Book: Обезьяны и все-все-все



Обезьяны и все-все-все

Станислав Дробышевский

Достающее звено. Книга 1. Обезьяны и все-все-все

© С. Дробышевский, 2017

© Р. Евсеев, иллюстрации, 2017

© Е. Мартыненко, иллюстрации, 2017

© И. Мурашев, иллюстрации, 2017

© О. Федорчук, иллюстрации, 2017

© Д. Хайдаров, иллюстрации, 2017

© А. Бондаренко, оформление, 2017

© ООО “Издательство АСТ”, 2017

Издательство CORPUS ®

* * *

Посвящается Инге, Володе и Маше – моей любимой семье

…а также муравьеду и руконожке

Рассказ о цепях коротких и длинных, непрерывных и оборванных, магистральных и параллельных, прямых и извилистых, о том, из каких звеньев они составлены, и о том, все ли звенья достают, как люди достают эти звенья и как звенья достают людей, о звеньях прочных и не очень, о звеньях главных и второстепенных, о звеньях между звеньями и рядом со звеньями, неотвратимости и случайности, о наследии и следах, много о прошлом, в меру о настоящем и немножко о будущем…


Пролог,

в котором автор ведет себя прилично, мило улыбается, много раз говорит спасибо и даже не ехидничает

К написанию этой книги меня сподвигли несколько обстоятельств. Во-первых, преподавательская деятельность, коей я занимаюсь, создает склонность к популярному и доступному объяснению. Во-вторых, большое количество обращений за разъяснениями глобальных или каких-либо частных вопросов антропогенеза со стороны студентов, знакомых и представителей средств массовой информации показало мне, что многим людям эти вопросы небезынтересны. В-третьих, изобилие непрофессиональных, часто просто неграмотных и ошибочных изложений антропогенеза в последнее время зашкаливает: иногда в книгах с заглавием “Антропология” о таковой не говорится вовсе ничего.

Непосредственным толчком к созданию книги послужило предложение Александра Соколова дать интернет-интервью на тему антропогенеза. На самом деле, уже настойчивостью и терпением в вытряхивании из меня этого интервью Александр сделал огромное дело! Как и подавляющее большинство ученых и преподавателей, я сам мог бы очень долго мечтать о написании такой книги и никогда бы не собраться начать реальные действия. Это вообще дело хлопотное и специфическое. Таких, как я, надо сильно тормошить, и за это Александру огромное спасибо! Первая версия книги опубликована на сайте “Антропогенез.ру” (www.antropogenez.ru ), созданном опять же усилиями в основном Александра. Без этого сайта, даже если бы книга и была когда-нибудь написана, она была бы заметно бледнее и в ней сохранилось бы больше ляпов.

С самого начала интернет-портал “Антропогенез.ру” затевался как популяризаторский, направленный на продвижение знаний в народ и борьбу с лженаучными и околонаучными мифами, с чем Александр успешно справляется. Нельзя не отметить его недавно вышедшую книгу “Мифы об эволюции человека”, уникальную и единственную в своем роде (Соколов, 2015). Ее можно читать параллельно с той, что вы держите в руках, – они не повторяют, а дополняют друг друга.

Образцом научно-просветительского творчества, на который стоит ориентироваться всем популяризаторам, являются книги, лекции и статьи на сайтах www.evolbiol.ru  и www.elementy.ru , созданные А. В. Марковым и Е. Б. Наймарк. За это и за важные замечания по содержанию книги им огромное спасибо!

Многие идеи, особенно касающиеся экологических аспектов эволюции, почерпнуты из книг и лекций К. Ю. Еськова, за что я ему бесконечно благодарен.

Неподражаемый стиль книг Л. Б. Вишняцкого и В. Р. Дольника в немалой степени определил настрой и моего творения. Не всем нравится, когда высоконаучные темы обсуждаются как бы не вполне серьезно, некоторые люди даже искренне считают, что чем ближе фраза к бессмертным образцам “при гулярной ундуляции нет ничего глупее латерального сжатия”, “доминирующая положительная анаболия ведет к девиации” и “вторичную хондрификацию эндоскелета можно рассматривать как гистологическую фетализацию, присущую анамниям”, тем она научнее. Но у меня есть два оправдания. Во-первых, используя человеческую речь вместо “высокой латыни”, я могу надеяться, что труд мой будет-таки осилен до конца большинством читателей, а во-вторых, я сам не засну и не брошу его на полпути. Для любителей подробностей есть приложение в конце книги, тысячи статей и вставленные в книгу “уголки занудства”, для сторонников иных крайностей – “минутки фантазии”, к которым, конечно, не стоит относиться чересчур серьезно.

Отдельное спасибо хочу сказать Дмитрию Владимировичу Богатенкову – моему сокурснику и соратнику в популяризации антропологии. Совместно написанный с ним учебник по антропологии был в свое время издан слишком маленьким тиражом, но его части, посвященные антропогенезу, послужили костяком настоящей книги (кстати, об учебниках: дабы не превращать сию книгу в один из оных, я, скрепя сердце преподавателя, все же проигнорировал просьбы пояснять по ходу текста такие термины, как “цитоплазма” и “АТФ”, – для этого есть школьный курс).

Книга стала, несомненно, лучше после того, как ее критически прочитали и оценили замечательные рецензенты. Я глубоко признателен Светлане Анатольевне Бурлак, благодаря ей текст стал не только корректнее, но и грамотнее. Спасибо Валентине Владимировне Росиной и Ирине Николаевне Грибковой – они взглянули на многие спорные места с неожиданной стороны, отчего удалось прояснить их и, надеюсь, уменьшить число вопросов, которые могли бы задать мне читатели.

И самое большое Спасибо всем читателям нашего портала “Антропогенез.ру” за горячую поддержку и помощь в написании и редактировании этой книги, за вдохновение, которое они в меня вселяют. Без их вопросов, комментариев и советов книга вышла бы гораздо более блеклой, сухой и скучной.

Введение,

в коем возвышенным слогом поясняется, почему книга называется так, как она называется

Эта книга посвящена вроде бы человеку, но речь в ней пойдет далеко не только о нем. Эту странность стоит пояснить. Человек интересен сам себе; следуя незабвенному завету К. Линнея, он усиленно изучает именно себя любимого. Да и странно было бы, если бы основатель систематики глубокомысленно изрек: “Человек, познай выхухоль!” или “Человек, познай пеночку-теньковку!”. Нет, все же речь шла о самом себе. С другой стороны, антропология – биологическая наука, антропологи неизбежно биоцентричны. Антрополог не может мыслить антропоцентрично по определению, как бы странно это ни звучало. Человек – неотделимая часть биологического мира, понять его можно, только разобравшись с иными живыми существами и взаимосвязями между ними.

Начиная с первой публикации книги Ч. Дарвина “Происхождение видов путем естественного отбора” (несмотря на то, что в ней ничего прямо не говорилось об эволюции человека), среди естествоиспытателей пошли споры о “недостающем звене” – промежуточной форме между обезьяной и человеком. Особенно активно пропагандировал существование этого звена Э. Геккель, предположивший существование в прошлом вида Pithecanthropus alalus – “обезьяночеловека бессловесного”, название которого частично использовал Э. Дюбуа в 1894 году для описания Pithecanthropus erectus – “обезьяночеловека прямоходящего”. Однако Э. Геккель своего “обезьяночеловека” придумал, а Э. Дюбуа – нашел на острове Ява, в виде черепной крышки и бедренной кости.

Сначала казалось, что картина эволюции человека окончательно прояснилась, тем более что позднейшие ступени тоже представлялись известными, ведь еще в 1857 году немецкий учитель К. Фульрот явил миру найденного годом ранее неандертальца – как многие тогда считали, прямого предшественника современного человека, не имевшего уже почти никаких обезьяньих черт. Цепочка “обезьяна – питекантроп – неандерталец – сапиенс” выглядела вполне достаточной и полной для окончательного торжества научной точки зрения над ортодоксальной религиозной (характерно, что современные школьные учебники недалеко ушли от воззрений конца XIX века). Однако сомнения никогда не оставляют человеческий разум: тогда как К. Майер доказывал, что скелет из Неандерталя является останками русского казака-дегенерата, умершего в пещере от тягот погони за Наполеоном (слишком покатый лоб он объяснял врожденной патологией, а слишком кривые ноги – постоянной верховой ездой), Э. Краузе обосновывал принадлежность костей с Явы гигантскому гиббону (объясняя этим опять же слишком покатый лоб и “слишком” прямую бедренную кость). Новые находки развеяли этот туман, но загадали новые загадки. В первые десятилетия XX века питекантроп перестал казаться таким уж обезьяноподобным, но тут встал закономерный вопрос: а где же в таком случае “недостающее звено” между питекантропом и обезьяной? С этих пор погоня за “недостающим звеном” уже не прекращалась. Не помогло ни описание Р. Дартом австралопитека из Южной Африки, ни открытие “с другого конца” эволюционной линии – африканских проконсулов. Весь XX век разрыв между “обезьяньим” и “человеческим” концами сокращался, но сближение это напоминает погоню Ахиллеса за черепахой в апории Зенона – всегда кажется недостаточным, неполным, незавершенным.

Время тоже оказалось каким-то “резиновым”: если сначала на всю эволюцию человека отводилось около ста тысяч лет, к середине XX века говорили о четырех миллионах, а к концу речь пошла уже о десяти миллионах. Как следствие, пробелы, которые, как казалось, можно заполнить одной-двумя удачными находками черепов, стали еще шире даже после открытия целых видов, например Homo habilis. Как нарочно, с ряда наиболее известных, образцовых и, казалось бы, надежных кандидатов на роль человеческого пращура это почетное звание было снято, и они оказались представителями линий, не оставивших потомства (так случилось и с яванскими питекантропами, и с неандертальцами, и с европейскими дриопитеками, и с азиатскими сивапитеками). Ровная магистраль из нескольких последовательных эволюционных стадий обратилась щетинистым кустом бесчисленных тупиковых ветвей, среди засохших колючек которых едва различима тонкая нить нашей истинной родословной.

В итоге эволюционная линия человеческих предков и предшественников известна лучше, чем для какого-либо иного вида живых существ, но именно антропологам приходится чаще всего слышать сетования насчет чрезмерного теоретизирования и частой подмены пробелов в познании сомнительными реконструкциями. Конец XX и особенно начало XXI века ознаменовались открытием целого ряда “недостающих звеньев” по всей длине эволюционной линии, а прежде всего – ранних австралопитеков. Остановит ли этот поток находок гонку за “недостающим звеном”?

На заре исследования антропогенеза исследователи были склонны в любой находке ископаемых приматов видеть прямого предка человека, включая зубы гесперопитека из Небраски, оказавшиеся на поверку останками плиоценовой свиньи-пекари. Отчасти это объяснялось стремлением ученых стать первооткрывателями, отчасти – немногочисленностью находок. В наши дни антропологи более осмотрительны и разборчивы. Уже далеко не каждая находка получает гордое собственное латинское наименование и титул Великого Предка. И хотя в популярных заметках о новейших находках традиционные восторженные фразы о “перевороте в науке” и “новом, самом древнем предке” остаются почти обязательными, в научных статьях их не встретишь.

Так какова же эта длинная цепь, на конце которой находимся мы? Каковы причины ее возникновения, причудливых ответвлений и зигзагов? Как мы вообще можем узнать о прошлом? Кто этим занимается и на что при этом опирается? А может, все было и не так?



Методы познания бытия

Часть первая, немножко занудная, в коей повествуется о самых очевидных вещах, но присутствие коей совершенно необходимо

Антропогенез (от греческих слов anthropos – человек и genesis – развитие) – это процесс эволюции предшественников современного человека, палеонтология человека; так же называется наука, изучающая этот процесс.

Вопрос о собственном происхождении всегда волновал людей. С древнейших времен и до наших дней люди не устают выдвигать все новые и новые предположения о собственном прошлом, о своих истоках. Зачастую разные точки зрения противоречат друг другу и разгораются жаркие споры на эту тему. Казалось бы, далекая от повседневной жизни тема оказывается столь волнующей умы людей, что дело доходит даже до судебных разбирательств и введения специальных законодательных актов. Вместе с этим поразительно, как мало большинство людей знает о собственных предках. Наука за последние 150 лет сделала в этом направлении огромный рывок, определила все основные стадии и группы дочеловеческих существ и теперь готова предложить стройную и отлично аргументированную схему эволюции человека. Конечно, многие детали этого процесса и ныне остаются невыясненными, но безграничность познания заранее определяет невозможность поставить точку в науке об антропогенезе. В настоящей книге изложены основные моменты учения о происхождении человека.

Глава 1

Концепции антропогенеза

Мировоззрение человека по природе своей антропоцентрично. Человек занимает центральное место как в мифологии и религиях всех народов, так и в современной науке. Сколько существуют люди, столько они спрашивают себя: “Откуда мы? Каково наше место в мире?” У разных народов в разные времена возникали разные ответы на эти вопросы.

Существуют три глобальных подхода к познанию мироздания и, соответственно, три основные точки зрения на возникновение человека: религиозный, философский и научный.

Религиозный подход опирается на веру и предание, обычно он не требует каких-либо дополнительных подтверждений своей правоты. Более того, анализ реальности обычно не только не поощряется, а даже строго противопоказан. Предание может жить в устной форме или быть зафиксировано в неком священном писании – Торе, Библии, Коране, Ведах, Упанишадах и прочих.

Философский подход опирается на некий первоначальный набор аксиом, из которого путем умозаключений философ строит свою картину мира. Знаю, что философы воспротивятся отделению от науки, но нельзя отрицать, что их подход к познанию мира отличается от того, которым пользуются, например, антропологи.

Научный подход опирается на факты, установленные в ходе наблюдений и экспериментов. Для объяснения связи этих фактов выдвигается гипотеза. Для ее проверки собираются новые наблюдения и, по возможности, ставятся эксперименты. Если эти новые данные противоречат гипотезе, то она отвергается и выдвигается новая, если же новая информация укладывается в исходное объяснение, то гипотеза становится теорией. В дальнейшем новые факты могут опровергнуть теорию, в этом случае выдвигается следующая гипотеза, лучше отвечающая всей совокупности наблюдений. В этом огромная сила научного подхода – он предполагает постоянное уточнение и улучшение наших знаний. Однако, с точки зрения многих людей, в этом же минус науки: ученый всегда сомневается в собственных словах, постоянно говорит “возможно” и “вероятно”, после каждого утверждения ставит кучу вопросительных знаков. Как можно верить человеку, если он сам не уверен в своих словах?! Другое дело – религиозная догма: она может быть стабильна тысячи лет! Секрет в том, что ученый знает, насколько он чего-то не знает, он может оценить свое незнание и просчитать истинность и достоверность собственных утверждений. С одной стороны, мечта каждого настоящего ученого – опровергнуть устоявшиеся взгляды, предложив более адекватное объяснение реальности, с другой – чем дальше идет прогресс, тем труднее это сделать.

И религиозные, и философские, и научные взгляды со временем менялись, влияли друг на друга и причудливо переплетались. Иногда крайне сложно разобраться, к какой области культуры отнести ту или иную концепцию. Количество существующих взглядов огромно. Невозможно в кратком изложении рассмотреть хотя бы их треть. Ниже мы попробуем чуть подробнее разобраться лишь с самыми главными из них, наиболее повлиявшими на мировоззрение людей.

Сила Духа: креационизм

Креационизм – религиозная концепция, согласно которой человек был создан неким высшим существом – Богом или несколькими богами – в результате сверхъестественного творческого акта.

Религиозное мировоззрение является, видимо, древнейшим. Религий в мире великое множество, немногим меньше, чем народов; кроме того, религии сами меняются со временем. Соответственно, чрезвычайно разнообразны и способы, которыми люди создавались богами или самозарождались согласно разным преданиям. Племена с примитивной культурой обычно выбирали себе в предки разных животных: индейцы делавары считали своим родоначальником орла, индейцы осаги – улитку, айны и папуасы из бухты Морсби – собаку, древние датчане и шведы – медведя. У некоторых народов, например малайцев и тибетцев, бытовали представления о возникновении человека от обезьяны. Напротив, южные арабы, древние мексиканцы и негры берега Лоанго считали обезьян одичавшими людьми, на которых рассердились боги. Конкретные способы создания человека, согласно разным религиям, очень разнообразны. Согласно одним религиям, люди появились сами по себе, согласно другим, их создали боги – из глины, из дыхания, из тростника, из собственного тела и мыслью единою.

В целом креационизм можно разделить на ортодоксальный (или антиэволюционный) и эволюционный. Теологи-антиэволюционисты считают единственной верной точку зрения, изложенную в предании, скажем, в христианстве – в Библии. Ортодоксальный креационизм не требует иных доказательств, опирается на веру, а научные данные игнорирует. Согласно Библии, человек, как и другие живые организмы, был создан богом в результате одномоментного творческого акта и в дальнейшем не изменялся. Сторонники этой версии чаще всего просто игнорируют доказательства длительной биологической эволюции. Реже они считают их результатами других, более ранних и, возможно, неудачных творений (хотя могут ли быть неудачи у Творца?). Некоторые теологи признают существование в прошлом людей, отличных от живущих сейчас, но отрицают какую-либо преемственность их с современными.

Теологи-эволюционисты признают возможность биологической эволюции. Согласно им, виды животных могут превращаться один в другой, однако создание первого живого вещества и направляющая сила эволюции определяется волей бога. Человек также мог возникнуть от более низко организованных существ, однако его дух оставался неизменным с момента первоначального творения, а сами изменения происходили под контролем и по желанию Творца. Западный католицизм официально стоит на позициях эволюционного креационизма. Энциклика 1950 года папы Пия XII Humani generis допускает, что бог мог создать не готового человека, а обезьяноподобное существо, вложив, однако, в него бессмертную душу. После это положение подтверждалось другими папами, например Иоанном Павлом II в 1996 году, который в послании Папской академии наук писал, что “новые открытия убеждают нас в том, что эволюцию следует признать более чем гипотезой”. Новейшее папское подтверждение той же идеи появилось в 2014 году: папа Франциск официально признал Большой взрыв и эволюцию и пояснил, что бог не маг с волшебной палочкой. Забавно, что для миллионов верующих мнение папы римского в этом вопросе значит несравненно больше, чем итоги трудов тысяч ученых, посвятивших науке всю жизнь и опирающихся на изыскания других тысяч ученых, работавших на протяжении многих поколений.

В православии единой официальной точки зрения на вопросы эволюционного развития нет. На практике это приводит к тому, что десять опрошенных православных священников, скорее всего, проинтерпретируют возникновение человека десятью способами – от сугубо ортодоксального варианта с сотворением человека на шестой день через разнообразные протестантские версии с “днями” в виде миллионов или миллиардов лет до похожего на католический эволюционно-креационистский подход с вдыханием души в эволюционировавшего из обезьяны человекоподобного предка.

Многие современные креационисты проводят исследования с целью доказать отсутствие преемственности древних людей с современными или же существование полностью современных людей в глубокой древности. Для этого они используют те же материалы, что и антропологи, однако смотрят на них под другим углом зрения. Как показывает практика, креационисты в своих построениях опираются на палеоантропологические находки с неясными датировками или условиями нахождения, игнорируя большую часть остальных материалов. Кроме того, нередко креационисты оперируют некорректными с точки зрения науки методами. Их критика обрушивается на те области науки, что еще недостаточно полно освещены – так называемые “белые пятна науки”, – или те, что незнакомы самим креационистам. Обычно такие рассуждения наивны, скучны или даже вовсе безграмотны с точки зрения профессиональных биологов, хотя могут произвести впечатление на людей, недостаточно знакомых с биологией и антропологией. Большей частью креационисты занимаются именно критикой, однако на критике своей концепции не построишь, а своих собственных независимых материалов и доводов у них нет. Впрочем, надо признать, что ученым от креационистов есть некоторая польза: существование и влияние креационистов служат хорошим индикатором понятности, доступности и популярности результатов научных исследований среди широкой публики, дополнительным стимулом к работе.

Стоит заметить, что число креационистских течений весьма велико. В России они представлены не так богато, как, например, в США, но нельзя не признать, что даже некоторые ученые-естествоиспытатели склоняются к подобному мировоззрению.

Главный минус креационизма – бездоказательность. Вера – это здорово, но, как бы ни хотелось креационистам, даже самая глубокая вера не может поменять реальность. Даже если я, скажем, совершенно искренне буду верить, что у меня зарплата – миллион, а я – президент Луны и живу в золотых чертогах, то реальность, к моему сожалению, останется прежней. Бухгалтерия предъявит выписку о зарплате, географы и дипломаты удостоверят, что государства “Луна” не существует, а геологи рассчитают, что добытого на планете золота недостанет для возведения такого огромного дворца, как мне хочется.

Сила мысли: философские концепции антропогенеза

С античности начала развиваться философская мысль. Философские построения обычно основаны на некой первоначальной аксиоме, от которой путем логических или умозрительных умозаключений исследователь приходит к неким выводам. Относительно происхождения человека часть философов склоняется к религиозной традиции, часть – к научным воззрениям. Зачастую философская мысль вдохновение черпает из религии, а стройность построений заимствует у науки. Собственно вопрос происхождения обычно мало занимает философов, и детали процесса они чаще опускают, больше рассуждая о месте человека во Вселенной, его значении, предназначении и будущем.

Античные авторы уделяли возникновению человека сравнительно мало внимания, занимаясь в основном более глобальными проблемами. В любом случае человек всегда рассматривался как нечто совершенно отличное от мира животных. Впрочем, Лукреций Кар в I веке до нашей эры написал целую поэму о естественном происхождении человека – “О природе вещей”:

…Так как в полях еще много тепла оставалось и влаги,

То повсеместно, где только к тому представлялось удобство,

Выросли некие матки, корнями к земле прикрепившись,

Кои раскрылись, когда их зародыши в зрелую пору

От мокроты захотели бежать и нуждались в дыханьи…[1]

Понятно, что доказательства существования “неких маток” даже не предполагались.

Начиная с XVIII века до современности вопрос о природе человека стал весьма популярным у философов, возникли оригинальные взгляды на эту проблему.

Наиболее интересно трактует вопросы эволюции довольно разнородное направление, называемое глобальным эволюционизмом. Согласно ему, весь мир представляет собой единую систему, развивающуюся по одним законам. Человек является частью Вселенной и занимает в ней вполне определенное место, либо достаточно скромное, либо венчающее весь процесс развития мироздания. Представителями глобального эволюционизма являются К. М. Бэр, В. И. Вернадский, П. Тейяр де Шарден, И. Р. Пригожин, Н. Н. Моисеев.

В 1834 году К. М. Бэр сформулировал “всеобщий закон природы”, согласно коему материя развивается от низших форм к высшим. В приложении к человеку это означало, что он произошел от неких низших животных и в процессе длительной эволюции достиг современного уровня.

Идею непрерывного усложнения Вселенной активно развивали в первой половине XX века В. И. Вернадский и П. Тейяр де Шарден. Их концепции весьма схожи, в частности, в обеих поминается особая “энергия” – модное для того технократического времени слово, коим можно было объяснять что угодно (индустриализация, открытие ядерной энергии, строительство гидроэлектростанций мощно влияли на настрой всех мыслителей; из этой же серии и “пассионарная энергия” Л. Н. Гумилева). Различаются в трудах П. Тейяра де Шардена и В. И. Вернадского движущие силы эволюционного процесса: у первого это Творец, потусторонний мыслящий центр, у второго – силы Природы. Независимо от вида “энергии”, венцом эволюции материи – космогенеза – является антропогенез, а венцом антропогенеза – ноосфера, мыслящая оболочка планеты с отделением мыслящего духа от своей материальной основы. Надо заметить, что П. Тейяр де Шарден был профессиональным палеонтологом и в числе немногих исследовал оригиналы черепов синантропов, утерянные впоследствии.

Одним из новейших – 1990 года – вариантов глобального эволюционизма является концепция Н. Н. Моисеева. Согласно ей, Вселенная представляет собой суперсистему, включающую в себя множество подсистем. Человек в ходе эволюции достиг уровня, когда прекратилось совершенствование морфологии индивидов, но начался отбор социальных групп – популяций, племен и народов. Совершенствование Вселенной в целом и человеческого общества в частности является процессом самопроизвольным. Как и К. М. Бэр, Н. Н. Моисеев считал процесс эволюции мира направленным, идущим от простого к сложному. Движущей силой называется отбор систем на устойчивость к воздействиям внешней среды. Довольно странно в конце XX века слышать об окончании морфологической эволюции, но, к сожалению, такая позиция стандартна для небиологов.

Относительно деталей процесса эволюции человека сторонники глобального эволюционизма чаще склоняются к научной точке зрения. И П. Тейяр де Шарден, и Н. Н. Моисеев, кроме направленности эволюционного процесса, признавали большое значение для происхождения человека естественного отбора и конкуренции. Впрочем, чаще всего при попытках уйти в конкретику философы вопиющим образом искажают факты и научные гипотезы, так что у антропологов могут зарониться обоснованные сомнения – можно ли, не зная фактов, строить обобщающие объяснения их взаимосвязей?..

Сила доказательств: научные концепции антропогенеза

Научный этап изучения антропогенеза начался фактически только с конца XVIII века, до этого преобладал религиозный подход. Но и на протяжении XVIII–XIX веков наука не была четко отделена от философии, а ученые обычно назывались натурфилософами или естествоиспытателями. Некоторые из них – Д. Дидро, К. Гельвеций, Ж. Бюффон, Д. Монбоддо – уже в XVIII веке высказывали мнение о “перерождении” одних организмов в другие, в том числе – обезьяны в человека. Изучение анатомии и морфологии самых разнообразных животных приводило к мысли о большем или меньшем их сходстве. Часто это представлялось в виде так называемой “лестницы существ”, ведущей от низших организмов к высшим, с человеком на вершине. Самый ее известный вариант – система К. Линнея – стал основой современной классификации и в мало измененном виде преподается даже в современных школах, а также преобладает в бытовом сознании многих людей, далеких от биологии. Раз человек – вершина эволюции, то логично его полное отделение от прочих животных, выделение в отдельный отряд или даже царство, что, собственно, и производилось вплоть до середины XIX века. Результатом стали, например, отряды Inernis Blumenbach, 1779, Bimana Blumenbach, 1797, и Erecta Illiger, 1811, включающие одного только человека и ставшие таксономическим памятником человеческой гордыни.



Концепция постепенного изменения живых существ – биологической эволюции – со временем приобретала в трудах натуралистов все более отчетливые очертания. Впервые стройное обоснование гипотезы эволюции опубликовал Ж. Б. Ламарк в 1802 и 1809 годах, указав, что человека следовало бы поместить в системе природы как венец “четвероруких” (приматов), если бы он не был создан Творцом совершенно отдельно от животных. Однако механизмы эволюционных изменений, предложенные Ж. Б. Ламарком, выглядят с современной точки зрения наивными. Он считал, что органы животных меняются под воздействием тренировки. Классический “жирафий” пример ламаркистских воззрений выглядит так: тянулся короткошеий предок к верхним веткам, от этого его потомки рождались с чуть более длинной шеей, они, в свою очередь, тоже тянулись – вот и стали в итоге длинношеими. Даже у современников ученого эта теория в своем законченном виде не получила широкого признания. Наследование приобретенных в течение жизни признаков, согласно данным современной генетики, невозможно, поскольку нет механизма записи информации из белков в РНК или ДНК. Есть, правда, несколько вариантов так называемого эпигенетического наследования, но там меняется не ДНК, а ее активность. Кроме того, эпигенетические эффекты являются скорее исключением, а не основным механизмом эволюции.

Куда более сильный научный и общественный резонанс вызвала теория эволюции Ч. Дарвина, опубликованная в 1859 году в книге “Происхождение видов путем естественного отбора”, в 1871 году в книге “Происхождение человека и половой подбор” и в других работах. С момента опубликования теория эволюции получила как горячих сторонников, например Т. Г. Гексли и Э. Геккеля, так и яростных противников – епископа Б. С. Уилберфорса и натуралиста Дж. Майварта. Концепция продолжала развиваться: в первой трети XX века ученые открыли основные законы генетического наследования, а к середине столетия две половинки – генетика и теория отбора – нашли друг друга. Так была окончательно сформулирована синтетическая теория эволюции. В последние же десятилетия XX века и первые XXI-го накопилось огромное количество исключений, дополнений и уточнений к синтетической теории эволюции, так что сейчас биология переживает “новый синтез”. Важно подчеркнуть, что современная теория – это далекое развитие классического дарвинизма. Полтора века не прошли зря, так что спорить с Ч. Дарвином, как это часто делают не самые продвинутые “критики”, столь же глупо, как спорить с астрономами или физиками середины XIX века. Хотя, надо признать, Ч. Дарвин сумел описать все основные формы отбора и привести столько примеров и доказательств, что в этом его поныне не превзошел никто.

Краткая суть синтетической теории эволюции заключается в следующем. Наследственная информация хранится в клетках живых существ в виде сложных молекул РНК или ДНК, отрезки которых, кодирующие определенные белки или управляющие их синтезом, называются генами; на более высоком уровне ДНК может быть оформлена в комплексы – хромосомы. Гены случайно и ненаправленно изменяются под воздействием разнообразных факторов, такие изменения называются мутациями. Для эволюции значимы те мутации, что происходят в половых клетках и передаются потомству. За счет мутаций возникает изменчивость. Это принципиальный момент, часто недооцениваемый людьми, далекими от биологии: на самом деле, почти все виды живых существ весьма изменчивы. Например, ланцетники одной популяции, несмотря на то что для людей они “все на одно лицо”, генетически могут отличаться больше, чем самые отличающиеся друг от друга люди на всей планете. При половом размножении изменчивость еще усиливается за счет рекомбинации – перемешивания генов родителей. За счет рекомбинаций разнообразие создается даже в отсутствие новых мутаций, да при этом и безопаснее, ведь гены родителей уже прошли проверку жизнью, а смесь двух хороших вариантов, скорее всего, будет тоже неплохой.

Мутации чаще всего оказываются вредными или нейтральными, но секрет в том, что условия окружающей среды не остаются постоянными. Меняется климат, движутся материки, сами живые существа не сидят на месте. В новых условиях новые признаки могут дать индивиду некое преимущество в сравнении с исходным вариантом. Преимущество (приспособленность, адаптивность) по большому счету измеряется числом оставленных генетических копий. Существенно, что при этом необязательно выживать самому: например, осьминоги и лососи после размножения погибают, но если из потомков останется хотя бы двое, то это уже неплохая приспособленность. В вульгарном изложении часто приходится слышать фразу “выживает сильнейший”, однако если этот сильнейший выжил и забодал всех вокруг, но детей не оставил, то для эволюции он ноль или значим лишь как фактор отбора других особей, которым он устраивал трудности при жизни. В этом смысле он не отличается, скажем, от погоды или упавшего метеорита.

Важно и то, что при всем этом необязательно кто-то должен умирать: пресловутая “борьба за существование” не всегда сопровождается кровавыми разборками и горами трупов. Обычно все ограничивается просто статистикой и чистой математикой. Чьи гены в большем числе представлены в следующем поколении, те наверняка будут представлены и в послеследующем (пока условия не изменятся и преимущество не перейдет к другим везунчикам).

