, что он что-то нащупал. Ему надо было успокоиться, и хотя было уже далеко за полночь, он вышел прогуляться в соседний парк.

Гейзенберг, едва ли замечая холод, размышлял над тем, чем на самом деле является след, остающийся позади электрона в камере Вильсона. “Мы всегда так пространно рассуждали о том, что путь электрона в конденсационной камере наблюдать можно”, – написал он позднее31. “Но, возможно, мы наблюдаем нечто менее определенное. Может, мы просто видим набор отдельных, неточно определенных мест, где побывал электрон. На самом деле все, что можно видеть в туманной камере, – это отдельные капельки воды, которые, несомненно, гораздо больше электрона”32. Гейзенберг верил, что не существует одного непрерывного, не разделенного на части пути. Бор и он неверно ставили вопрос. Правильный вопрос звучал так: “Может ли квантовая механика объяснить, почему электрон оказался приблизительно в этом месте и почему он двигается приблизительно с этой скоростью?” Вернувшись к столу, Гейзенберг начал колдовать над уравнениями. По-видимому, квантовая механика накладывает ограничения на то, что можно узнать и наблюдать. Но как теория может решать, что можно, а что нельзя? Ответом стал принцип неопределенности.

Гейзенберг понял, что квантовая механика запрещает возможность определить в любой заданный момент времени одновременно и точно положение частицы и ее импульс. Можно точно измерить, где электрон находится или как быстро он движется, но точно измерить одновременно эти две величины нельзя. Это та цена, которую требует природа за знание одной из них. В квантовой игре во взаимные уступки чем точнее измерена одна из величин, тем менее точно мы знаем другую. Гейзенберг понимал: если он прав, это означает, что никакое экспериментальное исследование квантового мира не позволит перейти границу, установленную принципом неопределенности. Конечно, доказать это утверждение было невозможно. Но Гейзенберг был уверен: если в эксперименте все процессы “с необходимостью подчиняются законам квантовой механики”33, именно так и происходит.

Во все следующие дни он проверял это предположение, названное им принципом неопределенности. Ум Гейзенберга стал лабораторией, где один за другим ставились мысленные эксперименты, в которых, казалось бы, можно измерить одновременно координату и импульс с точностью, не разрешенной принципом неопределенности. Расчеты показывали, что этот принцип не нарушается. А один из мысленных экспериментов убедил Гейзенберга в том, что ему удалось показать, почему “именно теория решает, что мы можем наблюдать”.

Как-то Гейзенберг обсуждал с приятелем трудности, возникающие в связи с понятием “орбита электрона”. Собеседник утверждал, что в принципе можно построить микроскоп, позволяющий проследить путь электрона внутри атома. Но теперь стало ясно, что такой эксперимент исключается, поскольку “ни один, даже лучший микроскоп не может выйти за рамки принципа неопределенности”34. Гейзенбергу оставалось только доказать это теоретически и показать, что определить точно положение движущегося электрона нельзя.

“Увидеть” электрон можно лишь в специальный микроскоп. В обычном микроскопе объект освещается видимым светом, а затем отраженный свет фокусируется и получается изображение. Длина волны видимого света гораздо больше размера электрона, поэтому видимый свет нельзя использовать для определения его точного положения. Световая волна плещется над ним, как морская волна над галькой на берегу. Чтобы засечь местонахождение электрона, требуется микроскоп, использующий γ-лучи: “свет” очень малой длины волны и большой частоты. В 1923 году Артур Комптон исследовал рассеяние рентгеновских лучей на электронах и получил неоспоримое свидетельство существования квантов света Эйнштейна. Гейзенберг представлял себе, что, как при столкновении двух бильярдных шаров, γ-квант ударяет по электрону – и электрон отскакивает, а γ-квант рассеивается в микроскоп, создавая изображение.

Однако в этом случае при столкновении с γ-квантом имеет место скорее резкий удар, а не плавная передача импульса электрону. Поскольку импульс тела есть его масса, помноженная на скорость, любое изменение скорости приводит к соответствующему изменению импульса35. Когда фотон ударяется об электрон, его скорость резко меняется. Единственный способ сделать скачок импульса электрона меньше – уменьшить энергию фотона и, следовательно, уменьшить влияние столкновения. Это влечет за собой необходимость использовать свет большей длины волны и меньшей частоты. Но такое изменение длины волны означает, что больше невозможно “засечь” точное местонахождение электрона. Чем точнее измеряется координата электрона, тем менее определенно можно измерить его импульс, и наоборот36.

Гейзенберг показал, что если Δp и Δq — “неточности” или “неопределенности” импульса и координаты, то Δp, помноженное на Δq, всегда больше или равно h/2π: ΔpΔq ≥ h/2π, где h – постоянная Планка37. Эта формула является выражением принципа неопределенности или “неточности знания при одновременном измерении” координаты и импульса. Гейзенберг обнаружил еще одно “соотношение неопределенности”, в которое входит другая пара так называемых сопряженных координат: энергия и время. Если ΔE и Δt – неопределенности, с точностью до которых могут быть измерены энергия системы E и время t, за которое происходит измерение, то ΔEΔt ≥ h/2π.

Вначале бытовало мнение, что принцип неопределенности – это результат технологического несовершенства используемой в эксперименте аппаратуры. Считалось, что если усовершенствовать приборы, то неопределенность исчезнет. Это непонимание возникло из-за того, что Гейзенберг, желая подчеркнуть значение принципа неопределенности, использовал мысленные эксперименты. Но мысленные эксперименты – это такие эксперименты, в которых совершенное оборудование работает в идеальных условиях. Неопределенность, открытая Гейзенбергом, – сущность реальности. Он утверждал, что в атомном мире увеличить точность наблюдения сверх предела, установленного соотношениями неопределенности и значением постоянной Планка, нельзя. Возможно, слово “непознаваемость” лучше “неточности” и “неопределенности” подходит для определения замечательного открытия Гейзенберга. Он считал, что сам акт точного измерения координаты электрона делает невозможным точное измерение его импульса в тот же момент времени. Для него было очевидно, почему это происходит. Когда фотон, с помощью которого можно “увидеть” электрон и определить его местоположение, ударяет по электрону, происходит непредсказуемое возмущение электрона. Именно это неустранимое возмущение в процессе измерения Гейзенберг считал источником неопределенности38.

Гейзенберг был уверен, что такое объяснение подкреплено фундаментальным уравнением квантовой механики: pqqp = -ih/2π, где p и q — это импульс и координата частицы. Присущая природе неопределенность является причиной некоммутативности – того факта, что произведение x q не равно x p. Если за экспериментом по определению положения электрона следует эксперимент, в котором определяется его скорость (и, следовательно, импульс), то получатся два точно определенных числа. Перемножив их, получим некоторое число А. Теперь повторим эти эксперименты в обратном порядке, измерив сначала скорость электрона, а затем его координату. Получится совершенно другой результат – число В. В каждом из случаев первое измерение вызывает возмущение, влияющее на результат второго измерения. Если бы возмущений, в каждом эксперименте разных, не было, то p x q равнялось бы x p: тогда разность pq – qp равнялась бы нулю и не было бы ни неопределенности, ни квантового мира.

Гейзенберг пришел в восторг, увидев, что все детали пазла точно подошли друг к другу. Его версия квантовой механики строилась из некоммутирующих между собой матриц, представляющих такие наблюдаемые величины, как координата и импульс. С самого начала, с тех пор, как он обнаружил это странное правило, согласно которому порядок перемножения двух наборов чисел оказывается существенной частью математического аппарата новой механики, стоящую за этим правилом физику покрывала завеса тайны. Теперь ему удалось эту завесу приподнять. Согласно Гейзенбергу, только “неопределенность, выраженная неравенством ΔpΔq ≥ h/2π, делает возможным существование равенства” pq – qp = -ih/2π39. Он утверждал, что только благодаря неопределенности “его выполнение становится возможным без требования изменить физический смысл величин p и q40.

Принцип неопределенности выявил фундаментальное различие между квантовой и классической механикой. В классической физике координата частицы и ее импульс в принципе могут быть измерены одновременно с любой степенью точности. Если в каждый момент времени положение и скорость тела точно известны, можно точно указать путь, по которому тело двигалось в прошлом, где оно находится сейчас и по какому пути будет двигаться дальше. Эти устоявшиеся понятия повседневной физики “можно точно так же определить и для квантовых процессов”, утверждал Гейзенберг41. Однако их ограниченность становится очевидной, если попытаться измерить одновременно две сопряженные величины: координату и импульс или энергию и время.

Гейзенберг считал принцип неопределенности мостом, связывающим наблюдение того, что представляет собой след электрона в камере Вильсона, и квантовую механику. Построив этот мост между теорией и экспериментом, он предположил, что “в природе могут иметь место только те экспериментальные ситуации, которые можно описать с помощью математического формализма” квантовой механики42. Гейзенберг был убежден, что если квантовая механика говорит, что такого быть не может, то это действительно так. “Физическая интерпретация квантовой механики все еще полна внутренних противоречий, – написал он в статье, посвященной принципу неопределенности, – которые проявляются в спорах о сопоставлении непрерывности и разрывов, частиц и волн”43.

Сложилась неприятная ситуация. Оказалось, что понятия, лежащие в основании классической физики еще со времен Ньютона, на атомном уровне “не совсем точно подходят природе”44. Гейзенберг верил, что при более аккуратном анализе таких понятий, как координата, импульс, скорость и траектория электрона или атома, можно будет избавиться от “очевидных и сейчас противоречий в физических интерпретациях квантовой механики”45.

Что понимается под “координатой” в квантовом мире? На этот вопрос Гейзенберг отвечал так: это результат специально поставленного эксперимента для измерения, скажем, “положения электрона” в пространстве в заданный момент времени, “иначе это слово вообще не имеет смысла”46. Для него не существовало электрона со строго определенной координатой или строго определенным импульсом до их измерения в эксперименте. Измерение координаты электрона создает “электрон с координатой”, а измерение его импульса – “электрон с импульсом”. Сама идея существования электрона с определенной координатой или импульсом не имеет права на существование до того, как выполнен эксперимент по измерению этой величины. Гейзенберг использовал восходящий к Эрнсту Маху подход, где данное понятие определяется через его измерение. Философы называют его операционализмом. Но в данном случае это было нечто большее, чем переопределение старых понятий.

Не забывая о треке электрона в камере Вильсона, Гейзенберг решил рассмотреть такое понятие, как “траектория электрона”. Траектория – это непрерывная, без изломов, последовательность точек, в которых оказывается электрон, двигающийся в пространстве и во времени. В соответствии с новыми представлениями наблюдение траектории включает в себя измерение координат электрона в каждой последующей точке. Однако для измерения координаты электрона надо, чтобы он столкнулся с γ-квантом, а это приводит к возмущению электрона, что не позволяет достоверно предсказать его траекторию. В случае электрона в атоме, “вращающегося” по орбите вокруг ядра, у γ-кванта достаточно энергии, чтобы выбить электрон из атома. Это позволяет измерить только одну точку на “орбите”, и только она известна. Поскольку принцип неопределенности запрещает точное измерение одновременно и координаты, и скорости, определяющих траекторию электрона или его орбиту в атоме, значит, ни траекторий, ни орбит просто не существует. Единственное, что известно достоверно, утверждал Гейзенберг, это одна точка на траектории, и “поэтому здесь слово ‘траектория’ не имеет поддающегося определению значения”47. Само измерение определяет то, что измеряется.

Невозможно узнать, утверждал Гейзенберг, что происходит с электроном между двумя последовательными измерениями: “Конечно, возникает искушение сказать, что электрон между двумя измерениями должен где-то находиться, и поэтому ему должно приписать какую-то траекторию или орбиту, даже если невозможно узнать, какую”48. Соблазнительно это или нет, но, согласно Гейзенбергу, классическое определение траектории электрона как непрерывной линии без изломов в пространстве несостоятельно. След электрона в камере Вильсона только выглядит как траектория. На самом деле это набор капелек воды, которые он оставил за собой.

Гейзенберг отчаянно пытался понять, на какие вопросы, учитывая принцип неопределенности, можно получить ответ с помощью экспериментов. По умолчанию классическая физика основывается на том, что движущийся объект в данный момент времени занимает строго определенное положение в пространстве и имеет строго определенный импульс, независимо от того, выполнено измерение или нет. Исходя из того, что координата и импульс электрона не могут быть одновременно измерены абсолютно точно, Гейзенберг утверждал, что электрон не обладает одновременно точными значениями “координаты” и “импульса”. Говорить, что он их имеет или что у него есть “траектория”, бессмысленно. Размышлять о природе реальности за пределами области, в которой возможно наблюдение и измерение, безосновательно.


Позднее Гейзенберг, рассказывая о пути, которым он шел к принципу неопределенности, много раз отмечал, что поворотным пунктом стал момент, когда он вспомнил о разговоре с Эйнштейном в Берлине. Часть пути, окончившегося поздним зимним вечером в Копенгагене, он прошел не один. Спутником, которого он особенно ценил, был Вольфганг Паули.

В октябре 1926 года, когда в Копенгагене Шредингер, Бор и Гейзенберг с головой погрузились в дебаты, Паули спокойно жил в Гамбурге и занимался анализом столкновения двух электронов. Воспользовавшись вероятностной интерпретацией Борна, он обнаружил некое “темное место”, как он выразился в письме Гейзенбергу. Паули понял, что при столкновении электронов их относительный импульс “надо считать контролируемым”, а их положения – “неконтролируемыми”49. Вероятное изменение импульса сопровождается одновременным, но неопределимым изменением координаты. Он показал, что “одновременно спрашивать” об импульсе (р) и координате (q) нельзя50. “Можно смотреть на мир p-глазом, а можно q-глазом, подчеркивал Паули, – но если открыть сразу оба глаза, заблудишься”51. Дальше Паули не продвинулся, а его словам о “темном месте” Гейзенберг не придал особого значения. До открытия принципа неопределенности они с Бором могли говорить только об интерпретации квантовой механики и корпускулярно-волновом дуализме.

Двадцать третьего февраля 1927 года Гейзенберг, подводя итоги работы над принципом неопределенности, отправил Паули письмо на четырнадцати страницах. Критике венского “бича Божьего” он доверял больше всего. “На горизонте квантовой теории забрезжил рассвет”, – ответил Паули52. Мучительные сомнения рассеялись, и 9 марта Гейзенберг переделал свое письмо в статью. Только тогда он написал Бору в Норвегию: “Я думаю, мне удалось разобраться в ситуации, когда и [импульс] p, и [координата] q заданы с определенной точностью. Я написал черновик статьи по этому вопросу, который вчера отправил Паули”53.