Как ни странно, для того чтобы оставить свои гены, даже не обязательно размножаться. Например, если некая тетя сама детей не имеет, но активно помогает выращивать потомство десятку своих сестер (а без помощи они бы не справились), то она может оставить собственных генных копий больше, нежели у нее были бы свои чада. Секрет в том, что ее гены и гены сестер примерно одинаковые. И не так важно, из чьего тела взялась цепочка нуклеотидов, главное – их последовательность. Главное – “дополнительные” дети, выжившие благодаря усилиям героической тети, могут математически считаться ее собственными (конечно, все чуть сложнее, но не станем занудствовать).

Условия среды могут измениться так, что полезнее оказываются признаки, бывшие до того нейтральными или даже вредными, тем более что регулярно условия сменяются на вообще противоположные. Скажем, при похолодании лучше будут выживать мохнатые, при потеплении – лысые; колебания климата отразятся в смене мохнатых на лысых, а потом снова на мохнатых. Однако в генетическом плане “новая мохнатость”, скорее всего, будет кодироваться иными комбинациями генов, чем первая, так как геном очень велик и вероятность возвратных мутаций, хотя и не нулевая, все же очень мала. За множество поколений изменения накапливаются и существо превращается во что-то совсем новое. Понятно, что интенсивность эволюционных преобразований сильно зависит от жесткости условий, темпов природных изменений, скорости мутаций и длины поколения. Для крупных животных, к которым относится и человек, эволюция свершается за очень длительное время – многие тысячи лет, тем более что и условия редко меняются резко.

Отбор, происходящий в природе, называется естественным.

Кроме внешних условий, признаки отбираются другими животными того же вида, но другого пола: это называется половым отбором. Как правило, отбирающим является тот пол, который тратит больше энергии на выращивание потомства (чаще это самки – им не надо доказывать, что они нужны, ведь это они будут растить детей), а отбираемым – пол-халявщик, поставляющий только гены (обычно это самцы – они должны доказать, что именно их личные гены достойны перейти в следующее поколение). Половой отбор нацелен на выявление особо ценных генетических комплексов, но парадоксальным образом – через их явное преобладание над бесполезными или даже вредными признаками, проявляющимися во внешности или поведении. Например, если у самца павлина огромный яркий хвост, мешающий летать, но до сих пор красавца не съела ни одна кошка, то другие гены явно перевешивают, одаривая везунчика идеальным слухом, отличной реакцией и мощными грудными мышцами. Самки, выбирающие самых хвостатых самцов, будут оставлять больше генов, так как птенчики, кроме вредного в общем-то хвоста, унаследуют и все несомненные достоинства отца. Потом все повторяется, так хвост будет расти от поколения к поколению. Ясно, что самка делает выбор не сознательно, просто птенцы самки, избравшей захудалого самца, с большей вероятностью погибнут и “гены выбирания захудалых самцов” не получат распространения. Поэтому половой отбор в итоге может создавать откровенно вредные признаки, которые потом уравновешиваются естественным отбором.

Многие признаки вообще не имеют большой адаптивной ценности, они могут меняться довольно случайно, по статистическим законам, называющимся генетико-автоматическими процессами, варианты которых – генный дрейф, “эффект основателя”, “эффект бутылочного горлышка” – проявляются в некоторых специфических, хотя и нередких, условиях. Нейтральных признаков великое множество, не стоит искать глубокий смысл в каждой мелкой особенности. К примеру, мочка уха бывает свободная или приросшая – никому еще не становилось хорошо или плохо от обладания каким-то из этих вариантов, но в популяциях их частоты могут существенно различаться. На человеческом разнообразии изучать генетико-автоматические процессы особенно занимательно (подробнее об этом можно прочитать в соответствующих книгах: Дробышевский, 2014б).

В настоящее время синтетическая теория эволюции в ее современной версии фактически является единственной научной теорией развития жизни. Ее придерживается подавляющее большинство биологов – вероятно, гораздо больше 90 %. Такой успех явно неслучаен: у теории эволюции сильнейшая доказательная база, она подтверждается практически всеми биологическими исследованиями, включая прямые эксперименты. Немногочисленные альтернативы синтетической теории эволюции рассматриваются биологами скорее как ее дополнения. Это, например, разнообразные варианты мутационизма. Согласно им, изменения наследственности происходят не в течение длительного времени, а практически одномоментно и сразу дают новую форму организмов. Впрочем, развитие генетики и молекулярной эволюции в последние десятилетия фактически похоронило такие концепции. Иногда высказываются мысли о некой направленности эволюции, исходящей, например, из “внутреннего стремления к прогрессу”, но вообще-то теория прекрасно обходится и без таких излишеств.

Наш обзор, разумеется, слишком краток, упрощен и не может дать полного представления о принципах и механизмах эволюции. Любознательный Читатель может подробнее узнать об этих интересных материях во множестве замечательных книг (например: Докинз, 2010, 2012; Марков, 2010, 2012а, б; Марков, Наймарк, 2014).

В приложении к человеку теория эволюции называется антропогенезом. Наши предки, будучи частью окружающей природы, тоже постепенно видоизменялись вслед за сменой внешних условий. Особенность человека в том, что с некоторого момента существенной силой его эволюции стала социокультурная составляющая, причем чем ближе к современности, тем она оказывается значительнее. Нельзя сказать, чтобы человек в этом отношении был чересчур уникален, но специфика антропогенеза все же довольно сильна.

Глава 2

Поиски истины: методы исследования антропогенеза

Палеоантропологические методы

Как же мы можем узнать о том, откуда взялся человек? Законный вопрос Читателя: “Откуда автор понабрал своих утверждений, почему я должен верить ему, а не кому-то еще?” Религия предлагает наиболее простой путь решения: все сказано в Священном Писании. Философы выводят свои заключения, исходя из своей логики. Ученые же пытаются доказать свои положения, обосновав их с помощью известных фактов. Когда фактов не хватает, ученые проводят специальные исследования, восполняя наши знания об окружающем мире. Критерий проверки информации, изложенной в нашей книге, очень прост: каждый читатель может взглянуть на древние черепа в книге, музее или на сайте “Антропогенез.ру”, прочитать специализированные статьи и книги, пересчитать содержащиеся там цифры, в конце концов, посмотреть на себя в зеркало. Взаимная перекрестная проверка цифр, фактов и их объяснений сотнями независимых друг от друга людей позволяет надеяться, что итоговые концепции адекватно описывают реальность.

Как уже говорилось, специфика антропогенеза заключается в существенном влиянии поведения человека на собственную эволюцию, тесной связи биологии с формированием общества – социогенезом. Это значительно расширяет горизонты исследований. Изучая прошлое человечества, невозможно ограничиться рассмотрением только биологической его стороны или только социальной. Человек – это биосоциальное существо, он не может существовать вне общества, равно как и общество состоит из отдельных индивидов. Потому-то антропогенез и является переплетением множества разнообразных научных дисциплин, а исследование эволюции человека похоже на детективное расследование, где любой мельчайший факт может изменить картину. Впрочем, не стоит переоценивать уникальность человека в этом отношении. Всем прекрасно известны, например, муравьи, пчелы и термиты, кое-кто может вспомнить голых землекопов и даже эусоциальных ракообразных.

Антропогенез – мультидисциплинарная наука. Соответственно, и комплекс подходов к изучению прошлого человечества весьма богат. В фундаменте биологических наук лежит анатомия – наука, описывающая план строения организма; особенное внимание антропологи уделяют сравнительной анатомии. Надстройками анатомии являются морфология, изучающая изменчивость организма, а также физиология, наука о том, как организм работает. Естественно, крайне важна эмбриология. Огромнейшее значение имеют генетика и неотделимая от нее молекулярная биология, повествующие о самых основах жизни. Своего рода венцом общебиологических дисциплин можно назвать сравнительную этологию, дающую знания о поведении животных.

Для того чтобы понять, чем же человек уникален, нелишне познакомиться с его родней. Кто в окружающем мире наиболее похож на человека? По всем признакам: строению, особенностям развития, поведению и просто внешне – нашими ближайшими родственниками являются обезьяны. Тут на помощь приходит приматология, включающая палеонтологию приматов, современную приматологию, а также этологию приматов.

По большому счету частным случаем палеоприматологии является палеонтология человека, которой будет посвящена бóльшая часть книги. Тут стоит сделать пояснение. Когда человек, далекий от естественных наук, видит фотографии неких палеоантропологических находок, он часто бывает разочарован их фрагментарностью. Ну что это – кусочек челюсти, обломок лучевой кости, осколок вообще непонятно чего. Соответственно, и отношение к реконструкциям, интерпретациям подобных находок бывает подчас очень скептическим. “Вот найдут пару зубов, пару косточек – а дальше нафантазируют…” – такую фразу антропологам приходится слышать слишком часто. Но у большинства людей об этом явно искаженное представление.

На самом деле в настоящее время большинство групп ископаемых предшественников человека представлены сотнями, а иногда и тысячами находок. Зачастую это и вправду обломки и фрагменты, зато их много. Мало-помалу по таким кусочкам набирается серьезная статистика: имея сотни фрагментов, несложно собрать из них целые кости и даже скелеты. Даже по австралопитекам – самым древним из прямоходящих – имеются тысячи находок. Да и целых черепов и скелетов известно уже немало. Возникла даже своеобразная проблема – ученые часто незаслуженно пренебрегают фрагментами, недооценивают их значимость, предпочитая работать с комплектными находками, отчего огромное количество потенциально полезной информации остается незадействованной. На самом деле ныне у антропологов сложность не с недостатком, а с избытком информации: находок так много, что ими уже трудно оперировать, даже специалисты нередко упускают какие-то отдельные находки или не знают о них, потому что одному человеку трудно охватить всё сразу. Про особенности строения черепа разных видов австралопитеков известно чуть ли не больше, чем про различия и сходства черепов разных рас современного человека.

Можно еще добавить, что эволюция человека сейчас изучена лучше, чем эволюция какого-либо иного вида. Нет отдельной науки про эволюцию, например, лошади или собаки (хотя они тоже отлично исследованы), а для человека есть свой собственный антропогенез! Такой непрерывной линии с таким количеством со всех сторон рассмотренных, измеренных, просвеченных рентгеном и томографом и только что не облизанных находок, как для человека, никто ни для каких иных живых существ не рисовал.

Кстати, об облизывании…

В начале XX века археологами практиковался замечательный метод определения древности – лизнуть ископаемую кость: бытовало мнение, что если она липнет, значит, ее возраст не самый почтенный, если не липнет – весьма достойный. Так что немалое число находок было облизано в самом буквальном смысле слова.

Важно знать и помнить, что антропологи строят свои выводы не на пустом месте, они могут математически оценить степень своего невежества и достоверность выводов. В этом им помогает биометрия – дисциплина об измерении живого. В приложении к человеку биометрия обычно называется антропометрией. Антропологи измеряют все, что можно измерить (“лучше один раз померить, чем сто раз увидеть”), а что трудно – описывают и оценивают в баллах по стандартным шкалам. Слава классикам, в конце XIX – первой трети XX века нашлись великие ученые, например Р. Мартин, П. Брока и В. В. Бунак, создавшие универсальные методики измерения и описания скелета и тела человека, понятные и известные антропологам всей планеты. Более того, такая ситуация фактически уникальна для науки и безгранично удобна: любой исследователь всегда точно знает, что имел в виду другой, измеряя, скажем, “размер 8 по Мартину”. Иногда можно даже не знать языка публикации (много ли русских антропологов знают китайский? а испанских – русский?), но это не мешает свободно пользоваться измерительными данными и делать собственные заключения. Измерениями тела занимается соматометрия, описанием – соматоскопия, для скелета это остеометрия и остеоскопия. Поскольку голова и череп всегда привлекали больше внимания и часто объективно более информативны, то для их измерения и описания есть свои термины: цефалометрия – цефалоскопия и краниометрия – краниоскопия.

Сотни и тысячи цифр загоняются антропологами в безумные матрицы, постичь смысл коих помогает статистика. Простейшие методы называются одномерной статистикой, а более хитрые – многомерной. Взирая на полученные графики, всяческие канонические переменные, факторы, главные компоненты, их нагрузки и оценки вероятности ошибки, исследователь, наконец, делает обоснованные выводы. То есть современный антрополог не берет идеи с потолка и не высасывает их из пальца, а получает математическими способами. Антропология – это более чем наполовину математика, цифры, цифры и цифры. Конечно, совсем без доли фантазии обойтись нельзя и творческое начало всячески приветствуется, но любое положение антрополог должен подтвердить статистически.

Впрочем, человеческий мозг покамест не может быть полностью заменен компьютером. Техника обсчитывает только те данные, что мы в нее вводим, а разум – даже то, что сознание порой не всегда может четко вербализовать. По сути, мозг работает как мощнейший сверхкомпьютер, проводящий сверхмногомерный анализ. Поэтому часто опытному антропологу достаточно лишь посмотреть на черепа или лица, чтобы сделать выводы, которые расчеты потом только узаконят. Но проблема в том, что, во-первых, мозг может и ошибиться, а во-вторых, профессионализм – штука трудноуловимая и сложнодоказуемая. Посему любая истинно научная статья – будь она по филогении, систематике или этологии – сопровождается массой расчетов, таблиц и графиков, без них никуда. Оттого же все, что будет изложено далее, имеет мощнейшее обоснование в виде миллионов цифр, полученных сотнями антропологов за последние полторы сотни лет. Такова современная наука. Кому-то это может показаться скучным и даже нетворческим, но что делать. Конечно, дабы избавить Читателя от излишних мук, я не буду злоупотреблять статистикой, но помнить о великом математическом базисе Читатель должен.

Смежные науки

Для понимания факторов и причин эволюции человека антропологу необходимо разбираться в палеонтологии – науке о древних живых существах и условиях их существования. Многочисленные фауны, жившие когда-то, исчезли, но от них остались окаменевшие кости, древняя флора преобразилась в уголь и отпечатки. Заглянуть в прошлое можно разными способами. Важнейшими для нашей темы разделами являются палеонтология позвоночных, палеоботаника (в том числе ее подраздел – палинология) и палеоэкология. Особое значение имеет тафономия – наука о захоронении ископаемых остатков.

Кроме собственно биологических дисциплин, антропология широко использует данные других наук. Геология (геоморфология, геофизика, стратиграфия, геохронология) дает бесценные знания о времени и условиях жизни наших предшественников. В этом ей помогает химия.

В широком смысле физическими являются многочисленные методы датирования: датировки составляют принципиально необходимую нить, на которую нанизываются события антропогенеза, без них антропологу жить грустно. В целом методы датирования разделяются на относительные и абсолютные.

К относительным относятся стратиграфические и типологические методы, они позволяют оценить только последовательность событий, но не их точный возраст. Стратиграфия – наука об образовании и порядке напластования геологических отложений. В самом простом варианте логика стратиграфии элементарна: чем глубже что-то залегает в земле, тем оно древнее, чем ближе к поверхности, тем моложе. Бывают, конечно, случаи нарушения естественного залегания слоев (перекоп, обвал, размыв), отчего это простое правило выполняется не в обязательном порядке, но на то и геологи с археологами, чтобы распознать подвох. Сопоставляя схожие слои в разных местах, геологи делают выводы о синхронности, асинхронности и последовательности происходивших в древности событий.

Типологические методы позволяют сравнивать находки, происходящие из разных слоев. Наилучшим образом типология развита в археологии: слои с одинаковыми или очень похожими вещами условно считаются синхронными. Сейчас построены длинные типологические ряды для самых разных вещей, позволяющие датировать археологические слои иногда с точностью до нескольких лет. В меньшей степени типология применима по отношению к находкам останков живых существ – этому посвящены сравнительно-флористический и сравнительно-фаунистический методы, – поскольку изменения организмов в процессе эволюции совершаются, как правило, очень медленно. Погрешность тут может достигать даже миллиона лет. Тем не менее очень часто слои датируются только на основании биостратиграфии – науки о последовательном изменении фаун и флор во времени.

Абсолютные методы датирования позволяют получить точную дату. Подавляющая их часть – радиометрические: радиоуглеродный, калий-аргоновый, торий-урановый и другие. Они основаны на явлении радиоактивности химических элементов: за определенный период времени один изотоп элемента превращается в другой или даже в иной элемент. Поскольку период полураспада у разных элементов и изотопов разный, постольку разные методы имеют свои границы определения возраста. Например, радиоуглеродный метод дает наиболее точные датировки от современности до 30–40 тыс. лет назад.

Уголок занудства

Самый известный радиометрический метод – радиоуглеродный, или 14C: в живых организмах накапливаются изотопы 12C, 13C и 14C в той же концентрации, в какой они содержатся в атмосфере и биосфере, а после смерти стабильные изотопы 12C и 13C сохраняются, а нестабильный 14C постепенно распадается. Определяя содержание 14C в древней органике, зная изначальные концентрации и скорость распада, а также учитывая позднейшие загрязнения, можно определить время гибели организма. Кроме радиоуглеродного, есть множество иных методов, наилучший результат они дают при совместном использовании и взаимной проверке.

Из нерадиометрических методов абсолютного датирования очень широко используется термолюминесцентный. Весьма употребительна дендрохронология – дисциплина об определении возраста по кольцам деревьев. Известно, что каждый год ствол дерева прирастает на одно кольцо, а ширина колец зависит от погоды. В случаях, когда имеется большое количество хорошо сохранившейся древесины, можно построить последовательные серии колец для многих лет подряд, вплоть до нескольких тысяч лет.

Другим нерадиометрическим абсолютным методом является определение последовательности ленточных глин, накапливающихся год от года в некоторых спокойных северных водоемах. В зависимости от температуры в озерах более или менее интенсивно размножается планктон, оседающий затем на дно слоями разной толщины. По числу и рисунку полос этих слоев можно определить возраст предмета, упавшего на дно, с точностью до года.

Впрочем, в антропогенезе последние два метода почти не используются, поскольку антропологи обычно имеют дело с десятками, сотнями тысяч и миллионами лет – периодами, за которые любая древесина исчезла бесследно; ленточные же глины формировались не в тех областях, где жили наши предки.

Биосоциальная сущность человека позволяет применять к его исследованию социальные науки. Прежде всего это, конечно, археология – наука об образе жизни, социальном устройстве, материальной и духовной культуре прошлого. Люди в прошлом, как и сейчас, оставляли на Земле следы своего пребывания – причем иногда в самом прямом смысле. Люди жгли костры, делали орудия, строили жилища. Все это со временем разрушалось, но в земле сохранялись некоторые остатки – свидетельства этой жизни. Надо только их найти и суметь расшифровать. Иногда археологию понимают как “доисторию”, изучающую культуры, для которых неизвестны письменные свидетельства – до античности или до средневековья. В реальности же археологи часто изучают и письменные культуры, даже весьма близкие к нам по времени, – Античность, Средневековье и даже Новое время. При этом порой удается получить данные о таких элементах культуры, о которых не говорят никакие летописи. Впрочем, для нашей темы столь поздние времена не очень важны.

Оживляет пыльные археологические находки сравнительная этнология или этнография, хотя в антропогенезе ее применимость довольно спорна. Теоретически много данных может дать и психология, хотя на практике ее плодотворный контакт с антропологией пока как-то не состоялся.

Так, по фрагментам, собирается информация о прошлом Земли и прошлом человечества. Антропологи пытаются сложить из этих кусочков единую мозаику, грандиозную картину прошлого, восстановить былое во всех его деталях. Не все еще известно, возникают все новые вопросы, процесс познания продолжается.

Глава 3

Парад участников

Чтобы неподготовленный читатель с первых же страниц не запутался в обилии названий древних предшественников и предков человека и не захлопнул в сердцах книгу, полезно для начала провести парадный смотр (немало интересного можно найти также в таблицах в “Приложении” в конце второй книги).

Уголок занудства

Геохронологическая шкала подразделяется на иерархически подчиненные друг другу отрезки времени: эоны (эонотемы) делятся на эры (эратемы), те – на периоды (системы), периоды – на эпохи (отделы), а они, в свою очередь, – на века (ярусы). Наш эон – фанерозой, он делится на три эры: палеозой (кембрий, ордовик, силур, девон, карбон, пермь), мезозой (триас, юра, мел) и кайнозой. Практически вся история приматов укладывается в последний, каковой делится на три периода: палеоген, неоген и антропоген, который часто называется четвертичным периодом. Палеоген включает палеоцен, эоцен и олигоцен; неоген – миоцен и плиоцен; антропоген – плейстоцен и голоцен. Есть предложение выделить антропоцен, но пока эта эпоха не является формальной.

Тупайи Scandentia: современные похожие на белок существа, живущие в Юго-Восточной Азии; в современной классификации обычно не включаются в приматов, но явно их родственники.

Шерстокрылы Dermoptera: современные похожие на огромных летяг, но родственные лемурам существа, живущие в Юго-Восточной Азии; в современной классификации обычно не включаются в приматов, но явно их ближайшие родственники.

Плезиадаписовые, или плезиадапиформы, Plesiadapiformes: жили с нижнего палеоцена по верхний эоцен (65–42 млн лет назад) в Европе, Северной Америке и Азии. Ископаемые предки приматов.

Полуобезьяны, или “мокроносые”, Strepsirrhini, или Prosimii: примитивные приматы, преимущественно ночные, часто насекомоядные. Включают адаписовых, лемурообразных, лориобразных и руконожковых.

Адаписовые Adapiformes, или Adapoidea: жили с нижнего эоцена по верхний миоцен (56–7 млн лет назад) в Северной Америке, Европе, Северной Африке и Азии. Ископаемые полуобезьяны, предки современных лемуров.

Лемурообразные Lemuriformes: Мадагаскар; лориобразные Lorisiformes: Африка и Юго-Восточная Азия; руконожковые Chiromyiformes: Мадагаскар. Современные полуобезьяны, примитивнейшие из современных приматов.

Обезьяны, или “сухоносые”, Haplorrhini: высшие приматы. Более продвинутые, чем полуобезьяны, в том числе по строению мозга и поведению. Включают долгопятообразных и обезьян-антропоидов.

Долгопятообразные Tarsiiformes: специализированные ночные насекомоядные обезьяны, имеющие, однако, множество черт полуобезьян. Включают омомисовых и долгопятовых.

Омомисовые Omomyiformes: жили со среднего палеоцена по нижний миоцен (60–34 млн лет назад) в Северной Америке, Европе, Северной Африке и Азии. Ископаемые предки долгопятовых и, возможно, антропоидов.

Долгопятовые Tarsiiformes: современные долгопяты Юго-Восточной Азии, крайне своеобразные приматы.

Антропоиды, человекоподобные, или обезьяны в узком смысле, Anthropoidea, или Simiiformes: высшие обезьяны, почти всегда дневные и растительноядные. Ископаемые парапитековые Parapithecoidea, эосимиевые или амфипитековые Eosimiiformes, проплиопитековые Propliopithecoidea и плиопитековые Pliopithecoidea – предки современных обезьян-антропоидов: широконосых и узконосых.

Широконосые Platyrrhini, или Ceboidea: обезьяны-антропоиды Центральной и Южной Америки.

Узконосые Catarrhini: обезьяны-антропоиды Африки и Азии, в древности также Европы. Включают мартышкообразных и человекообразных.

Мартышкообразные Cercopithecoidea: мартышковые Cercopithecinae и толстотелые Colobinae. Обезьяны Африки и Азии, в древности также Европы. Преимущественно древесные, реже наземные, почти полностью растительноядные.

Человекообразные, или гоминоиды, Hominoidea, или Anthropoidea, или Anthropomorpha: Африка и Азия, в древности также Европа. Крупные обезьяны с развитым интеллектом, без хвоста, древесные и редко наземные, почти полностью растительноядные. Проконсуловые Proconsulidae – древнейшие человекообразные и предки прочих человекообразных. Гиббоны Hylobatidae – сравнительно мелкие, сугубо древесные растительноядные обезьяны Юго-Восточной Азии. Орангутаны Pongo pygmaeus – крупные рыжие жители Суматры и Калимантана, сугубо древесные вегетарианцы. Гориллы Gorilla gorilla – самые крупные современные обезьяны, живущие в Западной и Центральной Африке, почти наземные, растительноядные. Обыкновенный шимпанзе Pan troglodytes и карликовый шимпанзе, или бонобо, Pan paniscus – среднего размера обезьяны Западной и Центральной Африки, преимущественно древесные и в основном растительноядные, самые близкие родственники человека.

Гоминиды Hominidae: в узком смысле включают прямоходящих приматов с маленькими клыками (в нашей книге мы будем использовать именно такое определение); в широком – также горилл и шимпанзе.

Австралопитековые Australopithecinae: гоминиды с множеством типичных обезьяньих черт, с обезьяньей головой и наполовину человеческим телом; иногда выделяются в самостоятельное семейство Australopithecidae. Орудийная деятельность зачаточная.

Ранние австралопитеки: 7–3,9 млн лет назад, Африка. Обладали наиболее примитивным строением, большинство черт обезьяньи. Каменных орудий труда не изготовляли. Выделяют несколько родов и видов ранних австралопитеков: Sahelanthropus tchadensis (7,2–6,8 млн лет назад, Чад), Orrorin tugenensis (5,88–5,72 млн лет назад, Восточная Африка), Ardipithecus kadabba (5,8–5,2 млн лет назад, Восточная Африка), Ardipithecus ramidus (4,51–4,32 млн лет назад, Восточная Африка), Australopithecus anamensis (4,2–3,9 млн лет назад, Восточная Африка).

Грацильные австралопитеки Australopithecus: 3,8–2,0 млн лет назад, Африка. Имели сравнительно небольшие размеры, обезьянью голову, множество обезьяньих черт строения руки, но были полностью прямоходящими. Каменных орудий труда почти никогда не изготовляли (кроме позднейших). Australopithecus afarensis (3,8–2,9 млн лет назад, Восточная Африка, наш прямой предок), Australopithecus bahrelghazali (3,58 млн лет назад, Чад), Australopithecus deyiremeda (3,5–3,3 млн лет назад, Восточная Африка), Kenyanthropus platyops (3,5–3,2 млн лет назад, Восточная Африка), Australopithecus africanus (3,1–2,6 млн лет назад, Южная Африка), Australopithecus garhi (2,5 млн лет назад, Восточная Африка, изготовлял каменные орудия труда), Australopithecus sediba (2 млн лет назад, Южная Африка, имел примерно половину признаков Homo, так что может быть описан и как Homo sediba).

Массивные австралопитеки, или парантропы, Paranthropus: 2,6–1,0 млн лет назад, Африка. Очень массивно сложенные специализированные формы с крайне развитыми челюстями, маленькими передними и огромными задними зубами, при этом полностью прямоходящие. Могли изготовлять каменные орудия труда. Paranthropus aethiopicus (2,7–2,3 млн лет назад, Восточная Африка), Paranthropus boisei (2,5–1,1 млн лет назад, Восточная Африка), Paranthropus robustus (2,0–1,5 млн лет назад, Южная Африка).

Гоминины Homininae: гоминиды без обезьяньих черт, включают все последующие группы.

Ранние Homo”: первые представители нашего рода, не очень сильно отличавшиеся от австралопитеков, но имевшие в среднем больший мозг и изготовлявшие каменные орудия труда. Обычно выделяют два следующих вида.

Люди рудольфскиеHomo rudolfensis: 2,4–1,85 млн лет назад, Африка; культура галечная. Возможно, уже на этой стадии некоторые люди впервые покинули Африку и дошли до Кавказа.

Люди умелыеHomo habilis: 1,85–1,65 млн лет назад, Африка; культура галечная.

Люди Диналеди”, или наледи, Homo naledi: нет датировки, Южная Африка. Отнесение этого вида к “ранним Homo” оправдано морфологически, но его статус и эволюционное положение пока неясны.

Преархантропы, или “люди работающие”, Homo ergaster: 1,65–1,4 млн лет назад, Африка; культура галечная, появляется ранний ашель. Специфически обезьяньи черты уже исчезли, пропорции тела современные, но череп примитивный, средний объем мозга равен минимальному нормальному у современного человека.

Архантропы, или “люди прямоходящие”, или эректусы Homo erectus: 1450–400 тыс. лет назад, Африка, Азия, Европа; культура средний ашель. Расселились по тропической зоне Старого Света, дошли до Явы и даже Флореса. Примитивные люди с размером мозга вдвое-втрое большим, чем у шимпанзе и австралопитеков, но в полтора раза меньшим, чем в среднем у современных людей. Региональные варианты имеют массу названий: питекантропы (Ява), синантропы (Китай), атлантропы (Северная Африка), довольно моден синоним Homo antecessor (Европа). Название “прямоходящий” не значит, что эти люди были первыми прямоходящими, просто для Э. Дюбуа, давшего название в XIX веке, это было так; сейчас ясно, что прямохождение возникло за 5–6 млн лет до архантропов.

Препалеоантропы, или “люди гейдельбергские”, или гейдельбергенсисы, Homo heidelbergensis: 700–130 тыс. лет назад, Африка, Азия, Европа; культура поздний ашель. Расселились в числе прочего в зоны умеренного климата. Строение черепа по-прежнему очень примитивное, но объем мозга почти достиг современных средних значений. В некотором роде сборная солянка, потому что на этом этапе географически удаленные варианты могут сильно отличаться друг от друга. Европейские гейдельбергенсисы являются предками неандертальцев; африканские – предки сапиенсов – часто описываются под собственными названиями вроде Homo rhodesiensis.

Денисовцы: ?800 –?30 тыс. лет назад, Азия. Загадочные люди, известные почти только по ДНК из Денисовой пещеры на Алтае. Возможно, это азиатские гейдельбергенсисы. Не были нашими прямыми предками, но могли ограниченно смешиваться с первыми сапиенсами.

Люди флоресские”, или “хоббиты”, Homo floresiensis: ?900–190–50 тыс. лет назад, Индонезия, остров Флорес. Карликовые потомки яванских архантропов-питекантропов, пережившие всех близких родственников и вымершие, возможно, от рук сапиенсов.

Неандертальцы, или палеоантропы Европы и Западной Азии, Homo neanderthalensis: 130–28 тыс. лет назад, Европа и Западная Азия; культуры микок и мустье. При наличии примитивных и специализированных черт строения имели мозг не меньший, чем у современных людей. Развили крайне примитивные формы искусства, погребали умерших, были самыми главными хищниками своего времени. Не были нашими прямыми предками, но могли ограничено смешиваться с первыми сапиенсами.

Палеоантропы Африки Homo helmei, Homo sapiens idaltu: 200–50 тыс. лет назад, Африка. Предки людей разумных, имевшие почти современное строение, но сохранявшие и архаичные черты, доставшиеся от предков; в силу переходности часто расцениваются как “архаичные Homo sapiens” или даже называются “анатомически современными Homo sapiens”. Выходившие за пределы Африки около 100 тыс. лет назад Homo sapiens palestinus на Ближнем Востоке могли смешиваться с неандертальцами, но эти первые внеафриканские миграции, скорее всего, окончились вымиранием. Одна или две миграции, имеющие прямое отношение к современным внеафриканским людям, были совершены предположительно от 100 до 45 тыс. лет назад, причем более вероятны поздние цифры.

Современные люди, или “люди разумные”, Homo sapiens: 50 тыс. лет назад – современность (древнейшие представители – кроманьонцы: 50–10 тыс. лет назад, эпоха верхнего палеолита), вся планета. Собственно, мы.

Особая обезьяна

Часть вторая, ученая, из коей любознательный Читатель узнает, почему он обезьяна и почему он человек

Глава 4

Что в нас обезьяньего?

Многим людям кажется, что человек очевидно уникален. Как же – он безволос, двуног, невероятно умен, по крайней мере, это он рассуждает о своей уникальности, а не лемуры с мартышками. Однако зоология неумолима.

Принадлежность человека к отряду приматов подтверждается всем сводом наших знаний как о человеке, так и о приматах – генетикой, биохимией, эмбриологией, анатомией, этологией и палеонтологией. По подавляющему большинству параметров человек ближе всего к шимпанзе, по меньшему – к горилле, еще дальше от нас орангутан, еще дальше – гиббоны. Более того, по массе свойств шимпанзе больше похожи на людей, чем на орангутанов, как бы странно это ни звучало для человека, обращающего внимание лишь на внешность. Внешность, как известно, обманчива. На самом деле важнее всего генетика – именно в ДНК содержится самая наша суть.

В настоящее время геномы всех крупных человекообразных обезьян полностью расшифрованы, так что порядок их эволюционного ветвления и масштаб отличий известны. У шимпанзе с человеком общий геном составляет от 94 до 99 % в зависимости от способа подсчета. Показательно, что, поскольку мужчина от женщины отличается на целую хромосому, а она составляет больше 2 % генома, то генетические различия мужчин и женщин человека больше, чем мужчин и самцов шимпанзе! Кроме того, при желании можно найти двух людей, отличия которых по числу неодинаковых нуклеотидов – кирпичиков ДНК – будут сопоставимы по масштабу с разницей между шимпанзе и человеком. В среднем же два человека отличаются примерно на 0,1 % генома при подсчете по нуклеотидам, а человек и шимпанзе – на 1 %.

Однако стоит помнить, что разница разнице рознь: примитивный подсчет отличий по нуклеотидам не дает адекватного представления о сути этих отличий. Различие между человеком и шимпанзе кроется в кодирующих последовательностях, а между двумя людьми – большей частью в незначимом генетическом мусоре. К тому же у обыкновенного шимпанзе на одну хромосому больше, чем у человека. У предков человека две хромосомы слились вместе; последствия такого контакта можно видеть в морфологии второй хромосомы человека – на ее длином плече есть остатки центромеры и рудиментарные теломеры. Набор генов от этого, впрочем, никак не поменялся, информация осталась принципиально той же, что на двух хромосомах человекообразных обезьян, но возможности скрещивания человека и шимпанзе, по-видимому, оказались утерянными (все, на самом деле, не так однозначно, но к этому мы еще вернемся).

Иногда в литературе можно встретить утверждение, что якобы у бонобо две хромосомы “частично слиты” и потому эти приматы представляют наглядный переход от шимпанзе к человеку. Автор этих строк, некритично восприняв информацию, некоторое время тоже был носителем сего заблуждения. Однако в действительности бонобо не отличается в этом отношении от своего более крупного собрата – обыкновенного шимпанзе.

Прямой результат работы генов – белки, а те, в свою очередь, порождают и прочую биохимию. Учитывая помянутое сходство генетики, неудивительно, что биохимические показатели человека и большинства приматов чрезвычайно сходны. Всем известно, что у человека и других обезьян, в том числе, конечно, и шимпанзе, совпадают группы крови. Даже слово “резус”, которое у большинства людей ныне твердо ассоциируется с фактором крови, на самом деле обозначает вид макаки. Впервые резус-фактор крови был открыт именно у макак-резусов, а после выяснилось, что такой же имеется и у людей.

Кстати, о почках…

В свое время производились опыты по переливанию крови как от человека к шимпанзе, так и от шимпанзе человеку, делались даже пересадки печени, сердца, почек и костного мозга от павиана человеку. Эксперименты по пересадке почек от шимпанзе людям проходили поначалу вполне успешно, и почки работали, иногда месяцами. К сожалению, большинство таких попыток заканчивались довольно скорой – в течение двух-трех месяцев – смертью пациентов, но не из-за несовместимости органов, а из-за инфекций (ведь иммунитет искусственно подавлялся для предотвращения отторжения) и, видимо, в немалой степени от того, что пересадки делались людям с крайними формами заболеваний, приведших, собственно, к необходимости ксенотрансплантаций. Кроме прочего, стоит учесть, что подобные операции проводились давно, когда и пересадки органов от человека человеку далеко не всегда оказывались успешными. Тем не менее в одном случае пациентка – школьная учительница – прожила после операции 9 месяцев, причем отторжения шимпанзиных почек за это время так и не произошло.

Фундаментальные биохимические показатели определяются так называемыми структурными генами, однако гораздо важнее гены регуляторные, задающие активность выработки белков и скорости роста. А темпы развития отражаются прежде всего в эмбриологии.

Эмбрионы и плоды человека и шимпанзе чрезвычайно сходны вплоть до рождения. Не говоря уж о жабрах и хвосте на ранних стадиях развития, у обезьяньего и человеческого эмбрионов почти идентичны общие размеры и пропорции. Например, первичная шерсть лануго у человеческого плода сохраняется до рождения, а иногда и дольше. После рождения разница между человеком и шимпанзе начинает усиливаться: у шимпанзе быстрее растут руки и челюсти, у человека – ноги, мозг и мозговой отдел черепа. Сами элементы строения те же самые, но скорости их роста разные. Тут мы можем, кстати, уловить одну из самых важных особенностей человека – позднее зарастание швов черепа, позволяющее расти головному мозгу. Результат эмбрионального развития – анатомические структуры взрослого индивида. И тут многие готовы воскликнуть: “Ага! Вот тут-то мы и видим очевидную разницу!” Но не все так просто.

Анатомически человек, понятно, заметно отличается от обезьян, но эта разница бросается в глаза, только если рассматривать человека в целом. Если же сравнение проводить по отдельным органам, костям или тканям, то отличия найти будет не так легко, разница только в пропорциях, но не в строении как таковом. Это создает трудности для палеонтологов, поскольку в ископаемом виде обычно сохраняются лишь отдельные элементы скелета. Например, отличить плечевую кость человека и того же шимпанзе бывает сложно даже специалисту; то же можно сказать и о многих других костях и органах. Моляры человека настолько похожи на зубы орангутанов, что некоторые ископаемые находки из Юго-Восточной Азии и Индонезии остаются неопределенными – не то человек, не то орангутан. Примером может служить моляр из пещеры Там-Хан во Вьетнаме. А ведь орангутан далеко не самый похожий на человека примат!

Кто-то скажет: “Ну как же – человек лыс, а любая обезьяна волосата!” Однако концентрация волосяных луковиц на коже у человека и обезьян почти одинакова: внешне очевидная разница по степени “волосатости” обусловлена почти исключительно толщиной волос – тонких и часто обесцвеченных у людей и толстых и пигментированных у обезьян.

Анатомическое сходство человека и других приматов настолько велико, что в Средние века и в начале эпохи Возрождения врачи изучали человеческое строение на обезьянах. Скажем, двенадцатиперстная кишка получила свое замечательное биометрическое название по размерам у макаки, а не человека. Собственно, проще перечислить отличия человека от других приматов, чем выписывать их многочисленные сходства.

Поведение человека может показаться резко отличным от поведения обезьян, но лишь до того момента, как мы начинаем подробно изучать его у приматов или обращать внимание на обезьяньи черты собственного образа жизни. Корректно проведенные сравнительные исследования показывают, что у человека и высших человекообразных обезьян принципиально сходны формы заботы о детях-детенышах, формы обучения трудовым операциям, половое поведение, виды приветствия (включая рукопожатие и похлопывание по плечу), способы выражения эмоций – страха, агрессии, недовольства, расположения, удовольствия, скуки, радости, озабоченности и прочих. Шимпанзе могут кооперироваться для охоты, изготовляют и используют орудия труда, умеют шутить (хотя и довольно топорно по человеческим меркам), обманывать и ругаться, имеют представление о прошлом, настоящем и будущем, проявляют прогностические способности, обладают отличной памятью, легко обучаемы. Гориллы в природе менее креативны, поскольку слишком велики и сильны, но в неволе проявляют удивительный интеллект. В родных лесах за ними никто не замечал использования орудий, кроме разве что пары случаев, но когда в зоопарках стали устанавливать камеры скрытого наблюдения, выяснилось, что гориллы занимаются этим с завидной регулярностью.

В условиях неволи орангутаны, гориллы и шимпанзе могут выучивать множество слов, причем воспринимают их разными способами, в том числе на слух. Хотя строение гортани не позволяет им произносить слова членораздельно, обезьян неоднократно обучали речи с помощью демонстрации геометрических фигур, компьютерной клавиатуры и жестового языка. Примечательно, что обезьяны могут учиться и друг от друга, например детеныши у матерей, хотя без помощи человека эти навыки затухают в следующем поколении. Очевидно, обезьянам для общения между собой вполне хватает иных средств. Самые талантливые обезьяны выучивали до трех тысяч слов и могли выражать разнообразные понятия на уровне двух-трех-, а по мнению некоторых ученых – даже пяти-шестилетних детей.

Тут мы можем выявить одно из ключевых отличий поведения обезьян от человеческого: обезьяны не такие зануды, как человек, они быстро теряют интерес, переключаются на новые темы, менее усидчивы и не могут долго сосредотачиваться и концентрировать внимание. Кстати, все те же свойства характеризуют человеческого ребенка до семи лет, почему и в школу люди идут именно в этом возрасте. До семи лет человек – все та же обезьянка. Обезьяны не учатся и, что важнее, – не учат долго и целенаправленно, ограничиваясь больше наблюдением между делом за поведением других обезьян и людей. В частности, у шимпанзе довольно туго обстоят дела с указующим жестом, они редко применяют его, хотя для людей он универсален и его адекватно воспринимают даже совсем маленькие дети.


Палеонтологические данные свидетельствуют о достаточно плавной эволюции приматов во всем их многообразии. Этому вопросу в нашем изложении посвящены отдельные главы, здесь можно указать лишь, что вопрос о “недостающем звене” уже более полувека не стоит в научной повестке дня; сейчас известны и подробно описаны практически все переходы от непосредственных предков приматов до современного человека. Это, конечно, не значит, что все вопросы палеонтологии человека уже решены, но общая схема эволюции приматов с появлением новых находок уже давно не меняется, а только обретает все более четкие очертания.

Глава 5

Что отличает нас от обезьян?

Все же, сколько бы мы ни были похожи на своих родственников, нельзя отрицать, что есть и сугубо человеческая специфика. Для основных столпов человечности даже есть красивый термин “гоминидная триада”. Она включает, во-первых, прямохождение, или бипедию, и весь комплекс морфологических адаптаций к ней; во-вторых, кисть, приспособленную не только к использованию, но и к изготовлению орудий; в-третьих, высокоразвитый мозг и сложное поведение.

На самом деле, конечно, сугубо человеческие свойства гоминидной триадой не ограничиваются. К ней можно добавить такой надежный признак, как маленькие клыки, не выступающие за линию других зубов. Более того, видимо, именно эта особенность была первой в ряду тех, что определенно повели к появлению человека.

Современные и ископаемые человекообразные обезьяны имеют крупные клыки, далеко выступающие за край резцов и премоляров. Кроме того, для успешного смыкания зубных рядов имеются диастемы – промежутки между резцом и клыком на верхней челюсти и между клыком и премоляром на нижней. Чтобы огромному верхнему клыку было где поместиться, изменена форма первых нижних премоляров, они асимметричные – секториальные. Изменения размеров клыков можно подробно прослеживать, поскольку зубы – это то, что чаще всего сохраняется от приматов. Некоторая редукция клыков наблюдается у дриопитековых и сивапитековых приматов. Впрочем, еще вопрос, какой эволюционный процесс преобладал – редукция или увеличение клыков? Дело в том, что древнейшие человекообразные – проконсулы – имели не такие уж большие клыки. Если посчитать по модулю отличия размеров клыков в парах проконсул – шимпанзе и проконсул – человек, то в первой паре разница будет больше. Это значит, что если мы за меру прогрессивности будем брать размер отличий от предка, то клыки шимпанзе и гориллы прогрессивны, а наши – примитивны!

Древнейшие известные прямоходящие обладали клыками сравнительно небольшими по обезьяньим меркам, но внушительными в человеческих масштабах. Размеры клыков австралопитеков помещают их посередине между шимпанзе и человеком, причем в хронологическом ряду австралопитеков мы можем видеть закономерное приближение именно к человеческим значениям.

Большой вопрос – уменьшение клыков вызвало изменения в поведении или, напротив, этологические сдвиги привели к редукции устрашалок во рту. Как бы там ни было, с уменьшением размеров клыков в группах обезьян должна была возникнуть проблема недопонимания, поскольку демонстрация маленьких клыков далеко не столь впечатляюща: одно дело, если скалится павиан, чьи клыки длиннее, чем у иного леопарда, а другое – австралопитек, у которого не поймешь – он злится или просто дружелюбно улыбается? Но выражать свои богатые чувства хочется, что и привело к усилению и развитию других коммуникационных способов – мимики, жестикуляции и речи. Все они на порядок лучше развиты у человека, нежели у других приматов. Конечно, не стоит абсолютизировать значение именно клыков, были и другие причины. Но уменьшение размеров клыков имело грандиозные последствия, и его нельзя недооценивать.

Прямохождение

Широко известно полуанекдотическое определение человека как “двуногого без перьев”. Но человеку мало двуногости – он еще и ходит выпрямившись, в отличие от, скажем, птиц или тушканчиков, позвоночник которых расположен горизонтально. Прямохождение обеспечивается целым рядом специальных признаков.

Первый – положение большого затылочного отверстия на затылочной кости, через которое спинной мозг соединяется с головным. У четвероногих животных оно находится в задней части основания черепа и повернуто назад, так как позвоночник прикрепляется если и не строго сзади, то по меньшей мере наискосок; у прямоходящих существ отверстие расположено в центре длины основания черепа и открывается вниз, так как позвоночник подходит снизу, а передняя и задняя части черепа должны быть уравновешены. Соответственно, существенно меняются и места прикрепления шейных и спинных мышц, конфигурация затылка, укорачивается основание черепа.

Вариант промежуточного типа известен уже у Sahelanthropus tchadensis около 7 млн лет назад, заметно более продвинутый – у Ardipithecus ramidus 4,4 млн лет назад, а окончательно “прямоходящий” – у Australopithecus afarensis 3,5 млн лет назад.

Позвоночник четвероногих получает примерно равную нагрузку спереди и сзади, отчего размеры позвонков вдоль длины более-менее одинаковы, а центральная часть представляет собой равномерную дугу – аналог арочного моста. Крестец – часть позвоночника, к которой крепится таз, – имеет сильно вытянутую узкую форму, а его позвонки могут либо вообще оставаться независимыми, либо сливаться не полностью. У прямоходящих позвоночник ориентирован вертикально, а потому имеет характерные изгибы – лордозы вперед и кифозы назад; в итоге вся конструкция становится более-менее устойчивой и работает как пружина, а нагрузка стучит не строго по нижележащим позвонкам, а частично распределяется в стороны. Размеры позвонков у прямоходящих закономерно увеличиваются сверху вниз, самыми крупными оказываются нижние поясничные и верхние крестцовые, так как тут расположен центр тяжести организма. Крестец широкий и короткий, его элементы капитально сливаются между собой. У австралопитеков Australopithecus afarensis и Australopithecus africanus изгибы, вероятно, были как у современного человека, но некоторые детали строения позвонков (например, вытянутость тела позвонков спереди назад) сближают их с обезьянами.


Обезьяны и все-все-все

Рис. 1. Основание черепа и большое затылочное отверстие шимпанзе (а), австралопитека (б) и человека (в).


Строение крестца у австралопитеков – начиная с Ardipithecus ramidus и Australopithecus afarensis – типично гоминидное. Конечно, не стоит абсолютизировать помянутые признаки. Например, у гориллы есть поясничный лордоз, но его появление связано не с прямохождением, а с огромным весом животного.

Строение таза очевидно разное при разных типах передвижения: у четвероногих обезьян таз узкий, высокий и вытянутый вдоль позвоночника, а у прямоходящих – широкий и низкий. Конечно, стоит помнить, что форма таза обусловлена еще и нуждами деторождения, но, судя по тому, что у австралопитеков голова была фактически обезьянья (а проблемы при родах создает как раз голова – она большая и плохо сжимается), а таз – человеческий, фактор локомоции играл определяющую роль.

Уголок занудства

На человеческой тазовой кости отлично выражена передняя нижняя подвздошная ость (костный выступ на переднем крае таза, читатель без труда может найти у себя верхнюю подвздошную ость – на ней держится ремень, нижняя скрыта мышцами; у обезьян нижней подвздошной ости фактически нет), а ушковидная поверхность и подвздошная бугристость, обеспечивающие соединение с крестцом, занимают значительную площадь. Седалищный бугор у человека могуч, а седалищная ость длинна и остра, тогда как у других обезьян первый короток, а второй вообще почти нет.

На передней нижней подвздошной ости крепится прямая мышца бедра (часть четырехглавой мышцы бедра), разгибающая колено. Но она же сгибает бедро в тазобедренном суставе, то есть поднимает ногу вперед (или опускает тело, если нога прочно стоит на земле). Получается противоречие: одна и та же мышца одновременно держит тело вертикально в одном суставе, но наклоняет его в другом. У четвероногих животных такой странной проблемы нет, ведь у них нога вертикальна, а тело горизонтально, мышца совершенно логично выполняет шаг вперед. Чтобы нога у человека была выпрямлена и в тазобедренном суставе тоже, четырехглавой мышце бедра противостоят целых три ягодичные мышцы – большая, средняя и малая, которые разгибают бедро, удерживая тело в вертикальном положении. Особенно преуспевает в этом большая ягодичная мышца. Но у обезьян она расположена не сзади, а сбоку и занята иным делом – отводит бедро в сторону, а потому развита умеренно, почему и зад у обезьян тощий, совсем нечеловеческий, а выпрямить ноги они не могут. Кстати, совершенно обезьяний вариант типичен для новорожденных младенцев. Поэтому они лежат в позе “куренка табака” – растопырив в стороны согнутые ножки, а свести вместе их практически не могут. Только потом четырехглавая мышца “переползает” на человеческое место – в “пятую точку”; если же по какой-то причине замедленный рост сухожилий и фасций препятствует этому перемещению, могут возникнуть проблемы с умением ходить.

Раз у человека пропала отводящая функция большой ягодичной мышцы, должна быть какая-то компенсация: отведением бедра в сторону у него усиленно занимаются верхняя и нижняя близнецовые мышцы, отчего место их крепления на седалищной кости чрезмерно увеличивается и становится седалищной остью. Но еще важнее человеку приводить бедро, то есть сводить ноги вместе, чтобы стоять прямо; этим, среди прочих, заняты квадратная мышца бедра и большая приводящая мышца, крепящиеся к седалищному бугру, который оказывается заметно крупнее, чем у обезьян.

Тазовые кости сохраняются плохо, но радует, что у Ardipithecus ramidus 4,4 млн лет назад мы видим строго промежуточный “четвероного-двуногий” вариант – одновременно и широкий, и вытянутый в длину. У Australopithecus afarensis 3,5 млн лет назад таз был не только полностью “прямоходящий”, но по расширенности пропорций даже более человеческий, чем у современного человека. Это не значит, что мы сколько-нибудь вернулись к четвероногости. Ясно, что сей парадокс связан с так называемыми аллометрическими закономерностями. При изменении общих размеров тела разные части тела меняются неодинаково: при росте от малых размеров к средним длиннотные размеры увеличиваются быстрее, чем широтные (а вот если увеличивать человека до масштабов слона, то, наоборот, широтные начнут расти быстрее, иначе скелет не выдержит огромного веса). Поэтому от австралопитеков к нам и высота таза несколько подросла.


Обезьяны и все-все-все

Рис. 2. Таз проконсула (а), шимпанзе (б), австралопитека (в) и человека (г).


Строение длинных костей ног отражает бипедию, наверное, лучше всего. У четвероногих приматов руки длиннее ног, колени разведены в стороны “колесом” и всегда полусогнуты, стопы разнесены друг от друга. Слабые мышцы не могут свести ноги вместе, да и форма нижних концов бедренных костей этому никак не способствует, туловище как бы “проседает”. Так как стопы при двуногом хождении оказываются далеко от центра тяжести, обезьяна компенсирует неустойчивость сильными боковыми колебаниями туловища, двигается очень неуклюже, враскачку, характерной походкой заправского бывалого морячка и того гляди норовит помочь себе руками. У прямоходящих ноги длинные, тазобедренные суставы сильно разведены друг от друга вследствие большой ширины таза, а колени сведены вместе, так что бедренные кости при взгляде спереди наклонены, а кости голени вертикальны, стопы сближены. Колени выпрямлены и при взгляде сбоку.

Более-менее бипедальное строение бедренных костей известно начиная с Orrorin tugenensis 5,88 млн лет назад.

Уголок занудства

У прямоходящих меняются места прикрепления и направления действия ягодичных и медиальных мышц, что очевидным образом отражается на рельефе как таза, так и костей ног. Новую форму приобретают верхний и нижний концы бедренной кости, а также межмыщелковое возвышение большой берцовой кости и поверхности голеностопного сустава. Шейка бедренной кости у человека длинная и ориентирована более вертикально; у обезьян она короткая и горизонтальная. Мыщелки бедра у человека повернуты относительно длинной оси кости, дабы колени могли сходиться, тогда как у обезьян они смотрят ровно вниз.

Большая ягодичная мышца обезьян отводит ногу вбок, а не выпрямляет ее. Также у них слабы мышцы медиальной группы бедра, отчего обезьяна не может свести ноги вместе, когда стоит на двух ногах. У человека эта способность развита несравненно сильнее, поэтому и соответствующие мышцы могучи. Это ярко отражается во внешнем виде: у шимпанзе бедро заметно сужается к тазу, а у человека оно чем выше, тем толще. Мышцы медиальной группы присоединяются к шероховатой линии на задней стороне бедренной кости, отчего у обезьян эта поверхность почти ровная, а у человека линия обычно развита в виде мощного костного гребня – пилястра. Показательно, что при врожденных параличах пилястр у человека не формируется, поскольку мышцы не используются и не воздействуют на кости. Большая ягодичная мышца у человека расположена сзади и крепится на небольшом участке в верхней части бедренной кости – на ягодичной бугристости, а у шимпанзе и гориллы она охватывает бедро сбоку и крепится намного ниже и почти по всей длине диафиза бедренной кости.

Строение стопы – отличный показатель типа передвижения, хотя в ископаемом виде эта часть тела сохраняется плохо. Четвероногие обезьяны имеют плоскую стопу с длинными изогнутыми подвижными пальцами, приспособленными для цепляния за ветви. Особенно выделяется большой палец, сильно оттопыренный в сторону, способный хватать даже лучше, чем большой палец руки. Это отражается в большей длине его мышц и характерной форме суставов.


Обезьяны и все-все-все

Рис. 3. Стопа шимпанзе (а), австралопитека (б) и человека (в).


У прямоходящих продольный и поперечный своды (подъемы) стопы выражены хорошо, что позволяет перераспределять нагрузку тела более равномерно: половина на пятку, половина на пять головок плюсневых костей. Если для простоты расчета прикинуть, что человек весит 100 кг, то каждой ноге достается по 50 кг, а своды делят их так, что на пятку и переднюю часть приходится по 25 – условно по 5 кг на каждую плюсневую кость (в реальности, благодаря поперечному своду, на первую приходится львиная доля, немало и на пятую, а на три средних совсем чуть-чуть). Без сводов же – при плоскостопии – все 50 кг будут ударять в одну точку – переднюю часть пяточной кости, куда нагрузка в норме вообще не должна прилагаться. Нога будет болеть. У четвероногой же обезьяны и без сводов на каждую ногу будет ложиться по четверти веса, при общем весе 100 кг – по 25 кг, как у нас на каждую пятку, что вполне терпимо.

У двуногих пальцы стопы прямые, короткие, способные легко отгибаться наверх; большой палец не отведен в сторону и малоподвижен, а его суставы плоские; все плюсневые связаны мощными поперечными связками, чтобы не расползались в стороны.

Превосходство над Винни-Пухом, или Как все же украсть мед?

Тва и эфе любят мед.

Почему? Кто поймет?

Только чтоб его достать,

Надо ножки им сгибать.

В журнале Национальной американской академии наук в 2013 г. вышла статья, посвященная способностям людей к древолазанию (Venkataraman et al., 2013). Исследователи наблюдали за тем, как забираются на деревья представители разных экзотических племен охотников-собирателей. Особое внимание было обращено на пигмеев Центральной Африки, которые в поисках меда (чего же еще?!) регулярно карабкаются на высоту до полусотни метров (в статье приводится удивительно точная цифра 51,8; интересно, как ее измеряли?). Правда, пчелы тоже нечасто селятся на такой верхотуре, так что в среднем пигмеям приходится лезть только до отметки 19,1 м, что, конечно, тоже немало. В необоримом стремлении к меду доблестные конкуренты Винни-Пуха регулярно повторяют его способ спуска, так что, например, у пигмеев ака на падения с деревьев приходится 6,6 % смертности. Заметно успешнее аэта с Лусона, у которых аналогичная цифра составляет 1,7 % (а может, на Филиппинах просто мед правильнее, пчелы ниже гнездятся или веток на деревьях больше?). Но всех превзошли угандийские пигмеи тва. Они не падают никогда! Видимо, любят мед больше всех. В качестве контроля были взяты соседи тва – бакинга, “нелазающие земледельцы”, как они определены в статье, а также филиппинские собиратели аэта и земледельцы манобо.

Для того чтобы разобраться, как сии феноменальные способности тва отражаются на их ножках, был использован метод ультрасонографии. Измерялись длина мышечных волокон в мышцах ноги и углы сгибания суставов ноги. Длина волокон у тва и аэта оказалась заметно выше, чем у бакинга и манобо. Голеностопный сустав у собирателей сгибается намного лучше, чем у земледельцев, почти столь же сильно, как у шимпанзе. Обезьяны при взбирании на деревья сгибают ногу в среднем на чуть больший угол, чем это уже опасно для связок нетренированного (“индустриализированного”, по терминологии статьи) человека. Пигмеи при древолазании тоже попадают в “зону риска”, но редко превосходят опасные для горожанина величины сгибания лодыжки.

Авторы исследования померили также целых шесть больших берцовых костей пигмеев из леса Итури в поиске неких костных особенностей, позволяющих им столь сильно сгибать ногу при древолазании и столь успешно доставать мед. Измерялась, правда, почему-то “передняя дистальная ширина” этой кости (классики остеометрии плакали бы на этом месте). График получился на удивление непоказательный: собиратели занимают на нем крайнее положение вместе с “мальчиком из Нариокотоме” и южноафриканскими грацильными австралопитеками, в средней позиции находятся земледельцы с восточноафриканскими австралопитеками, а противоположный край оккупирован шимпанзе и гориллами.

Выводом из всего этого стало утверждение, что способности к древолазанию не обязательно отражаются на костях, а могут иметь основу в мышечных особенностях. Отсюда уже следует заключение, что мы можем недооценивать способности древних гоминид (в частности, австралопитеков) к древолазанию, рассматривая лишь их кости.

Красивые выводы! Но

Во-первых, кто бы сомневался! Ясно, что на костях отражается далеко не все. Во-вторых, выводы звучат так, как будто пигмеи вообще живут на деревьях, а шимпанзе постоянно ходят прямо. А ведь на графике средний угол сгибания ноги у пигмеев все же недотягивает до такового у шимпанзе. Невозможно промолчать и о методе определения угла: измерялись фотографии, сделанные со случайного ракурса, от точек, определенных фактически произвольно. Например, на приведенной фотографии точка на колене взята, несмотря на надетые штаны! А ведь для измерения угла крайне важна ориентация объекта и точка зрения. При минимальном смещении искажение будет в несколько градусов – сопоставимое с обнаруженными различиями. Да и количество измерений было крайне малым. Далее: в исследовании было задействовано всего 6 костей современных пигмеев, причем не тех, кого наблюдали вживе. Вовсе не факт, что те пигмеи, чьи кости были исследованы, лазали по деревьям (может, это были женщины, например). Вообще-то, давно известен, скажем, замечательный “комплекс положения на корточках”. Когда человек много сидит на корточках, на всех костях таза и ноги появляются характерные изменения суставных поверхностей. В принципе, при сидении на корточках тоже происходит чрезмерное сгибание суставов, как и при древолазании. Думается, что у всех пигмеев поголовно этот комплекс развит в полной мере, ибо стульев у них не замечено. Запросто может быть, что развитие “комплекса положения на корточках” заметно способствует усиленному сгибанию стопы при лазании по деревьям. Взятые для контроля “индустриализированные” люди, ясно, такого комплекса не имеют, так что их способности к сгибанию ног вовсе не показательны. Думается, если бы были исследованы йоги, циркачи или гимнасты, у них способности были бы не хуже пигмейских. А уж если бы под наблюдение попали студенты биофака МГУ осенью, в сезон созревания яблок вокруг биофака, думается, выводы были бы совсем иными. А если бы на костях рассматривалась не “передняя дистальная ширина”, а изучались следы прикрепления мышц и особенности суставных поверхностей, то, возможно, были бы найдены соответственные изменения, следы которых можно было бы прослеживать и на останках древних гоминид.

Что, собственно, доказано? Что у пигмеев повышена подвижность суставов? Это было известно уже в XIX веке, а некоторые предполагают, что и древним египтянам. Оно и не странно, учитывая малые размеры тела и образ жизни пигмеев. Захочется медку в тропическом лесу – и не так ноги согнешь, и не туда залезешь. Функциональные изменения организма никто не отменял, а они не отменяют генеральных адаптаций, локомоторных в том числе. Кстати, гибкость мышц и подвижность суставов прямо зависят от возраста, а этот фактор совершенно не учитывался в исследовании. Пигмеи в среднем живут очень недолго, так что с большой вероятностью сравнивались молодые пигмеи с более пожилыми представителями контрольных групп. В любом случае этот момент остался покрытым мраком.

Так что, несмотря на пафосные выводы, статья не может служить образцом научного исследования. А способности наших предков к древолазанию от всего этого вовсе не меняются.