В этот момент отношения Гейзенберга и Бора были настолько натянуты, что он предпочел не посылать Бору ни экземпляр статьи, ни подробное изложение результатов своей работы. Позднее Гейзенберг объяснил, что “хотел узнать реакцию Паули до того, как вернется Бор”, поскольку “предчувствовал, что интерпретация Бору опять не понравится. Поэтому сначала я хотел получить какую-то поддержку и понять, принимает ли ее кто-нибудь еще”54. Через пять дней после того, как Гейзенберг отправил письмо, Бор вернулся в Копенгаген.

Бор, отдохнувший за время месячных каникул, сначала разобрался с институтскими делами, а после внимательно прочитал статью о неопределенности. Когда они встретились чтобы обсудить ее, Бор сказал ошеломленному Гейзенбергу, что статья “не совсем правильна”55. Бор не только не согласился с интерпретацией Гейзенберга, но и обнаружил ошибку в анализе мысленного эксперимента с микроскопом на γ-лучах. Когда Гейзенберг еще был студентом в Мюнхене, именно незнание устройства микроскопа чуть не привело его к провалу на экзамене. Тогда только вмешательство Зоммерфельда позволило ему защитить диссертацию. После защиты Гейзенберг, которому было очень стыдно, специально изучал устройство микроскопа, а тут выяснилось, что ему еще было чему учиться.

Бор сказал Гейзенбергу, что неправильно считать источником неопределенности импульса электрона нарушение непрерывности при его столкновении с γ-квантом. Точно измерить импульс электрона невозможно не из-за нарушения непрерывности и неконтролируемого характера изменения импульса, а из-за того, что измерить точно само это изменение невозможно. Бор объяснял, что эффект Комптона позволяет вычислить изменение импульса с требуемой точностью, если только апертура микроскопа позволяет измерить угол, на который рассеивается электрон при столкновении. Однако невозможно зафиксировать точку попадания фотона в микроскоп. Именно это Бор считал источником неопределенности импульса электрона. Координата электрона при столкновении с фотоном не определена, поскольку конечная апертура любого микроскопа ограничивает его разрешающую способность, а следовательно, и возможность установить точно, где находится микрообъект. Всего этого Гейзенберг не учел, но худшее было впереди.

Бор утверждал, что при правильном анализе мысленного эксперимента обязательно надо использовать волновую интерпретацию рассеяния квантов света. Бор, пытавшийся связать волновые пакеты Шредингера и новый принцип Гейзенберга, считал, что в основе квантовой неопределенности лежит корпускулярно-волновой дуализм излучения и материи. Если электрон рассматривать как волновой пакет, то чтобы он имел точную, строго определенную координату, он должен быть локализован, а не размазан по пространству. Такой волновой пакет образуется при суперпозиции некоторого набора волн. Чем более компактно локализован, или ограничен, волновой пакет, тем больше требуется различных волн и тем большее число различных частот и длин волн в этом участвует. Одна волна обладает точно определенным импульсом, но известно, что у волнового пакета, состоящего из нескольких наложенных друг на друга волн с разной длиной волны, строго определенного импульса быть не может. То есть чем точнее определен импульс волнового пакета, тем меньше число волн, из которых он строится, и тем больше он размазан по пространству. Поэтому неопределенность его координат возрастает. Следовательно, одновременное точное измерение координаты и импульса невозможно. Бор показал, что соотношение неопределенности можно вывести исходя из волновой модели электрона.


Квант. Эйнштейн, Бор и великий спор о природе реальности

Рис. 12. а) Точно можно определить местонахождение, но не длину (следовательно,и импульс) волны; б) поскольку волна размазана по пространству, строго может быть измерена ее длина, но не местонахождение.


Бора волновало то, что Гейзенберг принимал только подход, основанный исключительно на частицах и нарушениях непрерывности. С его точки зрения игнорировать волновую интерпретацию квантовой механики было недопустимо. Бор считал отказ Гейзенберга от корпускулярно-волнового дуализма очень важной концептуальной ошибкой. “Я не знал, что возразить на аргументы Бора, – рассказывал позднее Гейзенберг, – поэтому общее впечатление и после этого разговора свелось к тому, что Бор опять показал несостоятельность моей интерпретации”56. Гейзенберг был разъярен, а Бор расстроен из-за реакции своего протеже.

Бор и Гейзенберг жили по соседству, а их кабинеты в институте отделял один лестничный пролет, но еще несколько дней они старались избегать друг друга и только затем встретились опять, чтобы продолжить обсуждение принципа неопределенности. Бор надеялся, что, остыв, Гейзенберг услышит его доводы и перепишет статью. Тот отказался. Потом Гейзенберг вспоминал, что “Бор пытался объяснить, что это неправильно, что я не должен публиковать ее”57. “Помню, все закончилось тем, что я разрыдался, так как не мог вынести такого давления”58. Гейзенберг поставил на карту слишком многое и просто не мог внести в статью те изменения, которые от него требовались.

Репутация Гейзенберга – физика-вундеркинда – основывалась на том, что он открыл матричную механику в возрасте двадцати четырех лет. Растущая популярность волновой механики Шредингера угрожала затмить или даже похоронить этот удивительный результат. Гейзенберг жаловался, что растет число работ, где результаты, полученные на основе матричной механики, просто переписываются на языке волновой механики. Хотя при расчете спектра гелия Гейзенберг и сам использовал этот альтернативный подход как удобный математический прием, он лелеял надежду захлопнуть дверь перед волновой механикой Шредингера и показать несостоятельность притязаний австрийца на восстановление непрерывности. Гейзенберг считал, что после открытия принципа неопределенности и его интерпретации этого принципа, основанной на частицах и нарушениях непрерывности, эта дверь уже захлопнута и заперта на замок. Он плакал из-за крушения своих надежд и пытался помешать Бору опять открыть ее.

Гейзенберг верил, что его будущее неразрывно связано с тем, что контролирует территорию атомов: частицы или волны, прерывность или непрерывность. Он хотел опубликовать эту работу как можно скорее и бросить вызов утверждению Шредингера, что матричная механика unanschaulich, не наглядна, поэтому несостоятельна. Шредингер настолько же не любил прерывность и частицы, как Гейзенберг ненавидел непрерывность и волны. Вооружившись принципом неопределенности и тем, что, как он полагал, является правильной интерпретацией квантовой механики, Гейзенберг перешел в наступление. Он нанес удар конкуренту в сноске к своей статье: “Шредингер называет квантовую механику формальной теорией, отпугивающей и даже отталкивающей отсутствием наглядности и абстрактностью. Конечно, невозможно переоценить того глубокого математического (и с этой точки зрения физического) проникновения в сущность квантово-механических законов, которое дала нам теория Шредингера. Однако в принципиальных физических вопросах общедоступная наглядность волновой механики увела нас, по моему мнению, с прямой дороги, проложенной работами Эйнштейна и де Бройля, с одной стороны, и работами Бора и квантовой механикой, с другой”59.

Двадцать второго марта 1927 года Гейзенберг отправил статью “О наглядном содержании квантово-теоретической кинематики и механики” в “Цайтшрифт фюр физик” – любимый журнал теоретиков, занимающихся квантовой физикой60. “Я поссорился с Бором”, – написал он Паули двумя неделями позже61. “Гиперболизируя ту или иную сторону вопроса, – возмущался Гейзенберг, – можно много говорить, но не сказать ничего нового”. Гейзенберг был уверен: со Шредингером и его волновой механикой он разобрался раз и навсегда. Но теперь ему предстояло встретиться с гораздо более сильным оппонентом.


Пока Гейзенберг в Копенгагене был занят анализом следствий из принципа неопределенности, на лыжных склонах Норвегии Бор пришел к принципу дополнительности. Для него это была не просто очередная теория или малозначимое утверждение, а необходимая концептуальная основа, которой до сих пор так не хватало для описания странной картины квантового мира. Бор верил, что дополнительность может разъяснить и парадоксальную природу корпускулярно-волнового дуализма. Волновые и корпускулярные свойства электронов и фотонов, материи и излучения и были взаимно исключающими, но дополняющими друг друга проявлениями одного и того же явления. Волны и частицы были двумя сторонами одной и той же медали.

Дополнительность умело обходит трудности, возникающие из-за необходимости использовать для описания неклассического мира два абсолютно несовместимых классических понятия: волны и частицы. Согласно Бору, для полного описания квантовой реальности необходимы и частицы, и волны. Каждое из описаний само по себе верно частично. Фотоны рисуют одну картину распространения света, волны – другую. Они существуют рядом. Но имеются ограничения, позволяющие избежать противоречий. В данный момент наблюдатель может видеть только одну картину. Никогда ни один эксперимент не сможет одновременно зафиксировать и частицы, и волны. Бор утверждал, что “одной картины недостаточно, чтобы осмыслить сведения, полученные в разных условиях, они должны рассматриваться как дополнительные, в том смысле, что только целостное представление о явлении дает всю возможную и исчерпывающую информацию об объектах”62.

Бор увидел в соотношениях неопределенности, ΔpΔq ≥ h/2π и ΔEΔt ≥ h/2π, подтверждение своих, еще нечетко сформулированных, идей, чего не заметил Гейзенберг, ослепленный резким неприятием волн и непрерывности. Корпускулярно-волновой дуализм выражается формулами Планка Е = hν и де Бройля p = h/λ. Энергия и импульс – понятия, которые обычно ассоциируются с частицами, тогда как частота и длина волны – характеристики волн. Каждое из этих уравнений содержит одну величину, характеризующую частицу, и одну характеристику волны. Бор мучительно пытался понять, что стоит за объединением частиц и волн в одном уравнении. Ведь, в конце концов, частицы и волны – абсолютно разные физические сущности.

Исправляя расчеты Гейзенберга, относящиеся к мысленному эксперименту с микроскопом, Бор понял: то же самое можно сказать и о соотношениях неопределенности. Это открытие навело его на мысль, что принцип неопределенности показывает, до какой степени два дополняющих друг друга, но взаимоисключающих классических понятия (либо частица и волна, либо импульс и координата) могут, не приводя к противоречиям, использоваться в квантовом мире одновременно63.

Соотношения неопределенности также подразумевают, что необходимо сделать выбор, какое из описаний использовать: то, которое Бор называл “причинным”, основанным на законах сохранения энергии и импульса (E и p в соотношениях неопределенности), или пространственно-временное описание, где события происходят в пространстве и во времени (q и t в соотношениях неопределенности). Эти два взаимоисключающих, но дополняющих друг друга описания позволяют объяснить результаты всех возможных экспериментов. К ужасу Гейзенберга, Бор сводил принцип неопределенности к некоему специальному правилу, определяющему установленные природой границы точности при одновременном измерении пары дополнительных наблюдаемых величин, таких как координата и импульс, или при одновременном использовании двух дополнительных способов описания.

Было еще одно расхождение. Принцип неопределенности заставил Гейзенберга задуматься над вопросом, в какой степени такие классические понятия, как “частица”, “волна”, “координата”, “импульс” и “траектория” применимы в атомном мире, а Бор утверждал, что “интерпретация экспериментальных данных по существу основывается на классических представлениях”64. Гейзенберг настаивал на операционном определении понятий (значение понятия определяется при измерении), а Бор возражал, что значения понятий уже определены тем, как они используются в классической физике. “Каждое описание естественных процессов, – писал он в 1923 году, – должно основываться на понятиях, введенных и определенных классической теорией”65. Вне зависимости от ограничений, накладываемых принципом неопределенности, эти понятия нельзя заменить другими уже просто потому, что все экспериментальные данные, их обсуждение и интерпретация, позволяющая в лабораториях проверить теории, по необходимости использует язык и понятия классической физики.

Гейзенберг ставил вопрос так: почему эти понятия должны сохраняться, если классическая физика оказалась непригодной на атомных масштабах? “Почему бы просто не сказать, что мы не можем использовать эти понятия с достаточной степенью точности, поэтому имеется принцип неопределенности, и, следовательно, надо в какой-то мере отказаться от самих этих понятий?” – доказывал он весной 1927 года66. Когда дело касается квантов, “мы должны понимать, что наши слова не годятся”. Если они не годятся, то Гейзенберг единственно разумным выходом считал возможность укрыться за формализмом квантовой механики. В конце концов, утверждал он, “новая математическая схема ничем не хуже других, поскольку именно новый математический подход определяет, что здесь может происходить, а что нет”67.

Бора это не убеждало. Для сбора информации о квантовом мире, указывал он, мы ставим эксперименты. Их результаты отмечаются вспышками света на экране, щелчками счетчика Гейгера, колебаниями стрелки вольтметра и так далее. Все эти приборы принадлежат повседневному, обычному миру физической лаборатории, однако только с их помощью любое явление на квантовом уровне можно обнаружить, измерить и описать. Именно взаимодействие между лабораторным прибором и микроскопическим физическим объектом – α-частицей или электроном – приводит к тому, что начинает работать счетчик Гейгера или двигаться стрелка вольтметра.

Любое такое взаимодействие включает в себя обмен по крайней мере одним квантом энергии. Поэтому, утверждал Бор, “невозможно провести четкую границу между поведением атомных объектов и их взаимодействием с измерительными приборами, служащими для определения условий, при которых данное явление может иметь место”68. Другими словами, невозможно, как в классической физике, провести границу между наблюдателем и наблюдаемым явлением, между прибором, который мы используем для измерения, и тем, что измеряется.

Бор был непоколебим: именно специфика эксперимента позволяет проявиться корпускулярным либо волновым свойствам электрона, светового луча, материи или излучения. Поскольку частицы и волны являются дополнительными, но взаимоисключающими аспектами одного и того же явления, они не могут проявиться одновременно ни в одном реальном или мысленном эксперименте. Если выбрать прибор для изучения интерференции света (такой, как в знаменитом опыте Юнга с двумя щелями), заявит о себе волновая природа света. Если освещается металлическая поверхность в эксперименте, направленном на изучение фотоэффекта, мы увидим, что свет ведет себя как частица. Бессмысленно спрашивать, является свет волной или частицей. Квантовая механика, говорил Бор, не дает возможности узнать, чем на самом деле является свет. Единственный вопрос, который может быть задан: свет “ведет себя” как частица или как волна? Ответ состоит в том, что в зависимости от условий эксперимента он иногда ведет себя как частица, а иногда – как волна.

Бор отводил центральную роль выбору эксперимента. Гейзенберг считал акт измерения, при котором определяется, например, точная координата электрона, источником возмущения, исключающего возможность одновременно измерить его точный импульс. Бор соглашался, что физическое возмущение имеет место. На лекции в сентябре 1927 года он заявил: “В самом деле, наше обычное [классическое] описание физических явлений целиком основывается на представлении о том, что мы можем наблюдать эти явления, не внося в них существенных возмущений”69. Это утверждение подразумевало, что в квантовом мире причиной таких возмущений является акт наблюдения. Месяц спустя Бор был настроен еще решительнее. В черновике статьи он написал, что “невозможно произвести ни одно измерение атомного явления без его существенного возмущения”70. Однако он считал, что не акт измерения является источником этого неустранимого и неподконтрольного возмущения: оно связано с тем, что экспериментатор должен выбрать, какое из проявлений корпускулярно-волнового дуализма данного явления он собирается исследовать. Неопределенность, утверждал Бор, это цена, которую природа требует заплатить за такой выбор.