Кстати: для проверки положений статьи я, в жизни не залезавший на деревья выше трех метров и при наличии аллергии к меду, без малейшей подготовки согнул ногу на фантастический угол, побив рекорд всех пигмеев и шимпанзе, а также, возможно, орангутанов и гиббонов! Это если верить измерению угла на фотографии…

Наш большой палец стопы малоподвижен, но его мускулатура в целом осталась прежней, обезьяньей, независимой от мускулатуры остальных четырех пальцев. Поэтому при необходимости человек может разработать хватательную способность до невероятной ловкости. Известен удивительный прецедент, когда безрукая от рождения женщина Пелагея Семенова подарила И. В. Сталину обшитый бисером чернильный прибор – ручку, пресс-папье, подставку под чернильницу, причем низала бисер она ногами.

В некоторых культурах отдельные виды деятельности предполагали придерживание чего-либо большим пальцем ноги, например древка копья при его шлифовании. От этого палец разрабатывался и торчал в сторону очень далеко. Когда в XIX веке высокопросвещенные европейцы в белых пробковых шлемах приплывали на экзотический остров, скажем, на Филиппинах и обнаруживали там людей со стопой “как у обезьяны”, они глубокомысленно рассуждали о примитивных низших расах, застрявших на пути очеловечивания. Однако ныне те же аборигены забыли про копья, ходят в китайских кроссовках и имеют вполне стандартные человеческие стопы. Функциональная гипертрофия – великая сила!

У Ardipithecus ramidus 4,4 млн лет назад уже присутствовали своды стопы, но пальцы были длинные и изогнутые (это типично вообще для всех австралопитеков), а большой палец мог отводиться далеко в сторону. В стопе Australopithecus anamensis около 4 млн лет назад, судя по строению большой берцовой кости, большой палец был малоподвижен. У Australopithecus afarensis 3–3,9 млн лет назад своды стопы хорошо выражены, большой палец мог слегка противопоставляться другим, но намного слабее, чем у современных обезьян, отпечаток ноги был почти как у современного человека. В стопе Australopithecus africanus и Paranthropus robustus большой палец был несколько сильнее отведен от других, а пальцы – очень подвижные, что позволяет не считать их нашими предками. У Homo habilis стопа уплощенная, без выраженного свода (впрочем, она известна лишь по одной комплектной находке), но пальцы прямые, короткие, а большой палец полностью приведен к остальным. Видимо, совсем человеческая стопа сложилась лишь у рослых архантропов, хотя тут у нас имеется досадный пробел в материалах.

Стопа невиданного гоминида

Сложности изучения и интерпретации морфологии стопы хорошо видны на примере исследования стопы из эфиопской местности Ворансо-Милле. Этот район исследуется сравнительно недавно, но уже успел порадовать антропологов ценнейшими находками. Чего стоит один только скелет KSD – VP-1/1 – самый рослый среди афарских австралопитеков! Здесь же найдены челюсти, совмещающие черты анамских и афарских австралопитеков. Среди 54 тысяч окаменелостей нашелся повод и для новой сенсации – фрагмент уникальной стопы BRT-VP-2/73 из локального местонахождения Бартеле-2 (Haile-Selassie et al., 2012). Сохранились плюсневые кости с первой по четвертую и четыре фаланги правой стопы. К сожалению, нет никаких других останков скелета, которые могли бы быть отнесены к этому индивиду.

Находка имеет датировку 3,4 млн лет – самый средний возраст для афарских австралопитеков. Однако морфология костей заметно отличается от известного для этого вида. Причем отличается в примитивную сторону и во многом напоминает состояние ардипитека, жившего 4,4 млн лет назад – на целый миллион лет раньше! Новоявленная стопа обладает странным набором свойств: поперечный свод был выражен, а продольного не было, плюсневые и фаланги не слишком длинны и изогнуты, но большой палец короткий, сильно отведен и имел хорошую хватательную способность, а при ходьбе не загибался вверх, тогда как другие пальцы – загибались. Одна черта оказалась, по-видимому, очень примитивной: II плюсневая короче, чем IV; такое соотношение встречается у мартышковых и проконсула KNM-RU 2036, тогда как у современных понгид, ардипитека, афарских австралопитеков и человека соотношение всегда обратное.

В целом авторы первоисследования отмечают, что стопа BRT-VP-2/73 была столь же приспособлена к древолазанию, как и у Ardipithecus ramidus, хотя отличий от этого вида, как и от Australopithecus afarensis, тоже хватает. Главным выводом стало то, что в Эфиопии 3,4 млн лет назад существовали как минимум два вида: один – хорошо изученный прямоходящий Australopithecus afarensis, а второй – почти неизвестный полудреволазящий-полупрямоходящий, возможно, мало изменившийся потомок ардипитека. К сожалению, классификация гоминид строится в основном на признаках черепов и зубов, так что дать название новому виду авторы не решились.

Но, как всегда, возникают вопросы. К сожалению, авторы статьи не сравнили новую находку с Stw 573 – “Маленькой Стопой” или “Синдереллой” (то есть “Золушкой”) из грота Сильберберг Стеркфонтейна в Южной Африке. А ведь эта стопа имеет массу сходств с BRT-VP-2/73 при датировке от 2 до 4,2 млн лет назад со средней в 3,5 млн лет назад – практически синхронной с датировкой Бартеле (последняя опубликованная цифра для грота Сильберберг как раз и есть 3,67 млн лет назад). При первоначальном описании Stw 573 особое внимание уделялось значительному отведению большого пальца и его хватательной способности (Clarke et Tobias, 1995), хотя в последующем этот вывод был поставлен под основательное сомнение (Lovejoy et al., 2009). Показательно, что разнообразные индексы и показатели отдельных костей BRT-VP-2/73 весьма близки к таковым южноафриканских находок из Стеркфонтейна и Сварткранса, хотя таких сопоставлений сделано очень мало. Может, Australopithecus africanus, более архаичные, нежели Australopithecus afarensis, мигрировали из Южной Африки в Восточную?

Также несколько удивляет, что в многомерные анализы не попали никакие ископаемые материалы, кроме самой стопы BRT-VP-2/73. Вследствие этого вывод о необычайном сходстве новой находки с гориллами может оказаться преувеличенным. Не так уж сильно BRT-VP-2/73 отстоит от современных людей, чтобы не оказаться похожим на австралопитеков. Представлен лишь один график метрического сопоставления, в котором есть данные об афарском австралопитеке, и то только в дополнительном приложении – там расхождение BRT-VP-2/73 и AL 333–160 действительно велико. В статье упор сделан на описательные признаки. А ведь потенциально материалы для сравнения имеются. С другой стороны, стопа афарских австралопитеков доселе была известна лишь по изолированным и не слишком многочисленным костям, самый полный комплект – AL 333–115 – включает меньше фрагментов, чем BRT-VP-2/73. Нет ли здесь некоторого раздувания сенсации? Может, афарские австралопитеки и не были в строении стопы так уж продвинуты, как до сих пор считалось?

Как обычно, в конце приходится ссылаться на необходимость новых находок, которые якобы прольют свет на все темные места. Пока тайн лишь прибавилось, в соответствии с классическими аллегориями про фонарик в темной комнате и увеличение границ непознанного при расширении области познанного. Горизонты познания безграничны… Хватит ли костей в эфиопской земле?

Строение рук связано с прямохождением косвенно. У высших человекообразных руки приспособлены к хождению по земле с опорой на фаланги согнутых пальцев, что выражается в расширенности и особой мощности средних фаланг и особой скошенности суставной поверхности лучевой кости. Также у разных приматов имеются многочисленные морфологические адаптации к цеплянию за ветви, включая варианты с редукцией большого или других пальцев или с превращением пальцев в единый “крючок”, как, например, у паукообразных обезьян, колобусов или гиббонов. У полностью прямоходящих гоминид руки не приспособлены к хождению по земле или лазанию по деревьям, руки короткие, фаланги пальцев прямые.

Черты приспособления к хождению по земле или лазанию по деревьям в строении рук есть у австралопитеков Orrorin tugenensis, Ardipithecus kadabba, Ardipithecus ramidus, Australopithecus anamensis, Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus и даже Homo habilis. Видимо, только Homo ergaster окончательно избавились от древесного прошлого в своих руках.


Относительно происхождения прямохождения выдвинуто огромное множество гипотез. Про это написана не одна книга и безумное число статей. Двумя важнейшими и ныне чаще цитируемыми являются миоценовое похолодание и социальная гипотеза, но история науки помнит и иные.

Трудовая концепция Ф. Энгельса с позднейшими вариантами, широко известная и вошедшая во все советские учебники, связывает возникновение прямохождения со специализацией руки обезьяны для трудовой деятельности – переноса предметов, детенышей, манипулирования пищей и изготовления орудий. В вульгарном изложении прямохождение возникло для того, чтобы освободить руки для трудовой деятельности. После труд привел к возникновению языка и общества, “сделал из обезьяны человека”. Однако трудовая концепция сталкивается с непреодолимой преградой в виде фактов: по современным данным, прямохождение начало возникать не менее 6 млн лет назад, в полностью завершенном виде сложилось уже 4 млн лет назад, а древнейшие орудия из Гоны в Эфиопии имеют датировку в самом оптимистичном варианте 2,7 млн лет, а из Ломекви – 3,3 млн лет. Скорее уж наоборот, освобождение рук из-за прямохождения способствовало развитию трудовой деятельности, зачатки коей можно наблюдать даже у вполне четвероногих шимпанзе и орангутанов.

Социальные концепции предполагают возникновение прямохождения еще в тропическом дождевом лесу и связывают его не с климатом, а с изменениями поведения приматов. Наибольший вклад тут внес, несомненно, О. Лавджой (например: Lovejoy, 2009). Согласно его разработкам, прямохождение появилось в связи с особой стратегией размножения, из-за удлинившегося детства и ослабления межсамцовой агрессии. Гоминиды в течение очень длительного времени выращивают одного, максимум двух детенышей. Такие животные не могут себе позволить большую детскую смертность. Самка должна постоянно заботиться о своем ненаглядном чаде, она оказывается скована и ограничена в возможностях питания и защиты от хищников. Носить крупного детеныша трудно, надо придерживать его руками, что дает почву для возникновения прямохождения. Отцы, в свою очередь, должны защищать вынужденно малоподвижных самок, бросаясь в хищников разными предметами, а также обеспечивать матерей пищей, а приносить ее, конечно, удобнее опять же в руках. При этом, когда говорится “должны”, не имеется в виду, что кто-то объяснял им права и обязанности гражданина или что они сами догадались и прониклись важностью своего предназначения, просто группы, где самцы не защищали и не кормили самок, банально вымирали. Косвенным последствием такой заботы много позже стало использование орудий труда. Для того чтобы такая система работала, надо, чтобы самец был как можно сильнее привязан к самке, то есть возникает крен в сторону моногамии (хотя и у современных людей, даже при строжайших религиозных ограничениях, моногамия никогда не бывает поголовной). Это достигается со стороны самок – скрытой овуляцией, так что самец не может угадать, на какой стадии созревания находится яйцеклетка (да и самка порой не может); а со стороны самцов – ослаблением конкуренции, что выражается в редукции размеров клыков и ослаблении полового диморфизма. И ведь мы действительно видим уменьшение клыков с самого начала становления прямохождения!

Согласно О. Лавджою, прямохождение возникло еще в тропическом лесу, а в саванны переселились уже двуногие гоминиды. Карликовые шимпанзе, живущие в джунглях Конго, в зачаточной форме демонстрируют те свойства, что предполагаются для предков человека.

У социальной концепции есть два явных минуса. Во-первых, ее крайне трудно подтвердить объективными свидетельствами: фактически единственным обоснованием является оценка полового диморфизма, сделанная в основном по размерам клыков. Во-вторых, тогда как прямохождение связывается с изменениями поведения, остаются неясны причины изменения самого поведения.

Миоценовое похолодание уже сто лет является одним из основных объяснений развития бипедии. Суть концепции в том, что в середине и конце миоцена в результате глобального похолодания климата произошло значительное – в несколько раз – сокращение площадей тропических лесов и увеличение площади саванн. В новых условиях у многочисленных живших тогда в тропических лесах человекообразных обезьян наметились три варианта дальнейшей судьбы. Первый вариант – самый печальный, но которому последовало большинство, – вымирание: в это время исчезло подавляющее большинство гоминоидов. Второй – сохранение в более-менее неизменном виде в оставшихся лесах: потомками этих везунчиков стали современные гиббоны, орангутаны, гориллы и шимпанзе. Впрочем, часть даже тех гоминоидов, что пережили миоценовое похолодание, вымерла уже в более поздние времена, примером чего могут служить гигантопитеки. Третий вариант – переход части гоминоидов к наземному образу жизни в расширяющихся саваннах.

Вообще-то, в саванну можно выйти и на четвереньках, что успешно сделали павианы и мартышки-гусары. Но крупные человекообразные пошли своим путем. Жизнь в саванне диктует свои условия. Для начала, тут есть довольно высокая трава, в которой сложно ориентироваться и искать пищу. Кроме того, в траве могут прятаться хищники, а смотреть поверх нее удобно, вставая на две ноги. Этим часто занимаются самые разные животные – те же мартышки-гусары, суслики, газели-геренуки и другие вкусные и пугливые создания. Если же хищник уже близко, то его можно попытаться устрашить: прямоходящее существо имеет психологическое преимущество перед четвероногим, поскольку смотрит свысока и, таким образом, кажется крупнее и сильнее, хотя может и не иметь реального подтверждения своей мощи. Поднимание уровня взгляда для усиления впечатления на противника является универсальным способом среди всех позвоночных животных, поскольку в первом приближении работает принцип “кто выше, тот больше, а кто больше, тот сильнее”. Связь чувства превосходства с ростом ощущает на себе каждый; впрочем, с разных сторон, в зависимости от того, какой рост имеет он сам. Для приматов в саванне этот аспект мог иметь немаловажное значение.

Кроме того, экспериментально и на математических моделях доказано, что двуногое передвижение на большие расстояния со средней скоростью энергетически более выгодно, чем четвероногое: двигать надо в два раза меньше ног. Правда, это преимущество становится действительно преимуществом только в своем законченном варианте, а переходные от четвероногости к двуногости стадии оказываются энергетически проигрышными.

Важнейший момент – терморегуляция. Лесные приматы были животными дневными, тот же распорядок дня они перенесли и в саванну. Это по-своему выгодно, ведь все хищники активны в сумерках или ночью, когда можно залезть на дерево и спокойно почивать там, пока тебя ищут в траве. Тем более, двуногие приматы очень медленные, они не умеют резво убегать, а днем убегать и не надо. Кроме того, днем гораздо меньше конкурентов, можно не спеша кормиться, не отпихивая локтями посягающих на те же травки-зернышки. Но ведь отсутствие полуденной бурной жизни в саванне тоже сложилось не просто так. Сиеста нужна, чтобы пережить самое жаркое время и не спечься. Днем же надо как-то решать проблему перегрева. В саванне (а дело происходит в Африке близко к экватору) солнышко печет прямо в макушку, так что двуногий примат нагревается гораздо меньше четвероногого, под солнечные лучи попадают только его голова и плечи, а не вся спина. Ту же сложность можно так же эффективно преодолеть с помощью потения. Обезьяны, конечно, потеют и в лесу на деревьях, но без особого фанатизма, а в саванне это становится важным процессом. Но из-за пота слипается шерсть, а суточные перепады температуры в саванне бывают весьма ощутимыми; мокрая шерсть по ночам может привести к переохлаждению и простуде. Поэтому шерсть катастрофически укорачивается; сколь-нибудь существенное оволошение остается только на макушке, где припекает солнце, да на подмышках и в паху – для концентрации запаха. Редукция же шерсти создает новую сложность. В тропическом лесу длинная шерсть выполняет у обезьян две функции: во-первых, защищает от почти ежедневных дождей, а во-вторых, за нее цепляются детеныши. В саванне дожди идут только во влажный сезон, так что первое назначение шерсти теряет смысл. Со вторым сложнее. Хватательный рефлекс прекрасно сохранился и у современных детишек, это прекрасно известно всем родителям, у которых ненаглядные чада регулярно выщипывают клочки волос своими цепкими ручонками. Однако на волосах головы ребенка далеко не унесешь. Логично, что проще всего нянчить беспомощных малюток на руках. К этому добавляются те же факторы, что уже рассмотрены выше в социальной концепции: матери становятся медлительными и уязвимыми, тем более что саванна не лес, спасительные деревья тут растут далеко не на каждом шагу, добежать до них с ребенком на руках непросто. Опять же самцы должны кормить и защищать самок, опять же двуногим существам делать это гораздо проще.

Минусом гипотезы возникновения прямохождения в результате миоценового похолодания является факт, что некоторые из древнейших известных прямоходящих приматов жили в тропических лесах, а из современных приматов живущие в дождевых тропических лесах бонобо очень часто прибегают к прямохождению. Впрочем, палеоэкологические реконструкции – что дышло, какие данные учтешь, то и вышло.

Кстати, о пейзажах…

Одно из новейших исследований на эту тему, видимо, дает самую достоверную и масштабную картину (Cerling et al., 2011b). Изучение 1300 образцов ископаемой почвы из всех основных восточноафриканских местонахождений за последние 6 млн лет на предмет соотношения изотопов углерода показало, что Ardipithecus ramidus жили в весьма открытых местообитаниях, где кроны деревьев закрывали менее 60 %, скорее 20–40 % земли, а то и меньше. Иначе говоря, передвигаться только по ветвям в таком “парке” уже никак не получалось. Правда, ардипитеки держались, видимо, самых лесистых мест, но “самые лесистые” все же были далеко не такими густыми, как им, может быть, хотелось, а островки деревьев окружала и вовсе открытая саванна. Крайне интересно, что после 4 млн лет леса снова стали наступать, так что ключевой вид так называемых грацильных австралопитеков – Australopithecus afarensis – жил в более густых зарослях с покрытием кронами 40–60 %. Около 3 млн лет назад начинается новое сокращение лесов, так что первым представителям нашего рода Homo надо было опять осваиваться в саваннах.

Однако не всех исследователей удовлетворяют доводы “саванной” концепции.

“Гипотеза водной обезьяны” рисует совсем иную картину. Очень подробно ее разрабатывал, например, Я. Линдблад (Линдблад, 1991). Согласно ей, к прямохождению предков человека подтолкнули сложности жизни рядом с водой. Нельзя не признать, что в умеренном варианте “гипотеза водной обезьяны” имеет много сильных моментов. Действительно, находки восточноафриканских австралопитеков почти всегда обнаруживаются в водных отложениях, вероятно, они обитали недалеко от рек и озер и добывали в воде часть своего пропитания (впрочем, это может значить только то, что тут они просто хорошо сохранялись; кости ардипитеков и южноафриканских форм нашли свой покой в сухих местах). Древние гоминиды могли вставать на задние ноги, чтобы переправляться через водные преграды; примеры подобного поведения мы видим среди обезьян-носачей и горилл. В строении человека есть ряд признаков, свидетельствующих о значительной адаптации человека к плаванию и нырянию, в отличие от орангутанов, горилл и шимпанзе: положение волос на теле по направлению от макушки к ногам – по течению воды при нырянии, ориентация ноздрей вниз – для сохранения воздуха в носовой полости, способность задерживать дыхание, редуцированный волосяной покров на теле, неэкономное расходование воды организмом, что крайне нетипично для животных саванны, небольшие перепонки между пальцами. В конце концов, человек просто не боится воды, а многие жить не могут без купания! Это сильные стороны “водной гипотезы”. Проблема в том, что в крайнем варианте ее сторонников заносит чересчур далеко, вплоть до утверждений о происхождении человека от дельфинов или миллионах лет питания икрой, яйцами птиц, моллюсками и рыбой. “Водная гипотеза” – классический пример идеи, “в которой что-то есть”; она многократно подвергалась критике с разных сторон и в целом хуже согласуется с фактами, чем другие концепции, но некоторые ее положения нельзя игнорировать (например: Langdon, 1997).

Подводя итог, очевидно, что прямохождение возникло не по одной какой-то причине, а под воздействием целого комплекса условий и предпосылок.


Интересные параллели и аналогии человеческому прямохождению можно наблюдать среди многих современных обезьян. Лемуры-сифаки и гиббоны, будучи крайними древолазами, по земле передвигаются на двух ногах, ибо их руки уже не годятся для опоры о землю. Сифаки при этом скачут боком приставными шагами или подобно кенгуру. Мартышки-гусары и павианы, живущие в саванне, часто приподнимаются на задние ноги, чтобы сориентироваться или высмотреть опасность. Калимантанские обезьяны-носачи, обитающие в прибрежных мангровых зарослях, переходят затопленные участки на задних ногах, держа передние над водой, хотя группы, живущие в глубине острова, вообще никогда не слезают с деревьев. Похоже ведут себя гориллы в заболоченных джунглях долины Конго в Западной Африке: на сочных лугах, где нет деревьев, разрастаются травы, на них пасутся слоны и карликовые лесные буйволы. Гориллы же, как бы они ни были велики, встав на четвереньки, рискуют погрузиться в эти травы до ушей, а потому они часами ходят на двух ногах.

Интересно, что двуногость неоднократно возникала не только в самых разных группах животных – от динозавров и птиц до кенгуру и тушканчиков, – но и среди приматов. Так, из итальянских угольных шахт в Тоскане известны скелеты своеобразных обезьян Oreopithecus bambolii. Они удивительно хорошо были приспособлены для ходьбы на задних ногах, удобной в уникальном ландшафте – заболоченных кустарниковых зарослях, по которым ореопитеки передвигались, придерживаясь руками за нависавшие над топью ветви.


Итак, прямохождение возникло около 7 млн лет назад, но еще долго отличалось от современного варианта. Походка австралопитеков, вероятно, была несколько семенящей, с маленькой длиной шага. Некоторые австралопитеки и даже Homo habilis использовали и другие виды передвижения – лазание по деревьям, а некоторые, возможно, и хождение с опорой на фаланги пальцев рук. Полностью современным прямохождение стало только около 1,5 млн лет назад.

Рука, приспособленная к использованию и изготовлению орудий

Рука человека заметно отличается от руки обезьяны. Морфологические признаки рабочей руки не являются вполне надежными, в немалой степени оттого, что определить их по скелету не так уж легко: мышцы на кисти крепятся часто на фасции и хрящи, а на костях могут не оставлять никаких следов. Кроме того, одно из главных препятствий – плохая сохранность и фрагментарность находок. Кости кисти невелики, даже если они сохранятся в отложениях, их еще надо суметь найти. Но нет таких крепостей, какие не брали бы палеоантропологи! Поэтому можно выделить следующий трудовой комплекс.

Сильное запястье определяется шириной относительно пясти. У австралопитеков, начиная с Ardipithecus ramidus и Australopithecus anamensis, строение запястья промежуточное между обезьянами и человеком. Почти современный вариант наблюдается у Homo habilis 1,8 млн лет назад. У человека по сравнению с другими обезьянами резко увеличена головчатая кость, расположенная более-менее в центре запястья, к которой крепится третья пястная, которая, в свою очередь, является основанием среднего пальца.

Большой палец человеческой кисти удлинен и противопоставлен остальным. В немалой степени благодаря этому человек способен выполнять точечный захват, то есть сводить все пальцы в одну точку или прикоснуться большим пальцем к любому другому (строго говоря, к точечному захвату способны и макаки, но они пользуются им редко). Это обеспечивается седловидной формой сустава между первой пястной костью и костью-трапецией. Первая пястная кость работает при этом фактически как еще одна фаланга, из-за седловидности сустава она может двигаться только в двух направлениях, не проворачивается, а как бы застревает в нужном человеку положении, позволяет удерживать тяжелые предметы без лишних усилий. У гориллы, скажем, этот же сустав потенциально может вертеться, но его фиксируют мощнейшие мышцы, что по-своему удобно, но резко снижает точность движений.


Обезьяны и все-все-все

Рис. 4. Кисть шимпанзе (а), австралопитека (б) и человека (в).


Противопоставлять большой палец могли уже Ardipithecus ramidus, Australopithecus afarensis и Australopithecus africanus, хотя его длина у них была пока еще заметно меньшей, чем у нас. Противопоставление было полностью развито у Paranthropus robustus и Homo habilis 1,8 миллиона лет назад. Любопытно, что неандертальцы Европы в гораздо более поздние времена имели не седловидную форму первого запястно-пястного сустава, а плоскую или шаровидную. Раньше это расценивалось как их примитивный признак, но теперь ясно, что дело в специализации.

Кстати, об игуанодонах…

Юрские и меловые птицетазовые динозавры-орнитоподы игуанодонтиды Iguanodontidae имели своеобразное строение кисти. Большой палец у них превратился в здоровенный шип, которым можно было пырнуть хищника, три следующих несли копыта для опоры, а вот мизинец был тонким, длинным и, как предполагалось раньше, противопоставлялся остальным. Долгое время палеонтологи считали, что игуанодонтиды могли ухватывать им ветви растений и притягивать их ко рту (сейчас от этой идеи отказались). Эх, если бы не примитивный мозг размером с батарейку – какие перспективы открывались! Но прогресс не определяется одним признаком, без комплекса не станешь ни трудолюбивым, ни разумным, ни вечным, разве что добрым…

Широкие, уплощенные и укороченные конечные фаланги пальцев помогают удерживать предметы. У обезьян фаланги обычно длинные и изогнутые, даже при полном распрямлении пальцы оказываются несколько скрючены, чтобы легче было цепляться за ветви.

У древнейших прямоходящих гоминид – Orrorin, Ardipithecus и Australopithecus – форма фаланг была практически строго промежуточной между обезьяньим и человеческим вариантами. Видимо, эти виды могли использовать предметы как орудия, но не изготовлять каменные артефакты. Это логично: с одной стороны, простейшие деревянные орудия могут делать и шимпанзе безо всякой специализации кисти, а двуногие существа со свободными руками должны были развивать подобные способности, с другой – никаких археологических свидетельств орудийной деятельности для времени раньше 3,3 млн лет назад мы не знаем. Очень широкими – подчас даже более расширенными, чем у современного человека, – фаланги были у Paranthropus robustus, Homo habilis и всех более поздних гоминид. Не факт, что этот признак всегда связан с орудийной деятельностью. Например, южноафриканские парантропы по расширенности фаланг даже обгоняли “людей умелых”, хотя останки парантропов обычно залегают в слоях, не содержащих орудий, а нашим предком был все же Homo habilis.

Трудовая кисть в целом сформировалась около 1,5 млн лет назад. Весьма примечательно, что древнейшие известные каменные орудия обнаруживаются более чем за 1,5 млн лет до появления трудовой кисти. Иначе говоря, из трех с лишним млн лет трудовой деятельности более половины срока кисть еще не была приспособлена к труду. Очевидно, это время понадобилось для работы отбора. Надо думать, на первых порах отбор по строению кисти был очень слабым, поскольку вряд ли жизнь тогда сильно зависела от использования орудий, австралопитеки вполне могли обойтись и без них. Но те, кто использовал булыжники для раскалывания орехов или соскабливания мяса с костей, оказывались в среднем чуть более успешными. Не исключено, что тут поработали и факторы престижа, поскольку дележ мясом у современных шимпанзе – статусное занятие. Кто умел быстрее отделить мясо от туши, мог и сам наесться, и других оделить, получив через это почет, уважение и более высокий ранг, а стало быть – шанс оставить больше потомков. Впрочем, тут нам приходится больше сочинять, строго доказать мы этого не можем, а предполагаем, исходя из наблюдений за шимпанзе.

Орудия используют разные приматы, но специфика человека в том, что только он не может полноценно существовать без орудий. Это наша специализация, в омут которой первыми угодили хабилисы и эргастеры, и на этом месте стоит задуматься, ведь избыточная специализация ведет в тупик…

Пястная кость из Каитио: умелая ручка первого пролетария

Кисть “людей умелых” была почти совсем, но еще не совсем трудовой, поскольку имела и некоторые обезьяньи черты. К тому же от кисти хабилиса OH 7 сохранились далеко не все элементы. До самого недавнего времени в летописи гоминид оставался досадный пробел – для полного счастья антропологам остро не хватало кистей преархантропов и архантропов. Потому важной находкой явилась третья пястная кость KNM-WT 51260, найденная в Западной Туркане, в местонахождении Каитио (Ward et al., 2014). Датировка ее – 1,42 млн лет назад, то есть время перехода от Homo ergaster к Homo erectus. Кость сохранилась отлично, даже идеально. Казалось бы – невелика кость, но сколько ценной информации она несет! Самый важный признак – развитие шиловидного отростка. Этот треугольный выступ на основании кости направлен в сторону запястья. Он соединяется с похожим отростком на основании второй пястной кости, а вместе они входят в зазор между трапециевидной и головчатой костями запястья. Смысл такой конструкции – укрепление запястно-пястного сустава. Третья пястная кость при этом становится центральной опорой всей кисти, а весь средний луч (пястная с пальцем) оказывается достаточно жестко заклинен и минимально подвижен в стороны. Такой кистью, может, не так удобно хвататься за ветки, где нужны более свободные боковые движения при раскачивании, но очень хорошо удерживать что-то тяжелое более-менее неподвижно.

Неспроста у человекообразных обезьян, афарских австралопитеков и седиб шиловидного отростка третьей пястной кости нет, а у неандертальцев и современных людей он велик. К сожалению, на кисти Homo habilis OH 7 третья пястная не сохранилась, зато есть вторая, а на ней отросток, долженствующий соединяться с шиловидным третьей, развит очень слабо, в противоположность человеческому варианту. Можно предположить, что хабилис OH 7 имел почти обезьяний вариант строения основания III пястной кости.

Таким образом, “человек работающий” имел “трудовую кисть” – закономерно и логично. Более того, он приобрел ее впервые, даже “человек умелый” был в сравнении с трудягой жалким неумехой (не в пору ли переименовать его в “человека неумелого”?!). Неспроста, видимо, Homo ergaster смог усовершенствовать галечные орудия до ашельских. Дело не только в развитии мозга, как обычно считается. Своими мозолистыми ручищами этот человечище не мог уже так ловко хвататься за сучья, как его недавние предки, но ему это было и не надо. Взамен он приобрел способность крепко и уверенно держать в руке булыжник – оружие трудового человека. Минула пора, когда надо было спасаться от хищников в кронах, пришло время уже самим хищникам поджать хвосты и бежать от вооруженного человека. Торжество прогресса в действии! Заря пролетариата!

Но: язвительная натура антрополога не позволяет за здорово живешь согласиться даже со столь простыми, наглядными и логичными выводами. Чутье подсказывает, что наверняка не все так просто. И что же: недолго порыскав по закромам, мы обнаруживаем, что гораздо большего размера шиловидный отросток III пястной имеется у гориллы! Конечно, очевидно, что у этой гигантской обезьяны кисть укреплена для поддержания огромного веса при хождении с опорой на фаланги пальцев, а к трудовому процессу никоим образом не причастна, тогда как эргастер не бегал на четвереньках. Однако гориллий феномен лишний раз показывает, что схожие структуры могут возникать независимо и по разным поводам и иногда не стоит спешить с глубокомысленными заключениями и широкими обобщениями на основании одной лишь черты строения.

А антропологам и палеонтологам, работающим в Африке, пожелаем найти не только пястную кость, но и целую руку, крепко сжимающую для пущей убедительности ашельское рубило.