В середине апреля 1927 года, когда Бор работал над формулировкой непротиворечивой интерпретации квантовой механики на основе принципа дополнительности, он по просьбе Гейзенберга отправил Эйнштейну экземпляр статьи о принципе неопределенности. В сопроводительном письме Бор написал, что эта работа Гейзенберга – “очень важный вклад в обсуждение общих проблем квантовой теории”71. Несмотря на споры, Бор подчеркивал, что Гейзенберг “блестяще продемонстрировал, как его соотношения неопределенности можно использовать не только при обсуждении животрепещущих вопросов развития квантовой теории, но и для суждения о возможности ее визуализации”72. В том же письме он кратко обрисовал собственные новые идеи, которые должны прояснить “концептуальные сложности квантовой теории, связанные с употреблением понятий или, скорее, слов, обычно используемых для описания природы, происхождение которых всегда связано с классическими теориями”73. Эйнштейн по неизвестным причинам предпочел не отвечать.

Гейзенберг, вернувшийся из Мюнхена, где он провел пасхальные каникулы, наверное, был разочарован отсутствием ответа от Эйнштейна. Каникулы в Мюнхене были столь необходимой передышкой, возможностью отдохнуть от постоянного давления и попыток Бора заставить его сдаться и согласиться на предложенную им интерпретацию квантовой механики. “Итак, я вернулся, чтобы сражаться за матрицы против волн, – написал Гейзенберг Паули 31 мая – в тот день, когда вышла его двадцатисемистраничная статья. – В пылу борьбы я часто возражал на замечания Бора слишком резко, не очень понимая и не имея намерения понять их смысл, что ранило его. Теперь, вспоминая об этих разговорах, я могу хорошо себе представить, почему Бор был ими недоволен”74. Это покаяние объяснялось тем, что двумя неделями ранее Гейзенберг признался Паули, что Бор все-таки прав.

Вывод соотношения неопределенности для координаты и импульса был сделан на основе рассмотрения рассеяния γ-лучей в апертуру гипотетического микроскопа. “Такое соотношение, ΔpΔq ≥ h, получается, но не вполне так, как я думал”75. Дальше Гейзенберг признается, что “в некоторых вопросах” удобнее использовать волновое описание Шредингера, однако он по-прежнему убежден, что в квантовой физике “интересны только нарушения непрерывности”, и значение их нельзя преувеличить. Статью еще не поздно было отозвать, но это завело бы слишком далеко. “В конце концов, результаты работы правильны, – сказал Гейзенберг Паули, – и в этом я тоже согласен с Бором”76.

В качестве компромисса Гейзенберг добавил постскриптум. Он начинался так: “После завершения этой статьи недавние исследования Бора позволили значительно углубить и сделать более понятным анализ квантово-механических корреляций, которые мы попытались получить в этой работе”77. Гейзенберг признал, что Бор обратил его внимание на очень важное обстоятельство, которое он упустил: неопределенность – это следствие корпускулярно-волнового дуализма. В заключение он поблагодарил Бора. После публикации работы месяцы пререканий и “полного взаимного непонимания” были если не забыты, то решительно оставлены78. Несмотря на расхождения, заметил позднее Гейзенберг, “единственное, что тогда волновало – представить факты так, чтобы, несмотря на новизну, их могли бы быстро понять и принять все физики”79.

“Мне очень стыдно, если создалось впечатление, будто я совсем неблагодарный человек”, – написал Гейзенберг Бору в середине июня, вскоре после того, как Паули посетил Копенгаген80. Еще через два месяца он, все еще мучаясь и раскаиваясь, объяснял Бору, что “почти каждый день” пытается понять, “как же это все произошло, и ему стыдно, что случилось именно так, а не иначе”81. Главным фактором спешки при публикации была перспектива получения работы. Отказавшись от места профессора в Лейпциге ради возможности поработать в Копенгагене, Гейзенберг был уверен, что если он будет продолжать писать “хорошие работы”, место в университете для него найдется82. После публикации статьи о принципе неопределенности стали появляться предложения работы. Волнуясь, что Бор может это неправильно понять, Гейзенберг поспешил объяснить, что, несмотря на их недавние споры о неопределенности, он не пытался мобилизовать своих потенциальных сторонников. Ему не было еще и двадцати шести лет, когда он, согласившись на новое предложение Лейпцигского университета, стал самым молодым ординарным профессором в Германии. Гейзенберг уехал из Копенгагена в конце июня. К этому времени жизнь в институте вошла в норму, и Бор продолжил мучительно медленно диктовать текст статьи о принципе дополнительности и о последствиях этого принципа для квантовой механики.

Бор напряженно работал над статьей с апреля. Человеком, к которому он обратился за помощью, был Оскар Клейн, тридцатидвухлетний швед, работавший в институте. Поскольку споры о неопределенности и дополнительности становились все яростнее, Хендрик Крамерс, в прошлом ассистент Бора, предупредил Клейна: “Не вмешивайся в этот конфликт. Мы оба слишком добрые и кроткие, чтобы участвовать в такой битве”83. Когда Гейзенберг впервые услышал, что Бор, исходя из предположения о “существовании волн и частиц”, готовит с помощью Клейна статью, он пренебрежительно написал Паули, что “если исходить из этого, то, конечно, удастся согласовать все”84.

Один черновик сменял другой. Менялось и название статьи. Сначала оно звучало так: “Философские основы квантовой теории”. Затем работа получила название “Квантовый постулат и новое развитие атомистики”. Бор старался закончить работу как можно скорее, чтобы представить ее на конгрессе. Но оказалось, что получается только еще один черновик. В тот момент, правда, и его было достаточно.


Международный физический конгресс проходил с 11 по 20 сентября в итальянском городе Комо. Он был посвящен столетней годовщине смерти изобретателя химической батареи Алессандро Вольта. Бор до самого дня доклада переделывал свои заметки. Доклад он представил 16 сентября. Среди тех, кто явился в Институт Кардуччи на доклад Бора, были Борн, де Бройль, Комптон, Гейзенберг, Лоренц, Паули, Планк и Зоммерфельд.

Слушатели затаили дыхание сразу после того, как Бор наметил план выступления: отправной точкой должно было стать новое понятие дополнительности; затем следовало изложение принципа неопределенности Гейзенберга и роли измерений в квантовой теории. Бор соединил вместе все эти элементы, включив сюда и вероятностную интерпретацию Борна волновой функции Шредингера. Все вместе они стали основой нового физического понимания квантовой механики. Позднее физики стали называть этот сплав идей “копенгагенской интерпретацией”.

Доклад Бора стал кульминацией, главным событием конгресса, на котором, как позднее сказал Гейзенберг, шло “напряженное исследование всех вопросов, касающихся интерпретации квантовой теории в Копенгагене”85. Сначала даже Гейзенберга беспокоили ответы, которые предлагал датчанин. “Я помню споры с Бором, продолжавшиеся много часов подряд, далеко за полночь; они вызывали у меня чувство безысходности, – записал Гейзенберг позднее. – Обычно после таких дискуссий я в одиночестве бродил в соседнем парке, снова и снова спрашивая себя: может ли природа на самом деле быть настолько абсурдна, какой она пытается показать себя нам в этих атомных экспериментах?”86. Бор недвусмысленно отвечал на этот вопрос “да”. Поскольку центральная роль отводится измерениям и наблюдениям, обречены на неудачу все попытки обнаружить регулярные закономерности и причинные связи.