Мозг

Мозг современного человека сильно отличается от мозга человекообразных обезьян по размерам, форме, строению и функциям, однако, сколь бы ни был высокоразвит он у нас, непреодолимой преграды с другими приматами все же нет, и среди ископаемых форм можно найти множество переходных вариантов.

Однако изучать мозг трудно. Современный устроен чрезвычайно сложно – сложнее, чем что-либо еще во всей Вселенной. А ископаемый нам недоступен. Поэтому антропологи вынуждены исследовать эндокраны – слепки внутренней полости мозговой коробки. Специальные исследования показали, что общая форма при этом сохраняется, хотя размеры эндокрана несколько больше размеров самого мозга, а борозды и извилины практически не прослеживаются. Однако отпечатки венозных синусов и швов черепа делают возможным разграничить доли, а во взаимном расположении артерий и извилин мозга есть несколько закономерностей, которые позволяют прикинуть ход по крайней мере основных борозд. По данным палеогенетики, в ближайшем будущем будет возможно оценить и внутреннее строение мозга как минимум неандертальцев и денисовцев, но пока в этом направлении делаются лишь робкие первые шаги.

Типичные признаки мозга человека следующие.

Большие общие размеры мозга надежно отличают современного человека от приматов. Существует даже понятие “мозгового рубикона”, он обычно определяется около 700–800 граммов или кубических сантиметров (плотность мозга едва превышает единицу – 1,038–1,041 г/см³, так что измерение объема и массы дает почти одинаковые цифры). “Мозговой рубикон” символизирует сразу три важные границы: во-первых, он разделяет современных людей и обезьян; во-вторых, нормальных людей и микроцефалов – индивидов с патологически уменьшенным мозгом; в-третьих, ископаемых предков человека, еще не умевших изготавливать каменные орудия труда – австралопитеков, – и тех, кто уже был на это способен – “людей умелых”. Правда, все три границы неидеальны, но тенденции очень сильны.

Так, наименьший из достоверных размеров мозга психически нормального человека (46-летнего мужчины-европейца) – 680 г, а наибольший объем мозга гориллы – 752 см³. Понятно, что здоровенный самец гориллы не был интеллектуальнее того европейца, жившего всю жизнь спокойно обычной жизнью и не знавшего о своем рекордсменском статусе. Строение все же имеет значение. Также нет резкой границы между Australopithecus и Homo: так, у грацильных австралопитеков максимум достигает 500–550 см³, а у “людей умелых” минимум – 450–500 см³. Собственно, было бы странно, если бы между ними обнаружился резкий разрыв значений. Но австралопитеки каменных орудий почти никогда не делали, а хабилисы – вполне и даже зависели от них.


Обезьяны и все-все-все

Рис. 5. Мозг шимпанзе (а), австралопитека (б), хабилиса (в), эректуса (г), хоббита (д), неандертальца (е) и человека (ж).


Заметным исключением из общей картины является “хоббит” – Homo floresiensis, живший в Индонезии по геологическим меркам еще совсем недавно, 50 тыс. лет назад. Его объем мозга – 426 см³ – почти в два раза меньше “мозгового рубикона”, что не мешало ему изготавливать каменные орудия труда. Видимо, тут дело в истории вида. “Хоббиты” возникли из гораздо более мозговитых – в среднем больше 900 см³ – Homo erectus и за без малого миллион лет эндемичной эволюции на Флоресе катастрофически уменьшились в размерах как всего тела, так и головы. Однако убыль мозга шла, видимо, неравномерно, за счет “лишних” участков – тех, что оказались неактуальны при жизни на уединенном острове при отсутствии конкуренции и минимуме хищников. Самые же важные участки, ответственные в числе прочего за орудийную деятельность, очевидно, сохранялись. Можно привести аналогию с собаками: мастифы или сенбернары не интеллектуальнее чихуахуа или той-терьеров, но размеры их мозгов различаются более чем в три раза – 140 против 45 г. Мозг волка еще крупнее, чем у самого выдающегося волкодава. Очевидно, что катастрофическое уменьшение размеров далеко не столь радикально сказалось на функциях. А вот если бы мозг волка изначально был как сейчас у чихуахуа, то столь сообразительными они вряд ли могли бы стать.

Размеры мозга в ходе эволюции менялись неравномерно. От проконсулов до шимпанзе и австралопитеков они мало изменились и составляли примерно 320–550 см³. У первых Homo порядка 2 млн лет назад мозг заметно подрос, но после, вероятно, опять несколько уменьшился. В целом же в дальнейшем происходил бурный рост величины вплоть до современных значений. Homo ergaster достигли “мозгового рубикона”, а у Homo heidelbergensis средний размер мозга был уже почти современным (на сотню граммов меньше, чем в среднем по сапиенсам, но как у некоторых нынешних популяций). Неандертальцы обладали очень большим мозгом, а первые кроманьонцы превзошли и их.

Причины резкого увеличения объема мозга у “ранних Homo” кроются в изменениях диеты. Последние, в свою очередь, явились следствием перемен экологии. Около 3 млн лет назад климат в очередной раз стал суше, а местообитания открытее. Многие представители мегафауны, более зависимые от воды и обильной растительности, вымерли, что привело к исчезновению и многих крупных хищников – саблезубых тигров и их неизбежных спутников – гигантских гиен-пахикрокут. Временно освободившуюся нишу падальщиков и хищников поспешили занять предки нынешних гиен, шакалов и леопардов (древнейшие леопарды известны как раз около 2 млн лет назад). Туда же устремились грацильные австралопитеки, теснимые из привычной экологической ниши собирателей семян гигантскими геладами. С мелкими падальщиками наши предки уже вполне могли конкурировать. Предыдущие миллионы лет жизни в саванне закалили австралопитеков, тем более что и прежде они были тоже не абсолютными вегетарианцами, если судить по приматам вообще и шимпанзе в частности.

Питание мясом привело к ряду заметных изменений в строении тела и поведении. Известно, что добывание мяса требует больших интеллектуальных усилий, чем растительноядное существование. Трава не сопротивляется и не прячется, а мясо обычно не хочет, чтобы его съели, – убегает, лягается и всячески активно избегает хищника. К тому же мясо гораздо более калорийно, чем фрукты и тем более листья растений. Чтобы наесться, надо съесть немножко мяса или целый день жевать растения. Неспроста хищники большую часть времени проводят в отдыхе, а травоядные постоянно жуют. Кроме того, растительная клетка имеет целлюлозную клеточную стенку, которую тоже надо разрушать – жевать, жевать и жевать, стирая зубы и напрягая челюсти. Мясо же есть намного проще. Поэтому жевательный и вообще пищеварительный аппарат мясоедов всегда меньше, чем растительноядных существ, а интеллект – выше. С эволюционной точки зрения вегетарианство – не путь к успеху; впрочем, и специализированными хищниками наши предки не были, оставшись всеядными.

Поскольку жевать надо было меньше, зубочелюстной аппарат уменьшался, а вслед за ним ослабевал рельеф черепа в виде костных гребней, служащих для прикрепления жевательных мышц. Происходило это не оттого, что маленькие челюсти были полезнее, а потому, что перестали быть вредными: теперь индивиды с маленькими челюстями не страдали от голода и спокойно выживали. Снижение биомеханического стресса привело к уменьшению толщины стенок черепа, а стало быть – массы головы. Поскольку плотность кости вдвое превосходит плотность мозга, открылись небывалые возможности для роста последнего: когда кость уменьшалась на один кубический сантиметр, мозг мог вырасти на два с сохранением общей массы головы и без усиления шейных мышц, поддерживающих голову. То есть кость уменьшалась немножко, а мозги пухли как на дрожжах! Эти изменения мы и наблюдаем: у разных видов австралопитеков масса мозга практически не менялась в течение нескольких миллионов лет, но с момента 2,5 млн лет у группы “ранних Homo” начала резко увеличиваться.

Возникали, конечно, и проблемы: более древние предки не были специализированными мясоедами, они не имели природных средств для охоты – больших когтей или клыков. Но они уже наверняка периодически использовали орудия труда (точно мы не можем это утверждать, но шимпанзе используют, а австралопитеки находились в более располагающих для этого условиях). Для охоты и срезания мяса с костей они стали использовать каменные чопперы. Многочисленные следы орудий на костях, частью поверх следов зубов хищников, свидетельствуют об активном использовании “ранними Homo” падали. Кстати, стоит помнить, что в африканских условиях понятие падали не так страшно, как это может представлять северный человек: туша погибшего животного часа за два уничтожается до костей гиенами, грифами, марабу и прочими любителями, так что мясо там всегда первой свежести. Иногда, напротив, следы зубов хищников обнаруживаются поверх следов орудий, так что наши пращуры были не чужды и активной охоты.

Второй сложностью были конкуренты. Хотя крупные хищники временно исчезли, мелкие никуда не делись, а при росте австралопитеков и “ранних Homo” от метра до полутора даже шакал выглядит вызывающе. Приходилось бороться с ненасытными антагонистами, что опять же способствовало социализации и развитию орудийной деятельности.

Таким образом, питание мясом давало потенциал роста мозга и оно же настоятельно требовало увеличить и усложнить нервную систему: люди смогли есть мясо, его калорийность позволяла уменьшить челюсти, уменьшение челюстей позволяло увеличить мозг, а добывание мяса побуждало увеличение мозга. Что и произошло. Трудно сказать, что тут было причиной, а что следствием: одно вызывало другое, а обратная связь усиливала проявление первого. Получилось как в известной байке про козу и дом, и даже лучше – тост из “Кавказской пленницы” реализовался за два миллиона лет до появления этого замечательного фильма: возможность чудесным образом совпала с необходимостью и реализовалась в выдающемся результате.

Одновременно происходили и структурные перестройки нервной системы. Несомненно, это было вызвано вторым важнейшим следствием перехода к мясоедению – преобразованием социальной структуры, усилением и усложнением общения между особями. Правда, про эту сторону эволюции нам остается больше догадываться, нежели оперировать фактами.

Приятно, что теоретические выкладки совпадают с наблюдаемыми признаками реальных находок: в палеонтологической летописи мы наблюдаем изменения фауны, в ряду “ранних Homo” уменьшаются размеры челюстей и растут размеры мозга, рука становится трудовой, а в слоях появляются многочисленные каменные орудия труда.

Антивеган: первые шаги

В последнее время обсуждение пользы и вреда вегетарианства, сыроедения и прочих стратегий питания стало очень модным. Терабайты забиты дискуссиями на темы, что лучше: есть только капусту с морковкой или можно пить хотя бы молоко, плоха ли диета из одних растений и допустимы ли яйца в рационе. А ведь такие проблемы вставали перед приматами еще миллионы лет назад. Одни стали сугубыми вегетарианцами, как колобусы, другие, напротив, увлеклись насекомыми, как долгопяты. Большинство же представителей нашего отряда придерживаются золотой середины: фруктовый салат они не забывают украшать кузнечиками, яйцами, антилопами и даже ближайшими родственниками.

В человеческой линии переходы от диеты к диете происходили неоднократно. Одним из последних и ключевых достижений наших далеких предков на стадии становления рода Homo был переход от преимущественной растительноядности ко всеядности. Чем больше мяса попадало в желудки пращуров, тем умнее они становились. В целом картина рисуется вполне последовательная: питание мясом выгодно в плане соотношения калорийности и необходимости жевания, но требует напряжения мозгов для добывания упрямой добычи, борьбы с зубастыми конкурентами и – в случае со вчерашними вегетарианцами – некой орудийной деятельности хотя бы для соскабливания мяса с костей.

Картина последовательная в целом. Но

Доселе в археологии существовал досадный разрыв: древнейшие каменные орудия труда датировались временем около 2,6 млн лет назад (а то и все 2,7!), а следы этих орудий на костях животных – примерно 1,8 млн лет. Было и несколько исключений, древнейшим из которых числились две обломанные кости из Дикики в Эфиопии с датировкой 3,39 млн лет, царапины на коих были интерпретированы как следы галечных орудий. Впрочем, другие исследователи подвергли это заключение основательной критике. Таким образом, доныне оставалось совершенно непонятным: зачем первые каменных дел мастера кололи свои чопперы? Получается, без малого миллион лет каменные орудия использовались вовсе не для резки бифштексов. Расхождение с вышеизложенной концепцией очевидно. Но на то и наука, чтобы искать ответы на вновь возникающие вопросы. Этим и занялась международная группа исследователей, опубликовавшая результаты своего изыскания в электронном журнале PLoS ONE (Ferraro et al., 2013).

Ученые обратили внимание на ряд проблем. Главной из них является малое количество доступного материала. В местонахождениях, образовавшихся во временном интервале 2,6–1,8 млн лет, найдено не так много подходящих для изучения данной проблемы костей животных. А наука, как известно, зиждется на статистике. Другая сложность: длительность формирования отложений. Если она слишком велика, то и выводы будут размытыми. Наконец, всегда остается вопрос: насколько наблюдения в одном конкретном месте отражают общую тенденцию прогресса? Или же мы имеем лишь локальный феномен? Местонахождение Канжера Южная, расположенное на юго-западе Кении, оказалось близко к идеалу во всех указанных отношениях. Здесь было найдено много костей разных видов зверей – счет идет на сотни. Животные преимущественно саванные (антилопы, лошади, свиньи), но встречены и некоторые водные (бегемоты и крокодилы). В целом среда реконструирована как саванна; отсутствие “лишних” экологических вариантов свидетельствует о достаточно узком интервале образования отложений; вместе с тем имеется как минимум три слоя, дающих возможность проследить хронологические изменения и проверить достоверность выводов. Время формирования местонахождения определено достаточно надежно как по фауне (верхнюю границу задают архаичный слон-дейнотерий с примитивной свиньей, а нижнюю – лошадь), так и магнитометрически и составляет примерно 2 млн лет назад. И самое главное: масса костей несет на себе очевидные следы разделывания каменными орудиями!

Следы надрезок имеются на фрагментах, происходящих из всех трех слоев; более того – на 1,9–6,3 % всех антилопьих костей конечностей. Это огромный процент, означающий, что каждая пятидесятая или даже шестнадцатая антилопа была съедена гоминидами. Для сравнения, следы зубов хищников имеются на менее чем 17–25 % костей конечностей, притом что хищники представлены, понятно, многими видами. То есть наши предки составляли неслабую конкуренцию когтистым и клыкастым.

Надрезки расположены не где попало, а в определенных местах костей, из чего следует, что охотники выполняли две главные операции: срезание мяса с костей и расчленение суставов. Ели, понятно, преимущественно некрупных животных: надрезки на ребрах имеются на 9,7–12,9 % ребер мелких антилоп и только 5,0–7,5 % среднеразмерных. Исследование соотношений надрезок и отпечатков звериных зубов – когда они встречены на костях вместе – привело исследователей к выводу, что наиболее вероятен сценарий, по которому первыми потребителями мяса были именно гоминиды, а хищники получали лишь объедки. Этот момент был проверен с особой тщательностью путем сравнения с разными известными вариантами в современной и древней Африке.

Настораживает, правда, тот факт, что среди остатков среднеразмерных антилоп, съеденных гоминидами, преобладают нижние челюсти и черепа, а длинных костей конечностей намного больше, чем кончиков ног, позвонков и ребер. В случае с мелкими антилопами картина иная, там разница по частям скелета не столь очевидна, а преобладают более аппетитные части типа плечевых костей и лопаток. Исследователи предлагают два возможных объяснения. Согласно первому, гоминиды могли относиться к мелким и среднеразмерным антилопам одинаково, но в последующем возникла разница из-за падальщиков, то есть гиены могли сгрызть мелкие части среднеразмерных антилоп. Не очень ясно, правда, почему они тогда игнорировали те же элементы мелких антилоп? Более вероятно, что мелкую антилопу древние охотники легко могли дотащить до обеденного стола и целиком, не тратя время на разделывание, тогда как от более крупных отрезали самые ценные части, оставляя тяжелые, но непитательные копытца на съедение жадным падальщикам. Как видно, особенно ценились головы: следы на внутренней поверхности нижних челюстей и мозговых полостей недвусмысленно указывают, что древние гурманы особенно любили языки и мозги. Наконец, обращает на себя внимание, что среди всех находок преобладают осколки диафизов, причем, судя по некоторым признакам, кололись свежие, а не сухие кости. Логично предположить, что гоминидам пришелся по вкусу и костный мозг.

Как итог: мы можем гордиться своими предками! Находки в Канжере Южной являются древнейшими достоверными и притом массовыми следами хищнического поведения древних гоминид. Они на 200–500 тыс. лет (вдумайтесь в эту цифру!) старше, чем изученные доныне аналогичные археологические комплексы в Олдувае и других местах. Стоит особенно подчеркнуть, что речь идет именно о хищничестве, а не поведении падальщиков. Таким образом, образ Великого Предка – Отважного Охотника (для начала хотя бы и на мелких антилоп, потом дойдет очередь и до слонопотамов!) реабилитирован. Ведь сколь много говорилось (в том числе и автором этих строк) о том, что первые мясоедческие опыты гоминид были сделаны в компании вонючих гиен и трусливых шакалов, а не благородных львов, роскошных леопардов и стремительных гепардов. Теперь можно снова вернуться к эпическому варианту.

Впрочем, между первыми изготовителями каменных орудий и временем гоминид из Канжеры Южной по-прежнему остается как минимум 600 тыс. лет, а то и больше миллиона… Что делали эти люди, как жили? Загадка ждет своего решения… Так что – до новых открытий!

Человек антилопе – лев

Анализ следов жизнедеятельности древнейших людей в Олдувайском ущелье всегда был плодотворным. Ему посвящены уже сотни статей. Много лет исследователи спорят: могли ли первые люди активно гоняться за газелями и антилопами, или же их хватало только на подбирание падали за львами и гиенами? В качестве аргументов приводилось множество наблюдений. В частности, археологи очень тщательно разглядывали царапины на окаменевших костях, пытаясь понять, перекрывают ли следы от орудий отметины зубов хищников или сами перекрываются ими? Но даже в случае, если первичны царапины от чопперов (примитивных каменных орудий), оставалось неясным, поймали наши пращуры зверюшку или нашли уже готовую тушку раньше грифов и гиен? Бесспорной добычей был, правда, один древний еж, на челюсти которого имелись четкие следы отрезания мяса (вряд ли наши предки отважно отбивали его у оскалившейся стаи гиен), но еж – не слон и даже не газель.

Очередная работа археологов пролила свет на способности наших предков к охоте (Bunn et al., 2012). Исследователи определили индивидуальный возраст добытых антилоп и газелей, на костях которых сохранились следы зубов хищников и каменных орудий; кости были найдены в Олдувайском ущелье (конкретнее – в локальном местонахождении FLK Zinj) и имеют датировку около 1,84 млн лет назад. Если бы возраст в обоих случаях оказался одинаковым, это могло значить, что Homo habilis подбирали остатки добычи хищников. Однако выяснилось, что картина иная.

Кости мелких антилоп со следами орудий принадлежали только старым самцам. Современные леопарды предпочитают мелких антилоп в расцвете сил. Это ясно свидетельствует в пользу того, что Homo habilis не пользовались остатками трапез леопардов. Но тут все же возможны две интерпретации: либо Homo habilis ловили старых антилоп потому, что те медленнее бегают, либо находили туши животных, погибших собственной смертью.

Последняя версия, однако, не проходит в случае с крупными антилопами. Охотясь на них, Homo habilis выбирали только взрослых, но нестарых особей, тогда как львы ловят животных всех возрастов без разбора. Если бы Homo habilis отбивали добычу у львов, в FLK Zinj тоже имелись бы кости крупных видов антилоп всех возрастов. Но, видимо, крупная антилопа вкуснее, когда она средних лет и самого большого размера. Молодые – мелкие, старые – жесткие. Хорошо бы поинтересоваться у современных африканских охотников – так ли оно?

Конечно, новое исследование не может отменить всех предыдущих, в которых неоднократно было показано, что добыча падали и отбивание добычи у хищников занимали немаловажное место в жизни древнейших людей, но, как бы то ни было, всегда приятно осознавать, что наши предки все же были не совсем законченными коллегами гиен, а хоть временами, но сами – ловко и умело – ловили антилоп и газелей. Иначе как бы они стали людьми?

Кстати, о малярии…

Примерно 2,7–2,8 млн лет назад у предков человека произошла и закрепилась в популяции мутация одного из генов, поменявшая сиаловые кислоты в составе гликокаликса – надмембранного комплекса эритроцитов (Chou et al., 2002; Varki et Gagneux, 2009). Секрет в том, что молекулы именно этих кислот являются мишенями для малярийных плазмодиев – паразитов, разрушающих эритроциты. Мутация позволила нашим предкам избавиться от малярии, но создала новые проблемы. У всех прочих млекопитающих сиаловые кислоты остались прежними, посему при поедании мяса зверей в человеческом организме возникает пусть несильный, но иммунный ответ. Парадоксальным образом именно в это время предки Homo начали есть все больше мяса. Как обычно, понятие пользы и вреда относительно: из двух зол естественный отбор оставил меньшее. Впрочем, около 10 тыс. лет назад плазмодии приспособились-таки к человеческим сиаловым кислотам, появился новый вид Plasmodium falciparum (у горилл и шимпанзе свой плазмодий – Plasmodium reichenowi, безопасный для человека). Вероятно, плазмодиям помогла скученность и оседлость первых земледельцев и скотоводов. Так что после 2 млн лет отдыха человек вернулся на исходные позиции. Пришлось изобретать серповидно-клеточную анемию, эволюция продолжается…

Мозг рос два миллиона лет. Однако в последние примерно 25 тысяч лет он снова стал уменьшаться.

Глупеем ли мы?

Мозг верхнепалеолитических людей и даже неандертальцев был в среднем заметно больше современного. Средний мозг мужчин поздних неандертальцев по самой низкой оценке имел объем 1460 см³, чаще же приводятся цифры больше 1500 см³ (возможная разница обусловлена составом выборки, неточностями в определении объема мозга у фрагментарных находок и применением разных методов измерения). В верхнем палеолите показатели примерно такие же, около 1500 см³, может, даже большие, чем у палеоантропов. Для современных же мужчин всех рас средний размер равен примерно 1425 см³, а для мужчин и женщин – 1350 см³. Уменьшение мозга началось примерно 25 тыс. лет назад и еще около 10 тыс. лет назад продолжалось вполне ощутимо. Этот факт разные исследователи объясняют по-разному. Одни, особенно гордящиеся собственной разумностью, склонны туманно рассуждать о важности количества и качества межнейронных связей, о соотношении нейронов и нейроглии, о непринципиальности абсолютной массы мозга, об отсутствии корреляции между этой массой и уровнем интеллекта, о различиях массы мозга и объема мозговой полости черепа, о тонкостях методик. Однако о нейронах неандертальцев и кроманьонцев мы ничего не знаем, а о размере мозга – знаем.

Есть и второй вариант: древние люди были умнее нас. Этот вывод обычно удивляет слушателей и ставит в некоторое замешательство. Главных аргументов “против” два: во-первых, если неандертальцы с кроманьонцами были умнее, почему же они имели более низкую культуру, во-вторых, разве объем мозга жестко связан с интеллектом?

На первое возражение ответить проще. Древние люди жили в гораздо более сложных условиях, чем мы сейчас. К тому же они были универсалами. В одной голове один человек должен был хранить сведения обо всем на свете: как делать все орудия труда, как добыть огонь, как построить жилище, как выследить добычу, как ее поймать, выпотрошить, приготовить, где можно добыть ягодки-корешки, чего есть не следует, как спастить от непогоды, хищников, паразитов, соседей. Помножьте все это на четыре времени года. Да еще добавьте мифологию, предания, сказки и прибаутки. Да необходимость по возможности бесконфликтно общаться с близкими и соседями. Поскольку не было ни специализации, ни письменности, все это человек носил в одной голове. Понятно, что от обилия такой житейской премудрости голова должна была “пухнуть”. К тому же оперировать всей этой информацией древний человек должен был быстро. Последнее, правда, несколько противоречит большому размеру: чем длиннее и сложнее межнейронные связи, тем дольше идет сигнал. Мозг мухи работает быстрее нашего в немалой степени из-за своего мизерного размера. Но и задачи у мушиного мозга попроще человеческих.

Современная жизнь резко отличается от палеолитической. Сейчас человек получает все готовое: и пищу, и вещи, и информацию. Крайне мало современных цивилизованных людей способны сделать какое-либо орудие труда из природных материалов. В лучшем случае человек комбинирует уже готовые элементы, например, прилаживает лезвие топора на топорище. Но он не изготавливает топор с самого начала – от добычи руды и срубания палки для топорища (тем более срубания орудием, лично изготовленным). Современный человек дров не носил, палок не пилил, руды не копал, железо не ковал – вот и нет ему ничего в смысле мозгов. Специализация – это не проблема XX века, как часто приходится слышать. Она появилась еще в раннем неолите, с первым большим урожаем, позволившим кормить людей, занимающихся не добычей еды, а чем-то еще. Появились гончары, ткачи, писцы, сказители и прочие специалисты. Одни стали уметь дрова рубить, другие – печь топить, третьи – кашу варить. Цивилизация сделала мощнейший рывок вперед, и количество общей информации сказочно выросло, но в голове каждого отдельного человека знаний заметно поубавилось. Цивилизация столь сложна, что один человек в принципе не может уместить в голове даже малой части общей информации – обычно он и не пытается, ему и не надо. Роль винтика устраивает подавляющее большинство цивилизованных людей.

В окружении множества людей не так страшно что-то забыть или вообще не знать. Всегда есть возможность научиться у знатока, скопировать, подсмотреть, украсть мысль (что и было сделано автором этих строк, в чем он честно признается: мысль о воровстве мыслей сворована). Подражание – одно из любимых занятий обезьян, неспроста существует слово “обезьянничать”. Многочисленное постнеолитическое общество вкупе с повышенными способностями к обучению дает для этого широчайшие возможности, гораздо более богатые, чем есть у обезьян (собственно, вместо “обезьянничать” лучше бы говорить “человечничать”). Когда большинство людей могут жить годами, не особо напрягая интеллект, отбор на разумность оказывается ослаблен. Это не значит, что миром серых посредственностей правят некие выдающиеся гении или что мы обречены на тотальное поглупение. Просто интеллект распределяется по всему коллективу.

Древний человек до всего доходил своим умом. При этом возможности обучения у него были минимальны. Продолжительность жизни была мала, отчего умудренных опытом стариков, да еще с педагогическим даром, было катастрофически мало. Вообще людей в группе было немного. Посему многие вещи приходилось постигать на личном опыте, причем очень быстро, да еще без права на ошибку.

Сейчас же каждого сапиенса с рождения окружают толпы специально выдрессированных лекторов, наперегонки спешащих поведать обо всех тайнах мироздания (в которых, как правило, сами ориентируются только с надежной картой в виде статей, монографий и баз данных, накопленных долгими предшествующими поколениями).

Современный человек берет нусом – коллективным разумом. У кроманьонцев нус не дорос, так что каждому приходилось работать своими мозгами. С усилением же специализации можно спокойно жить и с маленькой головой, это не критично. Пропал стабилизирующий отбор на крупные мозги, и генофонд стал разбавляться “малоголовыми генами”.

А при всем при том мозг – энергетически жутко затратная штука. Большой мозг пожирает огромное количество энергии. Неспроста палеолитические люди часто имели мощное телосложение – им надо было усиленно кормить свой могучий разум, благо еще не истощенная среда со стадами мамонтов и бизонов позволяла. С неолита отбор пошел на уменьшение размера мозга. Углеводная диета земледельцев позволяла неограниченно плодиться, но не кормить большие тело и мозг. Выигрывали индивиды с меньшими габаритами, но повышенной плодовитостью. У скотоводов с калорийностью пищи дело обстояло получше. Неспроста в бронзовом веке размеры тела увеличились, а современный групповой рекорд величины мозга принадлежит монголам, бурятам и казахам. Но жизнь скотовода несравненно стабильнее и проще, чем у охотника-собирателя; да и специализация имеется, плюс возможность грабить земледельцев позволяет не напрягать интеллект. Все скотоводческие культуры зависят от соседних земледельческих. Посему размер мозга уменьшался почти у всех на планете.

У многих на этом месте возникнет закономерный вопрос: почему же у современных охотников-собирателей объем мозга практически всегда очень мал? Австралийские аборигены, ведды, бушмены, пигмеи, андаманцы и прочие семанги – все как один имеют наименьшие значения размеров головы в мировом масштабе. Выходит, у них мозг уменьшался быстрее, чем у земледельцев и скотоводов. Неужели их жизнь стала настолько проще палеолитической, позволив не так сильно напрягать интеллект? Думается, есть разные причины особо активной редукции мозга именно среди охотников-собирателей.

Во-первых, технический и культурный прогресс шел во всех группах людей. Жизнь австралийских аборигенов XIX века – не то же самое, что жизнь их предков 30 тыс. лет назад. За минувшие тысячелетия появились бумеранги, микролиты, собаки динго. Жизнь стала лучше, жизнь стала веселее! А подавляющее большинство других охотничье-собирательских сообществ жило в контакте с культурами производящего хозяйства. Бушмены, семанги и эвенки использовали железные наконечники стрел и копий, выменивали ткани и посуду у окружающих земледельцев-ремесленников. Вездесущая глобализация затрагивала охотников-собирателей, хотя бы и крайне слабо. Технологические задачи, стоящие перед многими современными охотниками, по всей вероятности, не так сложны, как те, что решали люди палеолита. Конечно, эта причина далеко не достаточна.

Вторая, куда более серьезная причина резкого уменьшения мозга у охотников-собирателей – ухудшение условий их жизни. В палеолите такой образ жизни вели все, стало быть, плотность населения и конкуренция были минимальны, нагрузка на окружающую среду тоже была весьма слабой. Стада непуганых бизонов покрывали степи до горизонта, низкий уровень технологий не позволял извести их всех, но давал вполне достаточно пищи для поддержания большого тела и мозга. Нельзя сказать, что палеолит был золотым веком. Жизнь была тяжела и регулярно голодна. Но в целом, надо думать, неандертальцам и кроманьонцам жилось сытнее, чем нынешним бушменам в Калахари. Причина очевидна. Современные охотники-собиратели оттеснены земледельцами и скотоводами в самые неблагоприятные места. Все плодородные места в первую очередь были распаханы или заселены овцами. Охотники сохранились лишь на самых бедных окраинах, где самые тяжелые условия выживания и мало еды, которую к тому же трудно достать. В этом отношении показательно, что скелеты наиболее вероятных предков бушменов найдены не в Калахари или Намибе, а в пещерах южного побережья Африки. Останки древнейших австралийцев покоятся не в песках пустыни Виктории, а в самой плодородной юго-восточной части континента. Со временем пищи становилось меньше. Где-то – как в Австралии – ее за тысячи лет извели сами же охотники, где-то – в большинстве прочих мест – им помогли земледельцы и скотоводы.