Именно Гейзенберг в статье о принципе неопределенности первым открыто выступил против постулата, являющегося одним из главных столпов, на которых держалась наука: “В строгой формулировке принципа причинности (если мы точно знаем настоящее, мы можем предсказать будущее) уже кроется недостаток: это не утверждение, которое можно вывести, а только предположение. Мы не можем знать настоящее во всех деталях”87. Если не известны одновременно точное начальное положение, например, электрона и его точная начальная скорость, можно только вычислить, какими из всего имеющегося “изобилия возможностей” будут в будущем его наиболее вероятные координата и скорость88. Поэтому точный результат любого отдельного наблюдения или измерения предсказать невозможно. Точно можно предсказать только, с какой вероятностью получится тот или иной результат из веера возможностей.

Вселенная, построенная на заложенном Ньютоном фундаменте, – это детерминистский, работающий как часы мир. Даже после релятивистской перестройки этого фундамента Эйнштейном, если в заданный момент времени известны точная координата и импульс любого объекта (частицы или планеты), можно в принципе точно определить его положение и скорость в любой следующий момент времени. В квантовой Вселенной нет места детерминизму классического мира, где все явления можно описать как причинно обоснованную цепь событий, происходящих в пространстве и во времени. “Поскольку все эксперименты подчиняются законам квантовой механики и, следовательно, выполняется уравнение ΔpΔq ≈ h, — дерзко утверждал Гейзенберг в последнем абзаце статьи о принципе неопределенности, – то отсюда следует, что квантовая механика окончательно устанавливает несостоятельность принципа причинности”89. Любая надежда восстановить ее “бесполезна и не имеет смысла”, как и давняя мечта найти скрытый “реальный” мир за тем, что Гейзенберг называл “чувственным статистическим миром”90. Эту точку зрения разделяли Бор, Паули и Борн.

В Комо было заметно отсутствие двоих физиков. Шредингер, который всего за неделю до того переехал в Берлин на место Планка, обустраивался на новом месте. Эйнштейн отказался приезжать в фашистскую Италию. Бору предстояло еще целый месяц ждать встречи с ними в Брюсселе.

ЧАСТЬ III.

Битва за реальность

Квантового мира нет. Есть только его абстрактное математическое описание.

Нильс Бор


Я все еще верю, что модель реальности возможна – иными словами, что можно построить теорию, которая описывает сами события, а не просто вероятность их осуществления.

Альберт Эйнштейн


Глава 11.

Сольвеевский конгресс 1927 года

Вот теперь я могу написать Эйнштейну”, – решил Хендрик Лоренц 2 апреля 1926 года1. В тот день старейшина физического сообщества удостоился личной аудиенции у короля Бельгии. Лоренц рассчитывал получить – и получил – согласие короля на избрание Эйнштейна членом ученого совета Международного института физики, основанного промышленником Эрнестом Гастоном Сольве. Лоренц (о нем Эйнштейн однажды сказал, что тот являет собой “чудо интеллигентности и такта”) получил согласие короля и на приглашение немецких физиков на V Сольвеевский конгресс, который намечалось провести в октябре 1927 года2.

“Его Величество высказал мнение, что спустя семь лет после войны неприязнь к ним [немцам] понемногу смягчается, что взаимопонимание между людьми совершенно необходимо для будущего и что наука может в этом помочь”, – сообщал Лоренц3. Хотя еще было свежо воспоминание о грубом нарушении Германией бельгийского нейтралитета в 1914 году, король счел “необходимым подчеркнуть, что принимая во внимание, сколько немцы сделали для физики, будет трудно не пригласить их”4. С конца войны никто с этим не считался и немцев никуда не приглашали. Все это время они оставались в изоляции от международного научного сообщества.

“Из всех немцев приглашен только Эйнштейн, поэтому конференцию будем считать интернациональной”, – сказал своим коллегам Резерфорд перед открытием III Сольвеевского конгресса в апреле 1921 года5. Поскольку остальных немецких ученых исключили из списка участников, Эйнштейн решил не приезжать. Вместо этого он отправился с лекциями в Америку, где намеревался собрать деньги на строительство Еврейского университета в Иерусалиме. Двумя годами позже он заявил, что отклонит приглашение и на IV Сольвеевский конгресс, поскольку запрет на участие немецких физиков сохранялся. “С моей точки зрения, неправильно смешивать политику и науку, – написал он Лоренцу, – как и неправильно считать человека ответственным за действия правительства той страны, в которой ему доводится жить”6.

В 1921 году Бор не смог приехать на конгресс из-за болезни, а в 1924 он отклонил приглашение, боясь, что его поездка может быть воспринята как молчаливое согласие с политикой недопущения немцев. В 1925 году, когда Лоренц стал председателем комиссии Лиги Наций по интеллектуальному сотрудничеству, он понял: в ближайшем будущем шансов на снятие запрета на участие немецких ученых в международных конференциях мало7. Однако в октябре того же года двери темницы неожиданно приоткрылись, хотя и не открылись совсем.

На швейцарском курорте Локарно на берегу озера Лаго-Маджоре были ратифицированы договоры, которые, как многие надеялись, должны были дать Европе мир. Локарно – самый солнечный город Швейцарии – был самым подходящим для этого местом8. Чтобы собрать вместе представителей Германии, Франции и Бельгии, потребовались месяцы интенсивной дипломатической работы. Подписание договоров о послевоенных границах открыло Германии дорогу в Лигу Наций, членом которой она стала в сентябре 1926 года. Окончилась и изоляция немецких ученых. Король Бельгии отказался от нее еще прежде того, как был сделан последний ход на дипломатической шахматной доске. Тогда же Лоренц написал Эйнштейну, пригласив его принять участие в V Сольвеевском конгрессе и стать членом оргкомитета. Эйнштейн согласился. В оставшиеся месяцы был намечен список участников, согласована повестка дня и разосланы столь желанные приглашения.

Участников конгресса можно было разделить на три группы. Первая – члены оргкомитета: Хендрик Лоренц (президент), Мартин Кнудсен (секретарь), Мария Кюри, Шарль Пои, Поль Ланжевен, Оуэн Ричардсон и Альберт Эйнштейн9. Вторая группа включала научных секретарей, представителей семьи Сольве и трех профессоров Брюссельского свободного университета, которых пригласили из вежливости. Американский физик Ирвинг Ленгмюр, путешествовавший в это время по Европе, стал гостем оргкомитета.

Конгресс был посвящен “новой квантовой механике и связанным с нею вопросам”10. Эта тема определила состав третьей группы: Нильс Бор, Макс Борн, Уильям Л. Брэгг, Леон Бриллюэн, Артур X. Комптон, Луи де Бройль, Петер Дебай, Поль Дирак, Пауль Эренфест, Ральф Фаулер, Вернер Гейзенберг, Хендрик Крамерс, Вольфганг Паули, Макс Планк, Эрвин Шредингер и Чарльз Т. Р. Вильсон.

В Брюсселе должны были собраться все: и мэтры квантовой теории, и “несносные мальчишки” квантовой механики. Среди приглашенных на конгресс, очень похожий на церковный собор, созванный для решения спорных теологических вопросов, не было только Зоммерфельда и Йордана. Предполагалось заслушать пять докладов: Брэгга об интенсивности отражения рентгеновских лучей, Комптона о расхождениях между экспериментом и электромагнитной теорией излучения, де Бройля о новой динамике квантов, Борна и Гейзенберга о квантовой механике и Шредингера о волновой механике. Последние два заседания отводились для общей дискуссии о квантовой механике.

Имена двоих не вошли в программу конгресса. Эйнштейна просили выступить, но он решил, что “недостаточно компетентен”. “Дело в том, – объяснил он Лоренцу, – что я не столь интенсивно участвовал в развитии современной квантовой теории, чтобы делать доклад. Отчасти это связано с тем, что я вообще не столь восприимчив и не могу в достаточной мере… следить за столь бурными событиями, отчасти с тем, что я не одобряю чисто статистический способ рассуждений, на котором строится новая теория”11. Это было непростое решение, поскольку Эйнштейн хотел бы “рассказать в Брюсселе нечто стоящее”, но признался, что “…потерял надежду на это”12.

На самом деле Эйнштейн внимательно следил за “бурными событиями” в новой физике и неявно поощрял и поддерживал де Бройля и Шредингера. Однако с самого начала у него были сомнения в том, что квантовая механика дает непротиворечивое и полное описание действительности. Имя Бора тоже не вошло в программу. Он не принимал непосредственного участия в развитии теоретической квантовой механики, но разговорами с такими участниками этого процесса, как Гейзенберг, Паули и Дирак, оказывал на него влияние.

Все приглашенные на V Сольвеевский конгресс “Электроны и фотоны” знали, что он устраивается для обсуждения самого злободневного (скорее философского, чем физического) вопроса: в чем смысл квантовой механики? Что новая физика может сказать о природе реальности? Бор верил, что нашел ответ. Многие в Брюсселе воспринимали его как “короля” квантов, но Эйнштейн был “римским папой” физиков. Бору не терпелось “узнать его реакцию на последние результаты, которые, с нашей точки зрения, значительно приближают к решению проблемы, столь предусмотрительно с самого начала поставленной им самим”13. Бора крайне волновало, что думает Эйнштейн.

В десять часов хмурым утром понедельника 24 октября 1927 года большинство ведущих мировых специалистов по квантовой физике собралось в Институте физиологии в брюссельском парке Леопольда. На организацию конгресса ушло восемнадцать месяцев. Потребовалось согласие короля и исключение Германии из числа “неприкасаемых”.


Приветственные слова произнес Лоренц, президент оргкомитета и председатель конгресса. Право сделать первый доклад получил Уильям Л. Брэгг, тридцатисемилетний профессор университета в Манчестере. В 1915 году, когда ему было всего двадцать пять, он вместе с отцом Уильямом Г. Брэггом был награжден Нобелевской премией за исследования кристаллов с помощью рентгеновских лучей. Никто лучше него не мог рассказать о последних результатах изучения отражения рентгеновских лучей от кристаллов и возможности их использования для уточнения атомных структур. После доклада Брэгга Лоренц предложил собравшимся задавать вопросы и выступать с места. Программа была построена так, что после каждого доклада оставалось время для обстоятельной дискуссии. У Лоренца была целая команда помощников, говоривших по-английски, по-немецки и по-французски, так что участие в разговоре могли принять даже те, кто недостаточно хорошо знал эти языки. До конца первого заседания, до того, как все отправились на завтрак, в обсуждении доклада Брэгга приняли участие Гейзенберг, Дирак, Борн, де Бройль и даже сам голландский старец.

На заседании во второй половине дня американец Артур X. Комптон рассказывал о том, что с помощью электромагнитной теории излучения не удается объяснить ни фотоэлектрический эффект, ни увеличение длины волны рентгеновских лучей при рассеянии на электронах. Всего несколькими неделями ранее он разделил Нобелевскую премию за 1927 год с Вильсоном, но врожденная скромность не позволила ему назвать, как это делали во всем мире, второе явление эффектом Комптона. Там, где потерпела поражение великая теория Джеймса К. Максвелла, кванты света Эйнштейна, недавно получившие название “фотоны”, успешно связали эксперимент и теорию. Доклады Брэгга и Комптона должны были послужить завязкой дискуссии о теоретических концепциях. К концу первого дня уже высказались все ведущие игроки, кроме Эйнштейна.

Утром во вторник состоялся прием в Брюссельском свободном университете. Во второй половине дня все собрались снова, чтобы послушать доклад Луи де Бройля “Новая динамика квантов”. Де Бройль выступал по-французски. Сначала он коротко остановился на своих результатах, распространении корпускулярно-волнового дуализма на материю, затем рассказал, как искусно на основании его теории Шредингер построил волновую механику. Потом герцог осторожно (признав, что идеи Борна во многом верны) предложил свою альтернативу вероятностной интерпретации волновой функции Шредингера.

Позднее де Бройль назвал ее “теорией волны-пилота”. Он считал, что электрон реально существует и как частица, и как волна. В этом было отличие его интерпретации от копенгагенской, утверждавшей, что в зависимости от типа эксперимента электрон ведет себя либо как частица, либо как волна. Волны и частицы существуют одновременно, возражал де Бройль. Частицы сродни серфингисту, поймавшему волну. Хотя волны, направляющие (“пилотирующие”) частицу из одного места в другое, физически более реальны, чем абстрактные волны вероятности Борна, атака на теорию де Бройля началась немедленно. Бор и его сотрудники намеревались отстаивать примат копенгагенской интерпретации, а Шредингер был настроен упорно защищать свои взгляды на волновую механику. Де Бройль рассчитывал на поддержку человека, который мог бы склонить на его сторону тех, кто не примыкал ни к одной из партий. Но, к его разочарованию, Эйнштейн промолчал.

В среду, 26 октября, к аудитории по очереди обратились сторонники двух конкурирующих версий квантовой механики. На утреннем заседании состоялся совместный доклад Гейзенберга и Борна. Авторы разделили его на четыре пространных раздела: математический формализм, физическая интерпретация, принцип неопределенности и применение квантовой механики.

Сам доклад, как и подготовка к нему, был исполнен дуэтом. Борн, как старший, сделал введение и изложил части I и II, а затем передал слово Гейзенбергу. Доклад начался так: “Квантовая механика основывается на интуитивном предположении, что существенное различие между атомной и классической физикой состоит в появлении нарушений непрерывности”14. А затем они, образно говоря, сняли шляпы перед коллегами, сидевшими практически на расстоянии вытянутой руки от них, отметив, что квантовая механика является “непосредственным продолжением квантовой теории, построенной Планком, Эйнштейном и Бором”15.

После изложения матричной механики, теории преобразований Дирака – Йордана и вероятностной интерпретации докладчики перешли к принципу неопределенности и “истинному смыслу постоянной Планка h16. Они заявили, что постоянная Планка – это не что иное, как “универсальная мера неопределенности, входящая в законы природы посредством дуализма волн и частиц”. В сущности, если бы не было корпускулярно-волнового дуализма материи и излучения, не было бы ни постоянной Планка, ни квантовой механики. В заключение Борн и Гейзенберг сделали провокационное заявление, указав, что считают “квантовую механику законченной теорией, а фундаментальные физические и математические предположения, на которых она строится, не допускающими каких-либо изменений”17.

Сказанное подразумевало, что развитие теории не сможет привести к пересмотру ее основ. Для Эйнштейна это было слишком. Он не мог согласиться с утверждением о полноте и завершенности квантовой механики. Он считал ее выдающимся достижением, но никак не непреложной истиной. Эйнштейн не попался на эту удочку и не принял участие в обсуждении доклада. От остальных возражений не последовало: выступили только Борн, Дирак, Лоренц и Бор.