Мало еды – мало возможностей для поддержания большого мозга. Неспроста современные охотники почти всегда имеют и очень малые размеры тела, и весьма субтильное телосложение, даже близко не сравнимое с неандертальским. В свете всего этого закономерно, что с появлением производящего хозяйства размер мозга угнетаемых охотников-собирателей стал резко уменьшаться. Верхнепалеолитический рай закончился.

Такая вот диалектика: технологический процесс улучшил жизнь, а рост населения и истощение ресурсов – ухудшили. И оба процесса вели к уменьшению мозга.

Кстати, об осах…

Уровень развития социума и размер мозга – взаимосвязанные вещи. Среди приматов есть четкая зависимость: чем больше особей в группе, тем крупнее мозг (Gowlett et al., 2012). Конечно, корреляция эта выявляется при сравнении видов, а не отдельных популяций. На этом основании была построена целая концепция “социального мозга”: дескать, сей замечательный орган увеличивался у предков человека главным образом для общения с себе подобными, а вовсе не для преодоления жизненных невзгод.

Однако не все так однозначно. С появлением производящего хозяйства размер групп людей вырос на порядки, но мозги почему-то не ответили на это симметричным привесом. Может, взаимосвязь социальности и мозговитости не такая уж прямая, а скорее волнообразная? Возможно, социальность обезьян – совсем не та социальность, просто она еще не достигла того счастливого уровня, когда коллективный разум начинает избавлять индивида от надобности думать?

Возможно, стоит поискать более продвинутых в общественном смысле животных, чем макаки и шимпанзе? И вот пожалуйста: среди ос размер грибовидных тел – аналога коры головного мозга у позвоночных – обратно пропорционален их социальности (O'Donnell et al., 2015). Одиночные осы оказались однозначно самыми мозговитыми. Может, это повод задуматься о нашем будущем?

Во всех вышеприведенных рассуждениях одним из ключевых моментов является предположение о связи размера мозга с его функциональными возможностями. Тут стоит сделать подробное уточнение. Размер мозга напрямую не коррелирует с интеллектом в пределах вида. В рамках вида Homo sapiens размер мозга связан с размерами тела и качеством питания (отчего во многих странах в последние десятилетия наблюдается увеличение массы мозга – есть стали лучше, вот и подросли малость), а интеллект в основном зависит не от размера мозга (тем более что объем мозга процентов на 40 определяется глиальной тканью, а не нейронами; глия, конечно, тоже нужна, так как обеспечивает работоспособность нейронов, но не в ней происходят нервные процессы), и даже не от числа нейронов (ведь при увеличении размеров тела прежде всего будет увеличиваться число двигательных или чувствительных нейронов, но не они определяют интеллект), и даже не от числа ассоциативных нейронов, а от числа связей между нейронами. Число же связей меняется в пределах нескольких порядков и частично обусловлено наследственно, частично же определяется образом жизни и опытом. Учится человек, наращивает число связей – будет умнее; не учится – будет глупее.

Стремление к обучению, впрочем, тоже имеет наследственную составляющую, так что мозговитый человек с огромной интеллектуальной потенцией может не хотеть тренировать свой мозг, не нарастит связи и останется простофилей. Существенно, что число нейронов в течение жизни катастрофически уменьшается, а способности мозга продолжают расти; это определяется именно появлением новых межнейронных связей. Таким образом, приходится признать, что большой мозг сугубо потенциально должен бы стать более умным, но оговорок так много, что фактически эта связь отсутствует. Доказывается это разными путями.

Во-первых, известны великие мыслители и с большим, и с малым мозгом. Средняя величина по этим мыслителям получается практически средней по миру (на самом деле она получается больше среднемировой средней, но тут надо учитывать два важных обстоятельства: в выборку мыслителей всегда включают только мужчин и почти одних северных европеоидов – крупных телом и, стало быть, мозгом; если бы сюда добавить женщин и южных мыслителей – древних египтян, греков, римлян, итальянцев, майя, индусов, южных китайцев, то средняя по мегаинтеллектам сравнялась бы с общемировой).

Во-вторых, старые люди с капитально уменьшившимся мозгом могут иметь два жизненных пути. Если в течение жизни они вели интеллектуальную жизнь (пели, плясали, читали, а лучше – сочиняли стихи, занимались наукой, искусством, просто делали что-то умное), то старческое слабоумие им не грозит. Среди университетских профессоров людей с деменцией несравнимо меньше, чем среди людей неинтеллектуальных профессий. Если же человек всю жизнь сидел на лавочке, лузгал семечки и не читал ничего сложнее астрологического прогноза, то перспективы его старости неутешительны. Учиться, учиться и учиться – как завещал нам великий В. И. Ленин, мышление в молодости спасет нас от маразма на пенсии.

В-третьих, в популяционном смысле все то же самое. Великие достижения человеческой мысли принадлежат самым разным группам – и мозговитым, и не очень. К тому же в разное время главные на тот момент открытия делали люди из самых разных мест планеты. Пластинчатая техника, черешковые наконечники, копьеметалка, микролиты, шлифование камня с наибольшей вероятностью придумывались много раз; нам эти штуки кажутся примитивными, но в свое время это были новации, перевернувшие мир. Земледелие независимо изобрели на Новой Гвинее, Ближнем Востоке, в Китае и как минимум дважды в Америке; зернотерку, лук со стрелами и керамику изобретали неоднократно в тех же и других местах; письменность, математику, астрономию и государственность – в меньшем количестве мест, но тоже не единожды и независимо, причем как не самые мелкоголовые, так и не самые башковитые. С другой стороны, одна и та же популяция вполне могла долгое время опережать всех, а потом отстать или, напротив, сначала жить в дикости, а после вырваться вперед. Примеры бесчисленны – бушмены, папуасы, египтяне, норвежцы, китайцы… Фактически любой народ переживал периоды застоя и ускорения. Давно ли римляне писали о варварах кельтах и германцах? А давно ли жители самой Италии бегали в шкурах (а то и без них), притом что в Междуречье уже высились пирамиды? Размер же мозга при всех этих культурных и социальных преобразованиях не менялся.

Неспроста рекордсмены по размеру мозга никогда не являются рекордсменами по достижениям – ни в индивидуальном, ни в популяционном смысле.

Еще очевиднее факт отсутствия внутривидовой связи размера и функции мозга на примере собак. Песики разных пород не распределяются по интеллекту так же, как по росту. Мелкая левретка может быть столь же сообразительной, что и огромный ирландский волкодав. Число двигательных и чувствительных нейронов у разноразмерных собак различается капитально, а число связей между ассоциативными нейронами, видимо, остается более-менее постоянным.

Единственно когда внутривидовая корреляция размера и функции мозга четко проявляется – в случае патологических крайностей. Ясно, что микроцефал не может быть особо умным по причине недоразвития коры, но и рекордсмены в сторону больших значений – частенько тоже с патологиями интеллекта и психики.

Однако в межвидовом масштабе связь размера мозга и интеллекта вполне очевидна, с поправками на массу тела конечно. Мышь глупее слона, кошка глупее собаки. Шимпанзе никогда не достичь уровня человека. Кит имеет в три раза больший мозг, чем человек, но в тысячу раз превосходит его по весу тела, так что тоже не догоняет по разумности. Соразмерные с человеком неандертальцы и кроманьонцы (которые тоже вроде как Homo sapiens, но уж больно древние и специфичные) имели больший мозг. Хронологические изменения невозможно списать лишь на аллометрические связи размеров мозга и тела – тело-то не особо поменялось, а питание в целом стало как минимум стабильнее. Стало быть, изменения размеров связаны в первую очередь с интеллектом. С чего мы и начали.

Каковы же перспективы? Усиливающаяся специализация и независимость от условий окружающей среды, обеспеченность выживания независимо от личных качеств делают прогноз неутешительным. С другой стороны, общий разум человечества неизмеримо растет. Обеспечит ли он счастливое будущее? Поживем – увидим…

Строение долей мозга существенно отличается у разных приматов и менялось в процессе эволюции предков человека. К сожалению, на ископаемых эндокранах мы можем изучать только их общую форму и размеры, но и этого достаточно для оценки межвидовых различий. Выясняется, что изменения размеров и формы сменяли друг друга: как правило, сначала увеличивался размер, а потом преображались пропорции. Несинхронно эволюционировали и разные доли, и участки внутри каждой доли. Изменения длины, ширины и высоты происходили не одновременно, а последовательно.

По темпам изменения первое место занимает лобная доля, второе место за теменной, третье достается височной, а затылочная замыкает список (об изменениях островковой остается только догадываться по изменению общей ширины мозга).

В пределах лобной доли интенсивнее всего менялась нижнелобная область, а в ней – орбитная часть. Лобная доля отвечает за мышление в самом широком значении этого слова: сознание, способность общаться с другими людьми, этику, эстетику и логику. В задней части нижней лобной извилины расположен центр Брока – моторная зона речи. Грубо говоря, это место отвечает за говорение (на самом деле в большей степени за составление из слов связных предложений, а еще и за восприятие контекста). Как часто бывает, лучше всего функция понятна на примере нарушений: при повреждении центра Брока человек понимает, что ему говорят, может сформулировать мысль и, скажем, написать текст, но не может артикулировать свою речь, а даже если произносит отдельные слова, то неспособен выдать их последовательно в виде внятной фразы. Понятно, что у обезьян на этом месте тоже не дырка, у них этот же участок мозга отвечает если не за речь, то за похожие действия – движения гортани, в том числе издавание звуков при общении. Но у человека относительный размер центра Брока вдвое больше, а абсолютный превосходит обезьяний вариант в 6–6,6 раза!

Участок, соответствующий центру Брока, был совершенно не развит у австралопитеков, но у некоторых “ранних Homo” тут появляется заметный рельеф. Это не значит, что Homo habilis уже умели говорить, но раз нейронов становилось больше, какой-то очевидный прогресс в этом направлении шел. Еще сильнее выступала та же область у Homo erectus (отчего, кстати, Э. Дюбуа назвал свою находку не Pithecanthropus alalus – “Обезьяночеловек бессловесный”, как предлагал Э. Геккель), а у неандертальцев тут были основательные бугры. Опять же это не значит, что питекантропы и неандертальцы болтали без умолку, но свидетельствует о значительном развитии коммуникативных голосовых возможностей. Кстати, у современного человека никакого особого рельефа тут нет, но это говорит лишь о том, что отлично развиты соседние области.

Кстати, о песнях…

Сразу впереди от речевого центра Брока расположена самостоятельная зона пения. При повреждении зоны Брока – моторной афазии Брока – человек теряет способность членораздельно говорить, однако может пропеть любую фразу. Другое следствие сего странного разделения – то, что заикающиеся люди поют без всяких проблем. Заикание – это отсутствие торможения в центре Брока: слово произносится, но сигнал не гасится, и человек раз за разом повторяет одно и то же. Однако сей дефект совершенно не влияет на певческие способности. Кстати, может быть и обратная ситуация – прекрасный оратор, совершенно не умеющий петь.

Трудно понять, какая надобность создала у человека разделение способностей к пению и говорению. В любом случае это значит, что пение – не разновидность речи, а совсем особое свойство, на развитие которого шел самостоятельный отбор. Видимо, представляя своих предков хриплыми троглодитами, общающимися гортанными криками, мы сильно недооцениваем их; вероятно, среди них было немало талантливых вокалистов.

У неандертальцев, кроме прочего, наблюдается рельеф в области венечного шва, примерно там, где должна располагаться прецентральная извилина. У современного человека тут находится так называемый “двигательный человечек” – цепь полей, отвечающих за сознательные движения. Надо думать, контроль за своими движениями у неандертальцев был на высоте.

В теменной доле наиболее важным процессом было расширение. Хорошо можно проследить изменения в нижней теменной дольке, занятой множеством функций, сводящихся в целом к координации чувствительности руки со слухом, зрением и движениями, то есть, иначе говоря, – трудовой деятельностью, а также ориентацией в пространстве, в том числе на местности со сложным рельефом или, скажем, в лесу. Рельеф тут появляется как минимум у Homo erectus, а у неандертальцев достигает наибольшего развития.

Кстати, о картах…

Понятно, что способности к ориентированию были еще у древесных приматов. Однако до сих пор неясно, когда и где люди научились выражать эту способность к абстрагированию особенным способом – в виде карт. На роль древнейших схем претендовали разные артефакты: с Киево-Кирилловской стоянки и Межиричей на Украине, Павлова, Пшедмости и Дольни-Вестонице в Чехии, из пещер Эль-Пендо и Льонин в Испании, Гаргас во Франции. Однако во многих или даже большинстве из этих случаев реальность “карт” весьма сомнительна. Поэтому особенно интересны гальки из испанской пещеры Абаунц (Utrilla et al., 2009). В слоях с позднемадленскими изделиями и датировками 13,66 тыс. лет назад были найдены несколько галек с замечательными гравировками. На камушках нацарапаны разные звери – олени, козлы, лошади и какие-то другие. Но исследователи обратили внимание на окружающие зверюшек полосы, загогулины и закорючки. На первый взгляд они довольно беспорядочны. Стало быть – нужен второй взгляд! Раскрасив линии на гальках в нужные цвета, сравнив их с реальной картой и местным пейзажем и слегка прищурившись, можно увидеть, что с большой вероятностью на камнях изображены именно схемы и виды: самая большая местная гора, речка под ней, кусты вдоль речки, даже место переправы, чуть ли не мостик.

Ясно, что многие археологи настроены в этом отношении крайне скептически: если долго смотреть на гальки с царапинами, там можно увидеть что угодно. Но рисунки лошадей-то с оленями настоящие! Отчего бы кроманьонцы не могли заняться и картографией?..

Височная доля мозга, как и прочие, эволюционировала неравномерно. Височная доля отвечает за многие вещи, но ее верхняя часть – в основном за слух. В задней части верхней височной извилины, на границе с теменной долей, расположена зона Вернике – слуховая зона речи. Показательно, что рельеф тут усилен уже у архантропов и крайне силен у неандертальцев.

Затылочная доля отвечает в основном за сознательное распознавание зрительных образов. Она долго и не спеша увеличивалась, но со времен раннего верхнего палеолита до современности существенно сократилась – как раз в основном этим обусловлено уменьшение мозга, о котором говорилось выше. Этот факт можно интерпретировать двояко. Либо зрение было намного важнее для людей каменного века (пишу я, поправляя очки на носу), либо поля, расположенные у нас в задней части теменной доли, у троглодитов занимали переднюю часть затылочной и лишь потом “переползли” вперед.

Минутка фантазии

Передняя часть височной доли, как гласит “Практикум по анатомии мозга человека” С. В. Савельева и М. А. Негашевой (2005), обеспечивает “контроль за храпом, кряхтением и икотой”, расположенный чуть выше и назад участок отвечает за “ритмические движения жевания, глотания, лизания и чмоканья”. Задняя же часть занята “агностическим слуховым полем”. Для неандертальцев более типичен вариант с большим развитием задней части, а для сапиенсов – передней. Возможно, стены неандертальских пещер по ночам сотрясались от кряхтения и богатырского храпа (бочкообразная грудная клетка тому порукой), а от икоты и смачного причмокивания с потолка сыпалась шуга. Ну не получалось у неандертальцев обуздать сии порывы – нейронов не хватало. Слышали же они при этом преотлично, плоская лобная доля не могла сдержать бурные эмоции, большая затылочная доля и рельеф ангулярной извилины позволяли найти храпуна в темноте пещеры, а результатом был кровавый мордобой. Выживали только индивиды с самым толстым черепом и мощными надбровными дугами.

В пещерах же кроманьонцев царили тишина и покой: даже во сне они сдерживали храп и причмокивание, а посредственный слух оставлял соплеменников равнодушными даже к этим жалким всхлипам. Если же кому-то и не спалось, то высшая лобная ассоциативная зона позволяла держать себя в рамках приличия. Вероятно, сапиенсы прошли отбор на эти признаки в опасной африканской саванне, где лишние звуки привлекали леопардов, рыщущих в ночи. Неумолчный же тропический ночной гам – стрекот цикад, цоканье квакш и хохот гиен – слушать необязательно. Или же отбор был искусственным – союз рубила и хорошей координации движений гарантировал выживание только тихо храпящих и плохо слышащих…

Все сходится!

Стоит особо уточнить, что все рассуждения об эволюционной судьбе конкретных участков мозга довольно спекулятивны. Пупырышки и бугорки на эндокранах могут отражать рельеф черепа, а не мозга, или вообще быть следствием плохой сохранности. Многие могут с пренебрежением сказать: “Что это еще за френология в XXI веке?” Но у палеоневрологов есть три оправдания. Во-первых, это пока единственный способ изучать древние мозги, а для существ древнее миллиона лет наверняка так и останется единственным (палеогенетика столь далеко, думается, заглянуть не может, поскольку ДНК так долго просто не сохраняется). Во-вторых, антропологи изучают межвидовую изменчивость: если внутри вида конкретный рельеф обычно случаен и ничего не значит, то в масштабах отличия видов разница оказывается вполне уловимой и хорошо измеримой. В-третьих, антропологи обращают внимание не на каждый выступ на эндокране, а закономерно расположенный и подтверждаемый статистикой, а статистика у нас, слава археологам, уже достаточно представительная.

Уголок занудства

Множество эндокранов позволяет оценить детали эволюции мозга (дробышевский, 2012).

Длина лобной доли в эволюции гоминид резко изменялась два раза: росла при переходе от австралопитековых к Homo erectus и уменьшалась с начала верхнего палеолита. Ширина достигла максимума у Homo neanderthalensis, после чего начала уменьшаться. Нижнелобная область в наибольшей степени увеличилась в промежуток времени от австралопитековых до Homo erectus (возможно, до “ранних Homo”, среди малой выборки которых имеются все варианты строения этой доли). Орбитная часть достигла максимальной выраженности у Homo neanderthalensis в виде бугров, сгладившихся в дальнейшем за счет роста соседних областей.

В эволюции теменной доли наиболее важным кажется процесс неуклонного расширения (абсолютного или относительного) в области надкраевой извилины (передней части нижней теменной дольки). Темпы изменения ширины превосходили таковые длины и тем более высоты. Процессы преимущественного роста в длину и ширину сменяли друг друга. Важно отметить переменное преобладание темпов эволюции то лобной, то теменной доли. Теменная доля отвечает в основном за чувствительность и ориентацию в пространстве. Надкраевой (передний) участок нижней теменной дольки отвечает за чувствительность рук, определение на ощупь веса, формы, влажности, температуры и рельефа поверхности предметов, производит третичный высший анализ и синтез уже обобщенных и отвлеченных сигналов из соседних областей мозга, отвечает за интеграцию слуховых, зрительных и тактильных ощущений, координацию чувствительности и двигательной активности – трудовую деятельность, обеспечивает самоконтроль. Угловой (задний) участок обеспечивает ориентацию в пространстве и трудовые действия. Верхняя теменная долька отвечает за схему тела и интеграцию зрения с движениями всего тела.

У височной доли возникли два основных варианта пропорций: первый – расширенный в задней части и удлиненный снизу (австралопитеки, некоторые “ранние Homo”, Homo erectus, европейские неандертальцы), второй – расширенный в передней части и удлиненный сверху (некоторые “ранние Homo”, Homo heidelbergensis, ранние ближневосточные палеоантропы, верхнепалеолитические и современные Homo sapiens). Заметно менялись размеры и пропорции височной ямки, очень широкой и мелкой у одних групп (массивные австралопитеки, часть “ранних Homo”, яванские Homo erectus или Homo heidelbergensis из Самбунгмачана, европейские неандертальцы) и глубокой и узкой у других (часть Homo erectus, ранние ближневосточные палеоантропы, верхнепалеолитические Homo sapiens).

Размеры затылочной доли эволюционировали несинхронно: от австралопитековых до “ранних Homo” резко увеличилась ширина при сохранении длины; далее длина стала плавно увеличиваться, но вплоть до Homo erectus рост в ширину преобладал; после начали превалировать темпы увеличения длины, от палеоантропов к Homo sapiens ширина начала уменьшаться при сохранении длины. С верхнего палеолита до современности опять темпы изменения ширины, но теперь в сторону уменьшения, получили превосходство над темпами укорочения доли. При всех этих изменениях неуклонно увеличивалось преобладание верхней части доли над нижней.

Мозжечок с самых ранних этапов вплоть до верхнего палеолита увеличивался, причем полушарие становилось относительно все длиннее и уже. С верхнего палеолита тенденция принципиально изменилась, и к современности все размеры уменьшились, а полушарие относительно расширилось.

В целом австралопитеки имели почти обезьяний мозг, единственной прогрессивной чертой грацильных форм было некоторое удлинение теменной доли, а массивных – расширение и повышение всего мозга. У “ранних Homo” большинство признаков мозга оставалось на прежнем уровне развития, с поправкой на бóльшие размеры. Homo erectus – первые гоминиды, у которых сугубо обезьяньи черты мозга окончательно были вытеснены специфически человеческими: появились прогрессивные черты лобной и теменной долей, упомянутые выше; мозг преимущественно расширился. Homo heidelbergensis – очень неоднородная группа, среди них самыми прогрессивными были африканские и европейские формы, а Ява была местом, где жили самые дремучие и специализированные люди. Особенно преуспели гейдельбергенсисы в высоте лобной доли, а ее расширение обгоняло расширение всего мозга. Теменная доля, особенно область надкраевой извилины, прогрессировала настолько резко, что мы можем надежно отличать этот вид от предыдущего по ее размерам (редкий пример, когда признак на эндокране оказывается важнее признака на черепе). Височная доля у гейдельбергенсисов уже почти современная, а затылочная с мозжечком, напротив, не отличаются от варианта Homo erectus.

Неандертальцы имели самый широкий мозг из всех известных для гоминид и самую большую затылочную долю, тогда как лобная и теменная были относительно невелики и заметно уплощены, хотя и с описанным выше рельефом, а височная почти не отличалась от нашей.

Ранние кроманьонцы еще сохраняли в строении мозга некоторые архаичные черты, например увеличенные размеры затылочной доли. Причем такая архаика продержалась до достаточно поздних времен – как минимум до 28 тыс. лет назад. То есть от трети до половины времени существования нашего вида (а сапиентность определяется в основном по внешним признакам черепа) мозг был еще не вполне сапиентным. Но в целом мозг кроманьонцев отличался от нашего в основном лишь несколько большими размерами при уже современных пропорциях.

Минутка фантазии

В мире животных есть простое правило: чем сильнее вооружен вид, тем лучше у него отлажен врожденный ритуальный контроль за агрессией. Скажем, когда дерутся два волка, проигравший подставляет горло – самую уязвимую часть – победителю, тот изображает укус и на этом битва заканчивается. Реально никто никого не убивает, иначе вид бы быстро вымер. Если же дерутся два хомячка, они запросто могут поубивать друг друга, у них нет подобных рыцарских ритуалов. Неандертальцы были очень мощными и сильными, поэтому логично, что они должны были как-то ограничивать свою агрессию. Вместе с тем лобная доля, обеспечивающая сознательный контроль над порывами души, была у них приплюснутой и относительно не слишком большой. А вот запредельная ширина мозга неандертальцев может означать мощное развитие подкорковых центров – ядер полосатого тела и в целом лимбической системы. А одна из важнейших функций этих центров – подсознательный (читай: инстинктивный) контроль за эмоциями. Так может, при драках неандертальцы тоже “подставляли горло” (а может, даже и без кавычек)? И вот в Европу приходят кроманьонцы – прагматичные ребята с креативным мышлением, но не такие мускулистые, а стало быть, с неразвитой врожденной программой “не бей лежачего”. Грядет борьба за ресурсы, гром сраженья раздается, технически продвинутые кроманьонцы теснят неандертальцев, у тех срабатывает врожденный защитный механизм, они подставляют прытким супостатам горлышко или пузико, ожидая инстинктивной – безусловной – милости… Но у кроманьонцев нет нужного тумблера в лимбической системе, они радостно колют сдавшихся на милость своими высокотехнологичными гарпунами и осваивают захваченные земли…

С изменениями мозга тесно связаны изменения поведения, хотя найти уникальные черты в поведении человека не так-то легко.

Крупный мозг дает преимущества в выживании, потому что позволяет решать нестандартные задачи. Приматы пошли по этому пути дальше прочих животных, а человек – дальше всех приматов. Люди – большие спецы по преодолению форс-мажоров. Они могут действовать нестандартно, обманывая как своих жертв, так и врагов, функционирующих по строгой программе. Поскольку задачи стали бесконечно разнообразны, нашим предкам уже не хватало мозга кошачьего размера, вот он и вырос.

Поведение человека в значительной мере обусловлено обучением и воспитанием, генетически наследуемых форм поведения у человека минимум, а сложных врожденных нет и в помине. Без обучения человек не формируется психически нормальным. Без культуры и общества человек не может полноценно существовать, что наглядно демонстрируется печальными примерами людей-маугли, выросших вне коллектива. Впрочем, сами способности и стремление к обучению заданы генетически, так что не стоит недооценивать врожденную составляющую поведения человека. В настоящее время генетики ведут активный поиск генов, определяющих интеллектуальные способности, уровень агрессии и асоциального поведения, способности к изучению языков и многого другого.

В целом весь этот комплекс можно определить как устойчивую внегенетическую межпоколенную передачу информации, без которой особи не существуют. Время его формирования невозможно определить точно, но, видимо, человеческие очертания он приобрел с момента начала активного изготовления орудий, что явно требовало длительного обучения.

С шимпанзе и гориллами дело обстоит вроде бы так же – без воспитания и общения они не могут вырасти нормальными. Однако есть одна тонкость. У обезьян не так уж много форм поведения, специфичных для отдельных групп, причем от таких особенных навыков они не зависят принципиально. У разных групп шимпанзе есть своего рода культуры – самые дремучие не используют никаких орудий, другие умеют только ловить термитов палочками, третьи – колоть орехи кола камнями, четвертые кладут при этом орехи на наковальню, пятые подпирают наковальню дополнительным камешком, шестые умеют и ловить термитов, и колоть орехи… Эти навыки не врожденные, они могут переноситься из группы в группу с умелыми особями, а детенышам передаются исключительно путем обучения. Но без них можно жить, обходясь общешимпанзиными ценностями.

Человек обладает еще одним уникальным свойством – способностью обучать и вообще обеспечивать связь поколений за счет передачи информации на искусственных носителях в виде, например, письменности. Этот признак человека совсем не обязательный (письменность была создана недавно и до сих пор есть не у всех народов), скорее это побочный эффект, зато сугубо специфичный, а потенциальные способности к обучению чтению и письму есть у всех людей.

Человек не только использует, но и изготовляет орудия труда. Шимпанзе и некоторые другие животные тоже способны на это, но далеко не в человеческих масштабах и, опять же, не зависят от этой способности. Шимпанзе могут размусолить зубами палочку для ловли термитов, но могут всю жизнь прожить, ни разу не занявшись этим благородным делом. Древнейшие каменные орудия известны в местонахождении Гона в Эфиопии с датировкой 2,6–2,7 млн лет назад, а в Ломекви – 3,3 млн лет назад, их сложность уже запредельна для обезьяньего разума. Все современные люди однозначно зависимы от искусственно изготовленных (хотя бы и не собственноручно) орудий. Без них человек перестает быть человеком, это наша странная специализация, примерно такая же, как зависимость муравья от муравейника.

Человек активно использует небиологическую энергию. Неизвестна ни одна группа сапиенсов, которая бы не использовала огонь. Иногда приходится читать, что где-то на краю Земли якобы есть дикие племена, не умеющие добывать “красный цветок”. Особенно не повезло с такой славой тасманийцам и огнеземельцам. Но этнография однозначно свидетельствует, что они знали даже несколько способов возжигания пламени. Другое дело, что в сыром туманном климате это дело хлопотное, так что проще пойти и занять уголек у соседей. Но если у них с этим тоже были проблемы, то куда деваться – приходилось и тасманийцам, и огнеземельцам добывать искры в поте лица своего.

Впрочем, свойство использовать небиологическую энергию, как ни странно, тоже не полностью уникально. Примеров множество. Самые банальные примеры – бактерии-хемотрофы, скажем использующие энергию неорганических реакций в серных источниках. Правда, это может показаться чересчур уж отдаленной аналогией. Тогда пожалуйста, есть жуки-пожарники, питающиеся животными, погибшими при пожаре, – чем не использование огня? Есть виды сосен, семена которых прорастают только и исключительно после обгорания в низовом пожаре. Конечно, ни жуки, ни сосны не могут сами развести костер, так что человеческий вариант огнезависимости действительно по-своему уникален.

Древнейшие следы использования огня, иногда даже с выкладками камней вокруг очага, обнаружены в Африке в местонахождениях Гомборе I (Эфиопия) 1,6–1,7 млн лет назад, Кооби-Фора FxJj20E (Кения) 1,4–1,6 млн лет назад и Чесованжа GnJi1/6E (Северная Кения) 1,375–1,46 млн лет назад.

Человек сознательно и целенаправленно модифицирует среду своего обитания, чего не делает ни одно животное. Этот признак человеческого поведения сформировался, видимо, позже всех, как результирующая использования орудий и преобразования энергии в начальной форме – с охотничье-собирательским образом жизни примерно с 2,5 млн лет назад, в выраженной форме – с освоением огня около 1,5 млн лет назад, а в законченной характерен уже только для обществ с производящим хозяйством со времени около 12–10 тыс. лет назад, когда распашка, ирригация, вырубание лесов и капитальное строительство стали катастрофически преображать лик Земли. Полвека назад люди добрались и до космоса.

Меняют и, более того, разрушают свою среду обитания так или иначе все виды. Всем известны достижения бобров и термитов. Белки грызут орехи, так что те больше никогда не прорастут, слоны расковыривают баобабы, лошади и коровы способны загадить любой луг так, что невозможно пройти, овцы выжирают все до корней включительно… Другое дело, что у животных обычно не хватает численности и целеустремленности для достижения коллапса такого масштаба, какой способен организовать человек. К тому же животные чаще ограничиваются уничтожением лишь одного какого-то особо любимого ими ресурса, тогда как люди подходят к делу куда как более основательно. Люди заняли все экологические ниши и стали сверхконкурентами для всех живых существ, включая бактерий. Насколько хватит запаса прочности у биосферы?..

Тело человека от докембрия до наших дней (история в четырнадцати звеньях с прологом и эпилогом)

Часть третья, масштабная, в коей широкой (местами малярной) кистью живописано эпичное полотно эволюции и поведано, откуда растут ноги у рук, где у нас жабры и отчего в автобусах поручни наверху

Пролог

Начало цепи: появление жизни и первых клеток

Гоминидной триадой специфика человека, конечно, не ограничивается. За миллионы лет до того, как по Африке пошла гулять двуногая обезьяна, ее особенности были предопределены жизненными нуждами бесчисленных предков – от первых бактерий и даже раньше.