Почувствовав, что Эйнштейн не доверяет заявлениям Борна и Гейзенберга о завершенности теоретической квантовой механики, Пауль Эренфест передал ему записку: “Не смейтесь! В чистилище отведут круг для профессоров, читающих лекции по квантовой теории, где они будут вынуждены каждый день по десять часов слушать лекции по классической физике”18. “Меня смешит только их наивность, – ответил Эйнштейн. – Посмотрим, кто будет смеяться через несколько лет”.

После завтрака в центре внимания оказался Шредингер, который по-английски сделал доклад о волновой механике. “В настоящее время, – заявил он, – под этим именем существуют две теории, которые, несомненно, близки, но не идентичны”19. На самом деле это одна теория, де-факто разделенная на две. Первая ее часть относилась к волнам в обычном трехмерном пространстве, с которым мы сталкиваемся каждый день. А для объяснения второй необходимо рассматривать очень абстрактное многомерное пространство. Дело в том, пояснил Шредингер, что в случае любого атомного объекта, кроме движущегося электрона, надо рассматривать волну, распространяющуюся в пространстве, число измерений которого превышает три. Если для описания одного электрона атома водорода достаточно трехмерного пространства, то гелию с двумя электронами требуется шесть измерений. Тем не менее, утверждал Шредингер, такое многомерное пространство, известное как конфигурационное пространство, используется только как математический инструмент. Ведь, в конечном счете, что бы мы ни описывали – столкновение большого числа электронов или их вращение вокруг ядра атома, – весь процесс происходит в пространстве и во времени. “Однако, говоря откровенно, полная унификация этих двух концепций еще не достигнута”, – заметил Шредингер перед тем, как начать излагать оба подхода20.

Хотя физики считали, что обращаться с волновой механикой легче, никто из ведущих теоретиков не был согласен с интерпретацией волновой функции частицы Шредингера, который считал, что волновая функция описывает похожее на облако распределение ее заряда и массы. Шредингера не останавливала широкая поддержка альтернативной вероятностной интерпретации Борна. На первый план он выдвигал свою интерпретацию и ставил под сомнение идею квантовых скачков.

Получив приглашение выступить в Брюсселе, Шредингер сразу понял, что весьма вероятна схватка с “матричниками”. Обсуждение его доклада началось с выступления Бора, который хотел выяснить, означает ли слово “трудности”, прозвучавшее в докладе, что сформулированный до того результат неправилен. С вопросом Бора Шредингер разделался легко. Но тут же понял, что теперь Борн ставит под сомнение справедливость еще одного расчета. Слегка раздраженный, он ответил, что расчет “абсолютно правилен и точен, а возражение г-на Борна голословно”21.

Выступили еще несколько человек. Пришла очередь Гейзенберга: “В конце своего сообщения г-н Шредингер сказал, что его исследование возвращает надежду на возможность объяснить и понять все результаты многомерной теории, используя трехмерное пространство. Это может произойти, когда наше понимание вопроса станет более глубоким. В расчетах г-на Шредингера я не вижу ничего, что могло бы оправдать такую надежду”22. Шредингер возразил, что его “надежды на трехмерное описание не совсем утопичны”23. Через несколько минут дискуссия закончилась. На этом закончилась и первая часть конгресса, где заслушивались приглашенные доклады.

Когда уже трудно было менять сроки, обнаружилось, что четверг, 27 октября, был выбран Академией наук Франции, чтобы отметить в Париже сотую годовщину со дня смерти физика Огюстена Жана Френеля. Было решено, что Сольвеевский конгресс прервет работу на полтора дня, чтобы желающие могли принять участие в торжественном мероприятии. Затем они должны были вернуться в Брюссель, где на двух последних заседаниях конгресса планировалось провести общую дискуссию. Среди двадцати участников конгресса, поехавших в Париж отдать дань знаменитому коллеге, были Лоренц, Эйнштейн, Бор, Борн, Паули, Гейзенберг и де Бройль.


В зале стоял шум. По-немецки, по-французски и по-английски у Лоренца просили слова. Неожиданно поднялся Пауль Эренфест. Он подошел к доске и написал: “…там смешал Господь язык всей земли”. Его возвращение на место сопровождалось смехом: все поняли, что имелась в виду не только Вавилонская башня. Заседание, на котором началась общая дискуссия, открылось 28 октября. Лоренц сделал несколько вступительных замечаний, стараясь настроить участников на обсуждение вопросов, связанных с причинностью, детерминизмом и вероятностью. Подчиняются ли квантовые явления принципу причинности? Или так: можно ли отказаться от детерминизма, объявив его только догмой? Необходимо ли возвести индетерминизм в принцип?24 Остановившись на этом, Лоренц пригласил Бора обратиться к собравшимся. Тот начал говорить об “эпистемологических проблемах, встающих перед нами в квантовой физике”, и всем присутствующим стало ясно, что его цель – убедить Эйнштейна в справедливости копенгагенской интерпретации25.

В декабре 1928 года, когда материалы конгресса были напечатаны по-французски, многие по ошибке приняли выступление Бора за приглашенный доклад. Такое же мнение существовало и позднее. Дело в том, что когда Бора попросили отредактировать для печати свое выступление, он захотел, чтобы вместо его коротких замечаний в Брюсселе был напечатан гораздо более пространный доклад, сделанный в Комо и опубликованный за год до того, в апреле. Бор был Бором, и его просьбу выполнили26.

Эйнштейн слушал, как Бор пытается обрисовать в общих чертах свои представления о корпускулярно-волновом дуализме – неотъемлемом свойстве природы, истолковать которое можно только в рамках принципа дополнительности. Он подводит фундамент под принцип неопределенности, определяющий пределы применимости классических представлений. Однако, объяснял Бор, для однозначного восприятия результатов экспериментов, с помощью которых мы исследуем квантовый мир, необходимо, чтобы экспериментальная установка и сам наблюдатель описывались с помощью понятий, “определенных достаточно строго только на языке классической физики”27.

В феврале 1927 года, когда Бор медленно двигался к принципу дополнительности, Эйнштейн прочитал в Берлине лекцию о природе света. Он заявил, что вместо двух теорий света, квантовой и волновой, необходим “синтез этих двух концепций”28. Такую точку зрения он впервые высказал почти двадцать лет назад. Он так давно надеялся услышать о чем-то вроде “синтеза”, а теперь Бор навязывал ему разделение этих понятий с помощью дополнительности. Будут это волны или частицы, зависит оттого, какой эксперимент мы выбираем.

Выполняя тот или иной эксперимент, ученые всегда полагали, что они пассивные наблюдатели, что они могут изучать природу, не подвергая возмущению объект исследований. Очень четко разделялись объект и субъект, наблюдатель и объект наблюдения. Согласно копенгагенской интерпретации, в атомном царстве это правило нарушается. Именно это Бор отождествлял с тем, что он назвал “сущностью” новой физики – “квантовым постулатом”29. Он ввел этот термин, чтобы зафиксировать связанное с неделимостью квантов существование в природе нарушений непрерывности. Квантовый постулат, говорил Бор, не позволяет при исследовании атомного объекта явно отделить наблюдателя от наблюдаемого явления. Согласно Бору, взаимодействие между тем, что измеряется, и измерительным устройством означает, что “как исследуемому явлению, так и средству наблюден