Начинать долгий путь к человеку надо, по большому счету, с Большого взрыва, определившего фундаментальнейшие свойства нашей Вселенной. Не помешало бы повести речь и о первых звездах, посмертно снабдивших нас всеми элементами тяжелее гелия, ведь из одних водорода да гелия много не намастеришь, разве что еще одну звезду. Нелишним было бы поведать об особенностях нашего Солнца, Юпитере – щите от комет и астероидов, а также об уникальных свойствах Земли, ее расположении, железном ядре и магнитном поле, оберегающем нас от космической радиации, о приобретении воды и рождении океанов, полужидкой мантии и дрейфе континентов, о Луне, ведающей приливами и отливами… Но это увело бы нас слишком далеко от темы, а я не чувствую себя слишком компетентным в космогонических вопросах, так что Читатель может узнать об этих интереснейших гарантах нашего появления, существования и развития из других книг.

Мы же начнем с собственно зарождения жизни. Старт был задан в начале архея, 3,7–3,8 млрд лет назад. Строго говоря, пока никто точно не может сказать, как возникла жизнь (современное состояние вопроса: Кунин, 2014). Но ее следы мы можем найти даже в межгалактических облаках в виде аминокислот. Трудно сказать, были ли занесены “споры жизни” из холодных глубин Вселенной, как считают некоторые. В принципе, среда на первичной Земле была вполне подходящая, и спонтанное образование даже не самой простой органики было продемонстрировано в экспериментах с воспроизведением условий, царивших на нашей планете примерно 4 млрд лет назад. Ныне многие биологи склоняются к концепции “РНКового мира” и молекулярной эволюции. Согласно ей, довольно долго органические соединения спонтанно возникали и разрушались, но самые устойчивые из них сохранялись, и шел своего рода отбор на устойчивость химических молекул. Зарождение жизни можно начинать отсчитывать с появления самоподдерживающегося комплекса РНК и белков. Поэтому жизнь можно определить, вслед за К. Ю. Еськовым (2007), как “автокаталитические системы высокомолекулярных соединений углерода в неравновесных условиях”.

Важнейшее свойство РНК – изменчивость. Эта молекула велика, она может меняться в мелочах, что необязательно критично сказывается на общей устойчивости, но модифицирует частные свойства. На примере кристаллов мы видим, что без изменчивости может быть рост и даже размножение, но нет развития. Кристаллическая решетка может быть несколько искажена (если, например, кристалл упирается в препятствие), но из “поколения в поколение” будет воспроизводиться по одному извечному шаблону. РНК же, а впоследствии ДНК за счет размера и сложности дают возможность почти бесконечной вариабельности.

Древнейшие осадочные породы и древнейшие следы жизни обнаружены в отложениях Исуа в Гренландии с датировкой 3,7–3,8 (а возможно, даже 3,86) млрд лет назад. От этих времен нам достались основные способности адаптации, диапазон условий, в которых мы можем жить, – температурных, кислотных, зависимость от воды, даже предельные размеры клеток, которых тогда еще не было.

Собственно, клетка – это важно. Можно определять жизнь как автокаталитические системы, функционирующие за счет градиента условий внутри и снаружи. А границей между “внутри” и “снаружи” явилась клеточная мембрана. РНК с белками, окруженная липидной мембраной, – это уже клетка. За счет перепада концентрации веществ по обе стороны мембраны обеспечивается метаболизм – обмен веществ, а также обмен информацией. Могут ли быть неклеточные формы жизни? Это вопрос вопросов. Мы знаем лишь наш вариант.

Древнейшие клетки известны из архея: первые цианобактерии и даже их сообщества – строматолиты – найдены в отложениях Южной Африки и США и имеют возраст 3,55 млрд лет. Надо думать, примерно тогда же появилась ДНК, оказавшаяся более устойчивой и надежной, чем РНК.

В принципе, с возникновением бактерий и, более того, автотрофных бактерий эволюцию живого мира можно считать завершенной. С энергетической и обменной точки зрения это так: ведь если сейчас с планеты убрать всех эукариот – организмы с клеточным ядром, – то энергобаланс планеты изменится лишь в пределах погрешности. Все, на что мы склонны обращать максимум внимания – слоны, бизоны, секвойи, водоросли, кукушки, пчелы, – все это незначительная пыль и мимолетное отклонение от основной биомассы – бактерий. Но мы эгоцентричны, поэтому нам кажется, что самое интересное – впереди, ведь впереди – мы…

Глава 6

Звено 1: появление клеточного ядра

(протерозой, 1,9±2,4 млрд лет назад)

Первые ядерные организмы – эукариоты – возникли 1,9–2 млрд лет назад. Одной из наиболее аргументированных гипотез является симбиотическая. Собственно, симбиоз оказался итогом несварения: одна клетка глотала другую, но не растворяла, а использовала в мирных целях. Видимо, ядро было когда-то археей, а из бактерий получились митохондрии.

Ядро – очень важный элемент клетки. Оно защищает ДНК, что повышает надежность сохранения информации и дает возможность разнообразить биохимические процессы. В цитоплазме бактерий ДНК неуютно, злые ферменты того и гляди норовят порвать ее в клочья. Кроме прочего, ДНК – это кислота, так что реакции с образованием щелочей бактериям противопоказаны, иначе ДНК нейтрализуется и выпадет в виде соли. Да и вообще, много ли проведешь противоречащих друг другу реакций в одной тесной бактериальной клетушке? Поэтому и ДНК у бактерий обычно маленькая, много генов ей и не надо. И форма у нее кольцевая – так ферментам труднее ухватиться, нет кончика, с которого бы можно было начать есть бедную молекулу. Но опять же кольцо не сделаешь слишком длинным – вырастет вероятность разрыва.

Другое дело в ядре! Любо там, тишь, благодать, примиренье. ДНК надежно спрятана за ядерной мембраной. Теперь ее можно раскольцевать в длинные хромосомы, а их самих напихать в клетку сколько душе угодно (у папоротника-ужовника их 1260 в каждой клетке). Беспрецедентное увеличение генетического материала позволяет ввести в эксплуатацию новые, невиданные доселе обменные процессы, усложнить их, что в будущем станет залогом сначала колониальности, а после и многоклеточности.


Обезьяны и все-все-все

Рис. 6. Эукариотическая клетка с ядром и митохондриями.


Все опасные обменные процессы идут снаружи, в цитоплазме, да еще разнесены по отдельным пузырькам. С этого момента в полные права вступает “пузырькование”; через это странное слово можно определить всю сущность жизни. Жизнь как пузырькование пузырьков в пузырьках, емкостей, без конца вдавливающихся друг в друга и выпучивающихся наружу: на уровне клетки, эмбриональных бластул и гаструл, мозговых пузырей и зачатков органов чувств, трофобластов, амнионов и желточных пузырьков, мозговой, грудной и брюшной полостей, полых внутренних органов и даже вне организма – нор, гнезд и домов. Но стоп! Мы забежали слишком далеко вперед. В протерозое дело ограничилось лишь ядром и митохондриями.

ДНК эукариот защищена ядерной мембраной от вторжения извне – вирусов и горизонтального переноса генов от других организмов, что можно рассматривать как прогресс, так как позволяет сохранить свое “я”. Но изменчивость бактерий – в своем роде залог их успеха, благодаря ей они могут очень быстро приспосабливаться к новым условиям. Получив стабильность, мы – эукариоты – утеряли пластичность.

Митохондрии синтезируют АТФ, что дает огромные энергетические возможности. Энергию можно запасать по-разному: в жирах, углеводах, белках, но АТФ – лучшая батарейка, хотя и недолговечная. Первые эукариоты, поглотившие бактерий, умевших синтезировать АТФ, получили такое преимущество, что все другие тут же проиграли эволюционную гонку. Сейчас на планете нет организмов, живущих без АТФ. Правда, остается под вопросом, существовали ли предки эукариот, не умевшие синтезировать АТФ, или они утеряли эту способность, положившись на новообретенные генераторы. В любом случае из поглощенных бактерий получились митохондрии, у них и до сих пор имеется бактериальная кольцевая ДНК и собственные рибосомы, они делятся самостоятельно и живут как внутриклеточные симбионты, причем в одной нашей клетке их может быть до двух тысяч. Но часть своих генов они сдали на хранение в более надежное ядро, так что теперь не так легко понять, где граница между собственно нами и нашими жильцами. Обретение митохондрий преобразило жизнь эукариот, благодаря им мы можем активно двигаться. Например, ими насыщена красная скелетная мускулатура, скажем прямые мышцы спины, держащие нас вертикально. Иначе говоря, метаболические нужды протерозойских одноклеточных обеспечили наше прямохождение.

Глава 7

Звено 2: аэробная атмосфера – многоклеточность и твердые части тела

(поздний протерозой и ранний кембрий, 850–540 млн лет назад)

Докембрийский мрак скрывает много тайн. Как возникли первые нервные клетки? Как появилось разделение на два пола? Слишком много гипотез, слишком мало фактов. Но все же о некоторых вещах мы можем говорить достаточно уверенно.

В катархее, архее и начале протерозоя в атмосфере было много углекислого газа, метана, сероводорода, аммиака и водяных паров, но почти не было кислорода. Примерно 2,5 млрд лет назад или даже раньше цианобактерии начали производить свободный кислород, но он поглощался горными породами и шел на образование озонового слоя. Кстати, спасибо им за это, без него нам было бы нелегко, ведь озоновый слой защищает нас от космической радиации. Ко времени 850–600 млн лет назад упорные цианобактерии нафотосинтезировали катастрофически много кислорода и отравили им всю атмосферу (справедливости ради надо сказать, есть версия, что кислород сам высвободился из мантии Земли, без помощи бактерий). Для преобладавших в тогдашних экосистемах анаэробов (организмов, живущих в бескислородной среде) кислород был страшным ядом. По всей видимости, это привело к глобальному вымиранию. Приятно сознавать, что не только человек способен так загадить окружающую среду, что потом сам не может в ней жить. Мы же – потомки тех редкостных протерозойских аэробов, которые поначалу с трудом привыкали к ужасному яду в недрах цианобактериальных матов, зато потом попали просто в райские условия.

Кислородный обмен – хорошая вещь. С его помощью можно получать гораздо больше энергии, чем при анаэробном существовании. А с помощью этой энергии можно делать новые чудесные вещи, например увеличивать размеры тела и синтезировать новые вещества. В большей клетке можно хранить большее количество ДНК, а за счет этого усложнить свое строение.

В числе прочего появляется возможность стать многоклеточным. Жить толпой надежней и веселей, неспроста еще на уровне бактерий совершались попытки в этом направлении. Но истинно многоклеточное существо внутренне противоречиво. С одной стороны, все его клетки содержат одинаковую генетическую информацию, с другой – работать в разных клетках она должна по-разному. Основная проблема возникает с размножением. С появлением многоклеточности в мире появились дряхлость и смерть. Одноклеточные не умирают от старости – они могут погибнуть лишь от случайности, голода или хищника. Главная цель любой приличной клетки – стать двумя клетками, жить вечно. Даже если такие организмы соберутся в кучку и станут как-то общаться между собой, они еще не станут многоклеточным организмом, их можно назвать лишь колонией – бесформенной кучей одиночек-эгоистов. В истинно многоклеточном общежитии нужен строгий контроль за размножением, большинство клеток гарантированно умрут, а потенциальным бессмертием обладают лишь гаметы – половые клетки. Убедить рядовую – соматическую – клетку не размножаться, а жить и добровольно сгинуть для обеспечения бессмертия гаметы очень трудно, для этого нужно много сложных генов (притом что гены во всех клетках одни и те же), а их можно хранить лишь в большой клетке с ядром. Поэтому бактерии так никогда и не смогли стать многоклеточными, а некоторые эукариоты таки преодолели сложность.

Правда, и у многоклеточных бывают рецидивы, когда клетка “вспоминает”, что она свободна, никому ничего не должна и может делиться сколько влезет – тогда возникает рак. Причина – мутация, поломка генов-ограничителей, держащих эгоизм в узде.

Получив многоклеточность, мы стали большими и сложными, но потеряли индивидуальное бессмертие, да еще получили в нагрузку шанс умереть от собственных клеток, стремящихся к бессмертию. Адекватна ли цена?..

Многоклеточность бывает разная. Первые опытные образцы, судя по современному трихоплаксу Trichoplax adhaerens, больше напоминали кляксу. Потом тело стало шариком; затем оно завернулось кувшинчиком, причем двухслойным – это уровень кишечнополостных и плоских червей. Но такая форма имеет маленький недостаток: вход и выход из пищеварительной системы – это одно и то же отверстие. Стало быть, нельзя есть непрерывно, а ведь хочется! Более того, такой пищеварительный тракт невозможно дифференцировать на части. Посему величайшим достижением неких протерозойских животных стало обретение анального отверстия. Тело преобразовалось из кувшина в трубку (каковой и пребывает доселе), теперь стало возможно лопать сколько влезет, а пищеварительный тракт – подразделить на сегменты: глотку, пищевод, желудок, переднюю кишку, заднюю кишку. Конечно, не все эти отсеки возникли одновременно, но главное было начать. А в разных отделах можно выделять разные ферменты, переваривать разные вещества, лучше их усваивать, а через то – повышать обмен веществ.

История возникновения пищеварительной системы каждый раз повторяется в нашем эмбриогенезе: сначала из бластулы впячиванием стенки внутрь образуется гаструла с одним отверстием – бластопором – наружу и полостью – гастроцелью – внутри, будущей пищеварительной системой. Фактически это уровень гидры или медузы. Потом с противоположной бластопору стороны вдавливается второе отверстие и соединяется с гастроцелью – это уровень круглых червей (условно, конечно). Человек – тоже трубка. Из сего, кстати, следует интересный казус: полость пищеварительной системы – это на самом деле внешняя среда по отношению к человеку, а бактерии-симбионты, сидящие в нашем кишечнике, сидят в реальности снаружи от нас. Они и рады бы стать паразитами, да иммунная система внутрь не пускает. Потому же так просто решается загадка, столь мучащая многих школьников, постигающих анатомию: почему многие железы внешней секреции открывают свои протоки в желудок и кишечник? Вроде же они внутри человека? На самом деле протоки открываются вполне себе наружу, просто “наружа” завернута в нас и даже проходит сквозь нас.

Кстати, о ртах…

Многоклеточные животные в первом приближении делятся на две масштабные группировки – первично– и вторичноротые. К первым относятся, например, моллюски и членистоногие, ко вторым – иглокожие и хордовые. У первичноротых отверстие, появляющееся у гаструлы, становится в последующем ртом, а возникающее позже – анальным. У вторичноротых все наоборот, первым закладывается именно анальное отверстие. Долгие годы зоологи и эмбриологи спорили: свидетельствует ли такая разница о независимом происхождении этих групп, или она второстепенна. Точку в дискуссии поставило открытие Hox-генов – особого семейства генов, определяющих закладку переда, середины и зада. Оказалось, что эти гены мало того что весьма схожи от червей до человека, так они еще и жутко консервативны. Различия же первично– и вторичноротых определяются только разницей в последовательности формирования в общем-то одинаковых частей. Мы начинаем формироваться сзади наперед, а мухи – спереди назад.

Конечно, эмбриологи не могли удержаться и не поиграться с включением-выключением Hox-генов; идеальные для этого объекты – дрозофилы, ведь им от жизни надо немного, они выживают даже при довольно серьезных нарушениях эмбриогенеза. Так вот, если выключить определенный Hox-ген, отвечающий за формирование третьего сегмента груди с последними ножками и жужальцами, то срабатывает другой ген, третий сегмент развивается по образцу второго и получается четырехкрылая муха. Теоретически, если включать гены лишний раз, можно вывести и мушиную многоножку. Если запустить первый Hox-ген и спереди, и сзади, должен получиться дрозофилий Тянитолкай с двумя головами с обеих сторон. Иногда такие нарушения возникают сами собой, и не только с Hox-генами, но и другими, отвечающими за верх-низ, право-лево, конечности, глаза и прочие части тела. Тогда могут рождаться сиамские близнецы, двухголовые, трехрукие и прочие подобные индивиды. Это, ясно, явная патология, но между нормой и патологией грань, как ни странно, очень туманная, так что эволюция подобных регуляторных генов была главным движителем эволюции, ответственным за появление частей тела, отделов черепа и позвоночника, формирование грудной клетки и конечностей, а также всего прочего, чего в протерозое еще не было, но что было вот-вот готово появиться.

Существуют и другие гены, необычайно похожие у первично– и вторичноротых, до того, что после пересадки гена PAX6 от мыши к мухе чужие гены продолжили работать и дали правильный результат! У мухи с мышиными генами стали появляться дополнительные глаза, причем не мышиные, а фасеточные, ведь гены PAX6 сами не определяют форму и строение органов, а лишь запускают другие нужные в данном месте тела гены.

Большая часть протерозойских живых существ жила в воде, причем в верхнем слое, так как их собственные остатки делали воду мутной, отчего в нижних слоях было слишком темно, чтобы там могли жить водоросли, так что у дна кислорода фактически не было. Да и в верхнем слое кислорода было не слишком много, ведь от солнца вода нагревается, а в теплой воде газы растворяются плохо (для проверки этого тезиса достаточно согреть бутылку газировки).

Некоторое время спустя, в начале кембрия (542 млн лет назад), появились эффективные планктонные фильтраторы, что-то вроде нынешних рачков. Они ели органическую муть, плавающую в толще воды, и склеивали ее в виде пеллетов, быстро падавших на дно. От этого мутность воды снизилась, а водоросли смогли жить в более глубоких водах. Около дна увеличилось содержание кислорода, так что и эта часть планеты стала доступной аэробам. И тут произошел прорыв!

Увеличение размера клетки ограничено прочностью клеточной мембраны, иначе клетка растечется или даже лопнет. Надо как-то укреплять границы. Можно нарастить толстую клеточную стенку, как сделали растения и грибы. Но она ограничивает подвижность – трудно бежать, когда ты дерево. Можно нарастить внеклеточную оболочку вокруг всего тела, например хитиновый панцирь членистоногих. Но это в любом случае тяжелая штука, тянущая на дно, где утонувшие задыхались без кислорода. Пока у дна условия были анаэробные и царила тьма, там могли жить лишь чудаковатые хемосинтетики-анаэробы, а животные и растения не могли стать большими и прочными. Когда же около дна появился кислород, проблема исчезла и перед живыми существами открылись невиданные доселе перспективы. Дальше дна не провалишься. Теперь стало возможным ползать по субстрату, становясь сколь угодно большим и тяжелым. Унылое и безжизненное доселе дно повеселело, расцвело и зашевелилось. Реализация открывшихся возможностей известна как “кембрийская революция”. Собственно, так палеонтологи с геологами и различают слои докембрия и кембрия: в первых мы не видим крупных животных с твердыми покровами, а во вторых их полно. Долгое время “кембрийский взрыв” был загадкой для ученых. Получалось, что мшанки, кораллы, моллюски, брахиоподы, трилобиты и прочая членистоногая нечисть возникли ниоткуда. В реальности их предки жили уже в докембрии, но имели микроскопические размеры и зачаточные твердые покровы.

В венде – преддверии кембрия – существовали и сравнительно крупные существа, но все они были бесскелетными, а потому их отпечатки сохраняются крайне редко. Самый известный их пример – эдиакарская фауна, сборище фантастических тварей инопланетного облика, лишь малая часть коих имеет родство с современными животными.

Так скажем же спасибо безымянным героям – докембрийским цианобактериям и кембрийским фильтраторам – за наши кости, зубы и ногти, прочность и стойкость, улыбку и прическу, маникюр и педикюр.

Кстати, о морозе…

В конце протерозоя грянуло Лапландское оледенение. Уже одно его название должно нагонять страху на нас, тропических зверей. Но хуже того, оно действительно было самым сильным за всю историю планеты. Земля чуть ли не целиком была скована льдами, а жизнь висела на волоске. Расчеты показывают, что полное покрытие планеты снегом и льдом чревато необратимым остыванием: большая часть доходящего от Солнца тепла будет отражаться обратно в космос, а оставшегося не хватит на растапливание ледников. Если бы такой печальный сценарий реализовался, еще неизвестно, смогли бы выжить хоть какие-то организмы. Наша Земля могла превратиться в аналог Марса.

С другой стороны, не исключено, что именно похолодание сыграло положительную роль, так как в холодной воде кислород растворяется лучше; недаром именно арктические и антарктические моря особо богаты жизнью – водорослями, рачками, рыбами и китами.

Глава 8

Звено 3: хорда, трубчатая нервная система и зрение

(ранний кембрий, 530–535 млн лет назад)

Враннем кембрии в палеонтологической летописи появляется множество новых животных, в том числе первые хордовые. Некоторые из них так примитивны, что далеко не все палеонтологи признают их принадлежность к хордовым. Например, Haikouella lanceolata и Yunnanozoon lividum, жившие 520–525 млн лет назад в Китае, внешне похожи на ланцетника, но в деталях очень уж от него отличны. Например, наличие у них хорды и жаберных дуг сомнительно, а расположенные на спине сегменты могут быть не миомерами – мышечными сегментами, а членистой кутикулой – плотной защитной оболочкой. Как бы то ни было, подобные существа совершенствовались, и развитие мы видим в лице Pikaia gracilens из среднего кембрия (505 млн лет назад) Канады. У пикайи кутикула погрузилась внутрь и стала “спинным органом”, своеобразным заменителем хорды, хотя и истинная хорда тоже имелась (Conway Morris et Caron, 2012). Была у нее и нервная трубка, а также настоящие миомеры, но хватало и странностей: жабры наружные и ветвящиеся, а на голове красовались длинные усики. Бóльшую датировку, но и более продвинутое строение имеет Haikouichthys ercaicunensis из нижнего кембрия (530–535 млн лет назад) Китая. Он уже обладал настоящими жаберными дугами и глазами. Наконец, 500–515 млн лет назад в Канаде мы обнаруживаем уже “прорыбу” Metaspriggina walcotti, у которой пока нет плавников и почти нет черепа, зато есть орган обоняния и глаза. Современным аналогом являются ланцетники Branchiostoma, одиннадцать видов которых населяют ныне прибрежные зоны морей всего мира.

Таким образом, в первые миллионы лет кембрия формируются хордовые, типичными признаками которых являются хорда и нервная трубка, а приятным дополнением – глаза.

Хорда – эластичный штырь, идущий вдоль тела хордовых, который служит опорой телу в целом и мускулатуре в частности. Вероятно, хорде предшествовал “спинной орган” пикайи, который выполнял примерно ту же функцию, а сам образовался из спинной кутикулы, но эта гипотеза пока не может считаться полностью обоснованной. Правда, у большинства позвоночных (то есть высших хордовых) хорда имеется только в эмбриональном состоянии, зато вокруг нее образуется позвоночник. У нас ее остатки можно видеть внутри межпозвоночных хрящей.

Наружный панцирь членистоногих – экзоскелет – красив и прочен, надежно защищает от всяких невзгод, но тяжел и негибок. Если мы будем увеличивать, скажем, жука до размеров собаки или коровы, то толщина хитина при сохранении прочности должна увеличиваться такими темпами, что вес панциря будет совершенно неподъемным. Самая же главная проблема с экзоскелетом – ограничение роста. Когда хитин застывает, то не дает возможности увеличиваться. Можно, конечно, наращивать новые членики в длину, но для приличного роста приходится линять. А линяющее членистоногое крайне уязвимо, его всяк готов обидеть. Едва ли не большинство смертей таких животных происходит именно во время линьки.


Обезьяны и все-все-все

Рис. 7. Pikaia gracilens (а), Haikouichthys ercaicunensis (б), Metaspriggina walcotti (в) и ланцетник (г).


Внутренний скелет лишен этих недостатков, с ним можно расти сколько угодно, а его собственный вес увеличивается далеко не такими темпами, ведь хорда имеет вид палки короче и тоньше животного, а не изогнутой пластины длиной и шириной больше животного. Для свободно плавающего существа, к тому же регулярно втыкающегося в песок, схема с хордой самая подходящая. Впрочем, на уровне первых хордовых выгоды внутреннего скелета были далеко не столь очевидны, как может показаться с нашей точки зрения. Ведь хищники имели хелицеры, радулы и прочие колюще-режущие штуки, которыми так легко покромсать мягкое тельце вкусного хордового, и никакая внутренняя хорда не сможет этому помешать. Кто бы мог подумать в начале кембрия, что из столь уязвимого создания вырастет гроза природы? К счастью, тогда никто не мог подумать, ибо мозгов еще не было. Но они появлялись…

Нервная трубка – великое достижение. У большинства мало-мальски продвинутых беспозвоночных нервная система состоит из ганглиев – кучек нейронов, связанных между собой пучками аксонов вдоль и поперек. У вытянутых животных она приобретает вид лестницы, отчего называется лестничной. У такой системы есть существенный недостаток: при увеличении объема ганглия клетки, находящиеся в его глубине, перестают получать достаточное снабжение, потому что все вкусное забирают нейроны, расположенные на поверхности. Можно, конечно, увеличить число ганглиев, вытянув тело. Скажем, немертины Lineus longissimus могут достигать 60 м длины! Сложность системы от этого, однако, не увеличивается, ведь все ганглии одинаковы. Насекомые решили эту проблему, обзаведясь грибовидными телами – похожими на поганки выростами мозга; за счет вытянутой формы их площадь довольно велика, и они выполняют роль коры мозга.

Но хордовые превзошли всех. Их нервная система представляет собой трубку, опутанную снаружи кровеносной системой, а изнутри заполненную спинномозговой жидкостью, которая образуется все из той же крови и выполняет сходные функции. То есть обмен веществ поддерживается и снаружи, и изнутри. Стенки трубки сразу можно сделать вдвое толще, а если раздуть это все пузырями, а пузыри потом покрыть бороздами, то объем нервной ткани можно увеличивать если и не до бесконечности, то уж точно до огромных величин. Правда, у кембрийской пикайи и современного ланцетника эти потенциальные возможности еще не реализованы, но главное – задатки. Хордовые, жившие полмиллиарда лет назад, строго говоря, не имели никаких интеллектуальных преимуществ перед тогдашними членистоногими, но именно благодаря их нервной трубке написаны эти строки, а Читатель может их прочитать.

Каким именно способом из ганглиозной системы получилась трубчатая, не вполне ясно. Интригует тот факт, что у нехордовых беспозвоночных нервная система расположена на брюшной стороне, ниже пищеварительной системы, а у хордовых – на спинной. Как из первой системы сформировалась вторая – загадка. Есть несколько интересных предположений. Например, некие предки хордовых могли перевернуться на спину и начать плавать кверху пузиком. Также они могли освоить жизнь на боку, подобно современной камбале (которая, сама повернувшись на бок, то ли вернулась в исходное положение, то ли окончательно перевернулась), из двух цепочек ганглиев одна исчезла, а вторая несколько сместилась и оказалась над кишечной трубкой, что у уплощенного животного не требовало больших перестроек. В пользу второй версии свидетельствует, например, асимметрия личинки ланцетника: она заметно перекошена, примерно так, как и должно быть искажено лежачее на боку существо. А лечь на бок предки хордовых могли в силу своего придонного образа жизни, тут аналогия с камбалой просто напрашивается.

Конечно, проблема возникновения нервной системы далеко не решена (Holland, 2015). Ведь на самом деле среди вторичноротых есть довольно различающиеся ее варианты. Интригует тот факт, что нервная система хордовых была, вероятно, исходной, примитивной, а полухордовые и иглокожие в этом случае оказываются эволюционно продвинутыми. Что ж, надо признать, мы взобрались по лестнице эволюции ниже морских ежей и баланоглоссов. Кстати, открытие аксохорда – морфологического, эмбриологического и генетического аналога хорды – у кольчатых червей показывает, что зачаток хорды, видимо, имелся у общих предков первично– и вторичноротых (Lauri et al., 2014). Затем первичноротые его большей частью потеряли, а мы донесли до современности – в буквальном смысле на своих хребтах – дремучий примитивный докембрийский вариант строения.

Незамысловатый образ жизни ланцетникообразных предков до сих пор виден в нашем строении. По всей нервной системе на задней стороне расположены чувствительные элементы (кроме обонятельных), а на передней – двигательные и обонятельные. Ведь ползали они вдоль дна на брюшке, все напасти валились на них сверху, а искали пищу они хеморецепторами, расположенными на передне-нижнем конце рядом со ртом. Мозг человека до сих пор ориентирован как у четвероногого животного и даже как у ланцетника (хотя у ланцетника головного мозга как бы и нет). Поэтому, например, передние корешки спинного мозга двигательные, а задние – чувствительные, в прецентральной извилине расположен “двигательный человечек”, а в постцентральной – “чувствительный”, сосцевидные тела и гиппокампальная извилина, расположенные спереди, отвечают за обоняние, а затылочная доля сзади – за зрение.

Кстати, о зрении. Видимо, первые фоторецепторы возникли еще в докембрии, по крайней мере очень похожие на глаза штуки вроде бы есть у некоторых эдиакарских животных. У самых ранних хордовых начала кембрия – Haikouichthys ercaicunensis – уже есть настоящие глаза. Глаза совершили революцию. Раньше, чтобы что-то понять, надо было ткнуться носом или хотя бы прикоснуться усиками, в лучшем случае – унюхать. Но хеморецепция не дает понятия о расстоянии и не позволяет как следует распознать направление на источник запаха. В слепом мире докембрия не имел значения цвет, а форма определялась голой функциональностью, не было понятия красоты и грации. Зрение все изменило: теперь стало можно издали и надежно распознать как добычу, так и опасность, найти спутника жизни или вовремя сбежать от нежелательного знакомства, на других посмотреть и себя показать. Впрочем, у первых хордовых глаза были не ахти какие зоркие, скорее это были просто скопления светочувствительных клеток, различавшие свет, тьму и тени набегающих хищников. А враги и соперники меж тем эволюционировали куда как резво. Например, трилобиты того же времени имели мало того что фасеточные, да еще в буквальном смысле хрустальные глаза. У более поздних членистоногих может быть множество глаз: у скорпионов до шести пар, у пчелы два сложных и три простых. Даже у гребешка – морского двустворчатого моллюска – имеется до сотни глаз, хотя бы и совсем простеньких.

Прозрачность ланцетникоподобных предков сыграла с нами очередную злую шутку: светочувствительные клетки оказались повернуты аксонами вперед. Для прозрачных животных ориентация рецепторов не имела ни малейшего значения: свет доходил со всех сторон, а задачей глазка было не разглядывать детали в определенном направлении, а фиксировать тень от хищника. Случайно получилось так, что аксоны оказались направлены наружу, а потом загибались обратно к нервной трубке. У нас же теперь в глазу есть слепое пятно: аксоны со всей сетчатки сходятся вместе в зрительный нерв, разворачиваются задом наперед и выходят через стенку глаза назад – к мозгу – через зазор среди рецепторов. Конечно, мы этого пятна не замечаем, но только благодаря работе мозга, который все время должен додумывать: что там, на месте “черной дыры”? Не было бы слепого пятна, мозги не загружались бы еще и этой работой. Другое дело – головоногие моллюски: их предки предусмотрительно расположили свои рецепторы аксонами назад, так что глаз, например, осьминога не имеет слепого пятна. В остальном же глаза головоногих удивительно похожи на наши – это один из лучших примеров конвергенции, независимо появившегося сходства. Впрочем, мы опять забежали далеко вперед, до всего этого оставались еще миллионы и миллионы лет…

Ланцетникоподобные или даже более древние червеподобные предки оставили нам много и прочего наследства. Еще до зрения главным видом чувствительности была хеморецепция. В числе прочего она работала как система определения “свой – чужой”. В последующем – уже у позвоночных – из примитивного обонятельного органа развился особый вомероназальный, или якобсонов, орган. У млекопитающих он расположен в нижней части носовой перегородки и представляет собой трубочку с невнятными на вид клетками внутри. Но сколь много значит этот древний невзрачный пережиток для судеб человечества! Якобсонов орган определяет химический состав феромонов – специфических для каждого человека химических молекул. Особое коварство якобсонова органа заключается в том, что информация от него не проецируется прямо на новую кору конечного мозга, то есть на сознание. Для человека как бы и чувства-то никакого нет; потому в языке отсутствует даже слово для самого ощущения. Но древние части мозга не дремлют, каждое мгновение они придирчиво распознают флюиды, витающие в воздухе. Если феромоны другого человека похожи на молекулы нюхающего, то мозг решает: “У этого человека химия такая же, как у меня, родимого, стало быть, у него такая же генетика, значит, он из моей популяции, он не конкурент за ресурсы”. До сознания же из дремучих недр подкорки доносится гулкий железобетонный вывод: “Этот товарищ – свой в доску! Он хороший!” Горе тому, у кого феромоны отличны, подкорковые ядра соображают: “У него другая химия, инородная генетика, он из другой популяции – однозначно конкурент, чужак!” В сознание вплывает непоколебимое убеждение: “Он плохой! Наверняка и детишек-то он не любит, и бабушек через дорогу не водит, ворует, бездельничает и вообще аморальный тип! Надо бы держаться от него подальше, а еще лучше – избавиться; если же и может быть от него какая польза, то лишь на соляных рудниках или хлопково-сахарных плантациях”. Самое неприятное, что убеждения эти исходят из самой глубины души, они донельзя искренни и не подразумевают проверки. Да и о какой проверке речь, когда система была отработана во времена, когда и мозга-то головного толком не было, не говоря уж о коре и интеллекте? Многие животные успешно пользуются якобсоновым органом; Читатель мог наблюдать это на любимой кошечке, которая иногда осторожно касается языком какого-нибудь предмета, а потом, полуоткрыв ротик, смешно дышит, загибая язык и прикасаясь им к небу. Это она отправляет взятые на пробу феромоны в резцовый канал, откуда они идут прямиком в якобсонов орган. У млекопитающих это чувство играет огромную роль в коммуникации (некоторые животные, впрочем, используют его своеобразно: змеи двумя кончиками раздвоенного языка собирают феромоны грызунов, чтобы успешнее охотиться на них; так они повернули общение мышей против них самих). У человека вомероназальный орган сильно редуцирован, он работает еле-еле (если честно, толком непонятно, работает ли он у человека вообще или, может, работает, но не у всех: Meredith, 2001; Monti-Bloch et al., 1998), но он оставил отчетливые следы на нашем черепе. На небе позади резцов есть резцовый канал – отверстие, соединяющее ротовую и носовую полости, через него как раз проходила трубка органа. Но напрасно вы, Уважаемый Читатель, пытаетесь нащупать языком дырку: она уже заросла мягкими тканями и не функционирует; сам орган лежит на сошнике – кости носовой перегородки, феромоны попадают в него через нос.

Как многие явления природы, якобсоново чувство имеет две крайности.

С одной – темной – стороны, вомероназальный орган может быть в немалой степени ответственен за расизм: ведь именно у представителей разных рас феромоны отличаются в наибольшей степени. Именно из-за подсознательности работы органа расизм так легко возникает сам собой и столь сложно с ним бороться. Ведь убеждение о том, что отличающийся феромонами человек плохой, входит в сознание исподволь из подкорки, на полном автомате, для этого ничего не надо делать. Для того же, чтобы понять, в чем истинная причина неприязни и что моральные, интеллектуальные и прочие личностные качества человека не зависят от его химии, надо немало потрудиться новой корой конечного мозга, иметь информацию и уметь ее обрабатывать, а это уже не каждому дано. Конечно, стоит помнить, что не в одном якобсонове органе дело: зрение, слух и злобная пропаганда тоже делают свое черное дело, но эти воздействия прямо проецируются на неокортекс, так что с ними легче разбираться; якобсоново же чувство глубоко личное и внутреннее.

Есть у работы якобсонова органа и противоположная – светлая – сторона. Если феромоны другого человека почти идентичны собственным, но все же отличаются, да он еще другого пола, что еще надо?! Якобсонов орган включает программу “Любовь с первого взгляда”. Впрочем, и тут есть доля вероломства: ведь опять же реальные свойства человека не зависят от его феромонов. Проходит время, как любое чувство, якобсоново притупляется, ан уж печать в паспорте, детишки в детском саду, поздно включать неокортекс…

Так что, если при встрече с новым человеком в вас проснется немотивированное внутреннее убеждение “Он плохой!” или “Он хороший!” – подумайте, не попутал ли вас якобсонов орган, притормозите на секунду, включите неокортекс. Система, помогавшая выживать ланцетникам, рыбам и зверообразным рептилиям, в наши дни может давать трагические сбои и направлять наше поведение по ложному пути.

Из прочего докембрийского багажа до нас дошел общий план опорно-двигательного аппарата. Так, мышечная система в виде чередующихся миомеров явственно видна и в нашем теле: спинные, межреберные и брюшные мышцы, хотя и заметно перепутались, все же остаются принципиально сегментированными.

Первые хордовые были животными незатейливыми, у них, например, глотка занималась одновременно и глотанием, и дыханием, и выведением половых клеток. У членистоногих эти системы разделены: жабры, легкие или трахеи – сами по себе, глотка, желудок и кишечник – отдельно, а яичники и семенники имеют свои протоки. Муха в этом смысле сложнее нас, у нее трахеи пронизывают все органы напрямую, в том числе головной мозг, так что ветер в буквальном смысле гуляет у нее в голове. Правда, эта же особенность – одна из главных причин, не дающих насекомым вырасти до очень больших размеров, иначе им пришлось бы превратиться в губку из трахей, ведь площадь трубочек растет в квадрате, а объем тканей – в кубе. Кроме того, в трахеи запросто могут попасть зловредные бактерии, и победить их сложно, ибо такая дыхательная система отделена от кровеносной и иммунной.

В отличие от членистоногих, кислород у нас доставляется к органам с помощью кровеносной системы, так что есть возможность делать это избирательно и прицельно (вспомним красивые цветные картинки томограмм мозга, на которых отмечается именно активность кровотока, а не работа нейронов как таковая), а лейкоциты по пути избавляют организм от болезнетворных микробов. Наши предки дышали фактически стенками пищеварительной системы, мы делаем так же, но стенки эти у нас вздулись в виде очередных пузырьков, что позволяет обеспечить высокий обмен, столь необходимый для мышления. Кстати, происхождение нашей дыхательной системы из пищеварительной привело к тому, что в бронхах наших легких есть вкусовые – “горькие” – рецепторы (Deshpande et al., 2010).

Через те же самые жаберные отверстия у первых хордовых выводились и половые клетки. Созревали эти клетки в гонадах, да вот беда – специальных протоков для их транспортировки предусмотрено не было. Наружные слои гонад и стенки тела рвались, половые клетки выходили в околожаберную полость, а оттуда через дыхательные отверстия – наружу. Для мелкого животного, сделанного из нескольких слоев клеток, это не проблема, но потомки-то выросли. И до сих пор у женщин половые клетки (стадия под названием “овоцит II порядка”) выходят через разрыв наружного слоя яичника прямо в полость тела. Однако ж разрывать брюшную стенку уже не покажется такой безобидной затеей, да и глотка “уехала” далековато, а единственное оставшееся жаберное отверстие закрылось барабанной перепонкой, так что пришлось эволюции открыть изначально замкнутую вторичную полость тела женщины с помощью маточных труб. Система на редкость путаная, с точки зрения членистоногих.

Вот что хордовым действительно удалось, так это кровеносная система. Правда, у ланцетника специальной выстилки мелких сосудов вообще-то нет, так что его “капилляры” – это просто трубкообразные щели в мускулатуре, а кровеносная система фактически незамкнутая, но это мелочи. Выстилка все же появилась, замкнутость замкнулась, и теперь снабжение всем полезным органов может быть точечным и прицельным. У членистоногих и моллюсков сердце представляет собой открытую спереди трубку со щелями по бокам, перебалтывающую гемолимфу, которая омывает все внутренние органы. Для мелкого животного такая система идеальна – не надо тратиться на лишние сосуды и занимать ими и так незначительное пространство. Но при увеличении размеров тела и толщины тканей такая система перестает полноценно работать – до глубоких слоев клеток питательные вещества уже не доходят. Зачем первые хордовые приобрели сосуды – вопрос, но теперь мы можем быть большими и умными. Впрочем, человеку есть над чем еще работать, ведь у нас сердце высоко, а тело большое, качать кровь снизу проблематично, чуть что – появляются варикозные расширения вен. То ли дело у миног и миксин: у них в венозной системе имеются три дополнительных сердца – в голове, печени и хвосте; варикоз им не страшен!

Глава 9

Звено 4: учетверение генома, обретение скелета, зубов и мозга

(ордовик, 470–480 млн лет назад)

Долго ли, коротко ли, прогресс шел своим чередом, но идти ему было нелегко. Ведь для появления каких-нибудь новых замечательных усовершенствований необходимы новые гены. Если же мутируют уже имеющиеся гены, то старые признаки модифицируются, но медленно, пока они станут чем-то принципиально новым, скорее всего, минует очень много времени. Гораздо веселее процесс пойдет, если генетического материала станет много. И тут позвоночным повезло, причем дважды (а некоторым и трижды). У неких хордовых, существовавших уже после отделения линии, ведущей к современному ланцетнику, произошло полногеномное удвоение – дупликация, а потом случилось еще одно удвоение (Putnam et al., 2008). Второе, вероятно, свершилось уже после отделения линии современных миног, хотя это пока не вполне ясно. У человека, таким образом, геном увеличен в четыре раза по сравнению с ланцетником, а учитывая изначальную диплоидность – 24=8, – фактически мы октаплоиды!

В момент удвоения половина генов продолжала работать как прежде, а вторая могла беспрепятственно мутировать. Понятно, что бóльшая часть генов при этом просто поломалась, но часть смогла получить новые функции. Позвоночные получили два отличных шанса быстро и безопасно усложниться, и они их использовали. Закономерно, что новые гены отвечают в основном за регуляцию активности других генов и эмбриональное развитие, а также работу нервной системы и передачу сигналов. Сколько еще миллионов лет понадобилось бы для появления человека, не случись этих дупликаций?

Кстати, о рыбах, лягушках и мечехвостах…

В третий раз геном удвоился 350 млн лет назад у предков костистых рыб, а у предков южноамериканских украшенных рогаток Ceratophrys ornata примерно 40 млн лет назад – удвоился даже дважды относительно обычных лягушек. То есть рогатки – октаплоиды в мире амфибий и совсем уж невероятные полиплоиды в сравнении с ланцетниками. Может, поэтому костистые рыбы сейчас самая разнообразная и многочисленная группа позвоночных? Ведь если считать по числу видов, то мы живем в эру костистых рыб, а вовсе не млекопитающих. А лягушки, быть может, еще не разогнались и у них все впереди? Мир захватят рогатки?!

Удвоение генома случалось и с беспозвоночными, например с бделлоидными коловратками Adineta vaga. Совсем неожиданным оказалось, что две полногеномные дупликации случились у предков мечехвостов – до крайности примитивных с виду ракообразных, почти не менявшихся с палеозоя. Почему нашим предкам увеличение числа генов пошло на пользу и резко ускорило эволюцию, а на мечехвостах никак внешне не сказалось? Пока это загадка…

Меж тем жизнь ставила перед хордовыми особые задачи. Подросшее тело и мало-мальски подвижный образ жизни требует нового уровня обмена веществ. Кальций и фосфор – дефицитные элементы и при этом чрезвычайно важные для жизни, они участвуют в регуляции обмена как на уровне клетки, так и всего организма. Поэтому, когда животное находит источник столь ценного ресурса, хорошо бы не только потребить его, но и запастись на будущее. Когда же такая заначка становится достаточно крупной, обнаруживается ее новое свойство – она тверда! И вот такие гранулы начинают скрипеть на зубах хищника, портить ему аппетит, – это уже защитная функция. Если же такие гранулы скопить во рту, то можно и самому кого-нибудь ухватить за бочок. Дальше – больше, и вот уже плывет по морю этакий червячок с зубами – конодонтоноситель, а если он обзавелся и хрящевым позвоночником, то это уже бесчелюстная рыба Agnatha. Если же постараться и сконцентрировать кальция еще больше, то получится настоящая кость. Неспроста у хрящевых рыб в хрящах содержится больше минеральных веществ, чем у костных, ведь у последних функции хряща и кости расходятся, гибкость и прочность перестают быть синонимами и становятся противоположностями.

Первыми по-настоящему твердыми элементами хордовых стали зубы. Они есть у конодонтоносителей и бесчелюстных рыбообразных, в том числе современных миног и миксин. Зубы возникали неоднократно, например, у крупнейшей хищной рыбы девона Dunkleosteus intermedius края челюстей были покрыты зазубренными клыкоподобными пластинами, но не зубами в нашем варианте. Хрящевым рыбам идея так понравилась, что они целиком покрылись зубами: шершавая кожа акулы или ската сплошь усеяна именно ими, точно такими же, что и во рту, только мелкими. Впрочем, в ордовике все было проще: без челюстей ни прилично укусить, ни тем более прожевать ничего невозможно, но можно вцепиться и не отпускать. Так и делают нынешние миноги: вцепляются в бок рыбы, выделяют прямо в тело жертвы пищеварительные соки, а потом всасывают то, что получилось. Миксины хищнее – они вцепляются в добычу, потом завязываются узлом, прогоняют этот узел вдоль себя (чему способствует обильная слизь) и вырывают кусок мяса.

Первые рыбы были совсем небольшими животными, и добыча их была невелика, но, видимо, иногда достаточно прытка, так что зубы в целом оказались полезным приобретением. А уж в далеком будущем функции их необычайно расширились, вплоть до демонстративной и сигнальной. В следующий раз, когда будете улыбаться белозубой улыбкой, с благодарностью припомните жизнелюбивых ордовикских червячков, которые не хотели быть проглоченными первыми рыбами, отчего последние были вынуждены обзавестись крючками во рту.

Таким образом, части с твердыми минеральными составляющими первоначально, видимо, не были предназначены ни для защиты, ни для опоры. Но в ордовике появились новые напасти: пик расцвета переживали головоногие моллюски наутилоидеи Nautiloidea с прямой раковиной – смертоносные торпеды, самые гигантские из которых – Endoceras – имели раковины до 9,5 м длины! От крупного хищника, как известно, есть два надежных спасения: можно либо спрятаться, либо убежать (можно еще принять бой, но такая стратегия обычно заканчивается плачевно, ведь хищник на то и хищник, что вооружен лучше жертвы). Беспозвоночные в подавляющем большинстве прятались если не в норы, то в разного рода скорлупки. Некоторые хордовые последовали их примеру. Например, одна из древнейших рыб Arandaspis prionotolepis, жившая 470–480 млн лет назад, имела на переднем конце панцирь из множества чешуек. У Astraspis desiderata они слились в уже сплошной спинной щит. Правда, и про бегство они не забывали: хвост оставался свободным, гибким и подвижным, а у большинства хордовых того времени – конодонтоносителей – наружного панциря вообще не было. Но если мелкие и легкие конодонтоносители и ланцетники вполне могли уплыть от хищника без особых усилий, то рыбам двигать подросшее тело, да еще наполовину закованное в доспехи, было нелегко. Гибкая хорда уже не справлялась с задачей точки опоры для мышц, поэтому вокруг нее образовался позвоночник. На первых порах, правда, хорда и позвоночник не исключали друг друга, и у современных миног и некоторых рыб они вполне сосуществуют, но в дальнейшем хорда оказалась уже не столь актуальной, сохранившись лишь у эмбрионов. Позвоночник тоже далеко не сразу стал таким, как у нас. Сначала он был хрящевым, а у круглоротых и хрящевых рыб остается таковым и поныне. Лишь в конце силурийского периода, около 420 млн лет назад, появляются первые костные рыбы. Впрочем, они были не единственными изобретателями кости: в это же самое время очень похожий принцип окостенения выработали бесчелюстные Osteostraci.

Рыбы как минимум дважды вступали на скользкую дорожку бронирования – с появлением панцирных бесчелюстных Heterostraci и панцирных челюстных Placodermi; и это только по-крупному, без учета мелких поползновений типа кузовков и панцирных щук. Ведь как заманчиво замкнуться в уютной скорлупке, отгородиться от всех невзгод и супостатов надежной броней и стагнировать так миллионы лет, прикидываясь пылесосом где-нибудь около илистого дна. Слава эволюции, что наутилоидеи в ордовике, ракоскорпионы в силуре и аммониты в девоне хотели хорошо кушать и изобретали всё более изощренные способы вскрывания консервов, какими становились панцирные рыбы. Благодаря аппетиту гигантских беспозвоночных часть рыб рвалась ввысь, в толщу воды, избегая смерти быстротой и маневренностью. Они расстались с обманчиво спасительными доспехами и миновали опасность превратиться в очередной аналог членистоногих с наружным панцирем. А ведь у некоторых – например, у девонского антиарха Asterolepis – уже и плавники становились членистыми! Такие бы никогда не вышли из воды на твердь земную или, по крайней мере, не смогли бы стать крупными существами, ведь внешняя броня должна утолщаться опережающими темпами, чтобы при увеличении площади не терять прочности, от этого она становится чрезмерно тяжелой, и ее невозможно носить на суше. Это одна из причин, почему наземные членистоногие никогда не могли вырасти до приличных размеров. Хордовые избежали этой ловушки. Но вернемся в ордовик…

Первые рыбообразные обрели головной мозг. У ранних хордовых и ланцетника нервная трубка лишь слегка утолщена в передней части. Но жизнь становилась сложнее, банальное утолщение уже не отвечало новым реалиям. И передний конец нервной трубки стал пузыриться: всего получилось пять последовательных пузырей, причем потом передний стал еще и парным (кстати, момент появления головного мозга логично считать и моментом обособления головы, ведь у ланцетника ее фактически нет, есть лишь головной конец). Неравномерное разрастание стенок вздутий дает пять отделов головного мозга. Передний из них – конечный мозг – ясное дело, занимался обонянием. Обоняние было одним из первых органов чувств, а обонятельные рецепторы закономерно расположены на самом конце головы; неспроста и у нас нос занимает почетное место в первом ряду. Сейчас мы конечным мозгом думаем, но о мышлении ордовикских рыб говорить было бы слишком смело; впрочем, они не были и простыми роботами, скорее их душевные движения можно было бы назвать простейшими эмоциями. Параллельно развивались и иные структуры мозга, в том числе совершенствовалась память: животным с развитой хеморецепцией и несовершенным зрением важно запоминать запахи, связанные с пищей, опасностью и общением. Наследие тех далеких времен в полной мере сохранилось в нашем мозге: лимбическая система отвечает как раз за обоняние, эмоции и память (в полной мере она сформировалась уже у амфибий и рептилий, но корни следует искать у истоков – у первых рыб). Когда на улице дуновение ветерка донесет до вас запах из детства и нахлынут воспоминания, а на лице при этом мелькнет улыбка или сами собой нахмурятся брови – это предки просыпаются в ваших гипоталамусе, гиппокампе и полосатом теле.

Впрочем, первые позвоночные не имели очевидных преимуществ перед беспозвоночными. Хитиновый панцирь или разного рода раковины были у кого угодно, а радула моллюсков и позже, с середины силура, хелицеры ракоскорпионов легко расправлялись с телом первых рыб. Ганглии моллюсков и членистоногих размерами почти не уступали головному мозгу хордовых. Именно головоногие моллюски и другие беспозвоночные были главными хищниками первой половины палеозоя. До торжества позвоночных было еще ой как далеко…

Глава 10

Звено 5: обретение конечностей, челюстей и ребер

(начало силура, около 440–430 млн лет назад)

Как уже говорилось, первые рыбообразные плавали, просто изгибая тело. В лучшем случае у них имелись плавниковые складки вдоль тела – на спине, животе и по бокам. Они позволяли держать равновесие, не перекувыркиваться кверху брюшком; у придонных форм возникали также шипы для закрепления в иле. Потом выяснилось, что такие складки можно волнообразно изгибать – ундулировать – и за счет этого плыть. Но у панцирных бесчелюстных с гибкостью были основательные проблемы, особенно на переднем конце. Хвост как основной движитель – это здорово, он хорошо толкает вперед, но не позволяет маневрировать, а резкие повороты в суровом силурийском море – залог выживания. Поэтому плавниковые складки стали дифференцироваться, подразделяться на более отчетливые элементы, превратившиеся в настоящие плавники; они были уже у самых продвинутых бесчелюстных (например, Thelodonti) и еще самых примитивных челюстноротых.

Показательно, что плавники возникали несколько раз независимо; так, самостоятельно приобрели их бесчелюстные Osteostraci. Однако у большинства первых рыб план плавников уже вполне современный: парные представлены грудными и брюшными. В дальнейшем их вариации были бесчисленными, а начиналось все более чем скромно.

Минутка фантазии

Потенциально плавниковую складку можно подразделить и на другое количество плавников. А у некоторых уже развитых рыб акантод (например, Climatius и Euthacanthus с границы силура и девона) между грудными и брюшными плавниками имелись еще до шести пар промежуточных шипов. Это, правда, не были настоящие плавники, но и настоящие первоначально сформировались из примерно таких же шипов. Так что наши две руки и две ноги – в некотором роде дань экономии природы. В принципе, и парные плавники, и – в дальнейшем – ноги могли быть множественными. Почему осьминогам можно, паукообразным, насекомым, ракам и многоножкам тоже, а позвоночные должны довольствоваться несчастными четырьмя? Было бы неплохо иметь 16 конечностей. Или хотя бы шесть для начала. Отличные бы вышли кентавры. Как знать, может, разумные существа со свободными и умелыми руками появились бы на миллионы лет раньше, ведь проблема устойчивости перед ними не стояла бы?

Другие важные преобразования происходили на голове. Еще у кембрийских хордовых жаберные отверстия укрепились маленькими дужками, которые не позволяли краям отверстий спадаться. Позже, как уже говорилось, во рту появились зубы, но челюстей еще не было, рот представлял собой просто дырку или трубку. Если добыча не только активна, но и прочна, ее надо раскусить, а для этого нужны челюсти. Эволюция лепит новые элементы из старых, уже существующих. Нужна твердая основа для зубов? Что там рядом? Ага, жаберные дуги! И первые жаберные дуги стали челюстями. Впрочем, принцип оказался более чем удачным: наши слуховые косточки и хрящи всей средней части дыхательных путей, а также мышцы головы и некоторые железы сделаны из тех же жабр. Процесс этот был долог и сложен, но не будем уходить в тонкости, про это написана не одна книга. Главное – своим жеванию, слуху, мимике, речи и даже здоровью мы обязаны крепежу дыхательной системы древних рыб. Мы жуем жабрами, улыбаемся и хмуримся жабрами, говорим жабрами, вертим головой жабрами, слышим благодаря жабрам, сморкаемся и то их выделениями.


Обезьяны и все-все-все

Рис. 8. Схема эволюции жаберных дуг.


Уголок занудства

Жаберные дуги стали основой многих элементов головы, шеи и верхней части туловища. Из верхней половины первой дуги формируется верхняя челюсть, из середины – слуховые косточки молоточек и наковальня, из нижней половины – нижняя челюсть; из верхней половины второй дуги формируется стремечко и шиловидный отросток височной кости, из нижней половины – малые рога и верхняя часть тела подъязычной кости; из третьей дуги – большие рога и нижняя часть тела подъязычной кости; из четвертой – щитовидный хрящ гортани, из пятой – перстневидный и черпаловидный хрящи гортани, из последующих – хрящи трахеи.

Элементы первых трех пар жаберных дуг участвуют в закладке языка, из первой жаберной щели образуется слуховой проход и евстахиева труба, из первого жаберного кармана – полость среднего уха и евстахиева труба, из второго жаберного кармана – небные миндалины, из третьего – две паращитовидные и вилочковая железы, из четвертого – еще парочка паращитовидных.

Из мезенхимы жаберных дуг образуются жевательные и мимические мышцы, а также мышцы гортани и глотки.

Вторые жаберные дуги и щели хорошо видны у человеческого эмбриона примерно в месячном возрасте, а в редких случаях отверстия сохраняются и у взрослого человека по бокам шеи и ведут прямо в глотку. Конечно, такому человеку не суждено стать Ихтиандром, ведь жабра – это не только отверстие, да даже и будь развиты функциональные жаберные лепестки и тычинки, их не хватило бы для снабжения всего человека кислородом, для этого нужны жабры с площадью не меньше, чем у легких. Но одна – первая – жаберная щель у нас все же сохраняется навсегда: она преобразовалась в евстахиеву трубу, а первый жаберный карман – в барабанную полость среднего уха. Впрочем, сквозного отверстия уже нет, снаружи все это прикрыто барабанной перепонкой, но это мелочи. Евстахиева труба выравнивает давление в среднем ухе изнутри от барабанной перепонки, приводит его в соответствие с наружными условиями. Жаберная щель спасает нас от закладывания ушей, когда мы взлетаем или приземляемся на самолете или погружаемся в пучины океана на батискафе (лучше всего при смене высоты сидеть, широко открыв рот, но поскольку в самолете сотня человек с разинутыми ртами выглядела бы слишком сюрреалистично, то пассажирам часто выдают сосательные конфетки – не по доброте душевной, как некоторые думают, а чтобы люди сглатывали слюнки и тем самым пользовались своей жаберной щелью). Вот уж воистину – ухо жаброй не испортишь!

Кстати, о муренах…

Челюсти хорошо, а две – лучше! У мурен, кроме стандартных верхней и нижней челюстей, имеются еще и внутренние челюсти, сделанные тоже на основе жаберных дуг и выдвигающиеся вперед при захвате добычи. Чудастик из фильма “Чужой” не так уж оригинален, как многим может показаться.

Рыбы оставили нам богатое наследство, в том числе зевоту. Когда человек устал и засыпает или же, напротив, еще не вполне проснулся, тонус дыхательной мускулатуры слаб, вдох становится менее глубоким, организм недополучает кислорода, а в крови накапливается углекислый газ. Специальные рецепторы в стенках кровеносных сосудов регистрируют эти изменения и посылают сигнал в продолговатый мозг, в ретикулярную формацию. Мозг соображает: “Кислорода маловато, что-то, видать, приключилось… Что же? Ага! Жабры засорились!” Что же нужно сделать? Широко открыть рот, расправить жабры и током воды через глотку прочистить жаберные щели, выгнать оттуда ил и песок. И человек добросовестно “промывает жабры” – открывает рот и расправляет несуществующие хрящевые дуги, то есть открывает челюсти. И неважно, что жабр нет уже сотни миллионов лет, ведь тонус мышц немножко поднимается, вдох углубляется, организм получает кислород – задача выполнена, система работает!

Кроме плавников и челюстей, примерно в это же время были изобретены ребра. У бесчелюстных их нет, они им и не нужны: это либо длинные тонкие создания, так что хорды для прочности им вполне хватает, либо с головным панцирем; да и усилий они прилагают немного. Но удобно, когда мускулатура крепится не только на хорду, но и на дополнительные прочные штуковины, расположенные вдоль тела. Получается, что рыба отталкивается от собственных ребер, изгибы тела получаются энергичнее, можно быстрее спасаться от злых ракоскорпионов. Кто ж знал, что спустя миллионы лет опорные элементы станут защитой для внутренних органов и, что гораздо важнее, – каркасом движителя дыхательной системы. За счет реберного дыхания мы можем достигать того уровня метаболизма, что необходим для содержания нашего многозатратного мозга.

Кстати, о сосудах…

В середине силурийского периода совершилась очередная революция, повлиявшая на судьбы мира и обеспечившая в будущем наше появление, – растения научились убивать свои клетки! Это было одно из важнейших достижений после появления многоклеточности. Ведь все клетки имеют одинаковый генетический аппарат, все хотят жить, трудно устроить так, чтобы отдельные продолжали благоденствовать, а какие-то добровольно умерли. Зато из мертвых клеток можно сделать трахеиды – по сути целлюлозные трубочки с дырочками со всех сторон, хорошо проводящие воду в разных направлениях, но преимущественно снизу вверх. Пройдут миллионы лет, и на основе трахеид будут созданы настоящие сосуды и качественная механическая ткань, которая вознесет высоко над землей густые кроны, в которых будут резвиться приматы. А пока – 423 млн лет назад – первые сосудистые растения куксонии Cooksonia робко высовывались из воды и озеленяли берега водоемов…

Глава 11

Звено 6: появление легких, хоан и шеи

(ранний девон, около 415 млн лет назад)

Вначале девона рыбы сделали еще один шаг, вернее, гребок в сторону прогресса – разработали легкие. Первоначальная функция легких точно не ясна. Возможно и очень вероятно, они с самого начала функционировали как элемент дыхательной системы, были дополнительным жаберным карманом, увеличивающим площадь всасывания кислорода.

Не исключено также, что первым их назначением была балансировка тела. Стенки рыбьей глотки обогащены кровеносными сосудами, ведь у рыб газообмен осуществляется через жабры. Но если есть орган, способный быстро сконцентрировать газ или, напротив, выделить его обратно в воду, то можно сделать на этой основе отличный поплавок. Дело в том, что у древнейших рыб были проблемы с устойчивостью и всплытием-погружением. Первая сложность решается уплощением брюха и наращиванием длинных плавников: два длинных крыла по бокам и высокие кили на спине и хвосте – узнаёте акулу? Вторая более трудноразрешима. У хрящевых рыб есть жировое тело, обеспечивающее нулевую плавучесть, но быстро поменять глубину акуле сложно. Неспроста она приближается к добыче суживающимися кругами – хищница делает это не из-за садистских наклонностей, не чтобы лишний раз потрепать жертве нервы. Просто быстро всплыть из глубины акула не может, она двигается как самолет: для поднятия или снижения ей нужно преодолеть гораздо большее расстояние по горизонтали, а грудные плавники работают как рули высоты. Двигаясь кругами, акула просто старается не потерять цель из виду; можно, конечно, “взлетать” по длинной прямой с разворотом, но тогда можно и упустить обед.


Обезьяны и все-все-все

Рис. 9. Схема возникновения легких, плавательного пузыря и неба.


А вот костистые рыбы имеют плавательный пузырь – вырост глотки, снабженный кровеносными сосудами, да не простыми, а двусторонними: в передней части пузыря кислород выделяется из крови в пузырь, а в задней всасывается обратно. Таким образом, дыхательная система становится двигательной. Можно быстро, в пару вздохов накачать газа и всплыть наверх или, напротив, в пару выдохов погрузиться в пучины. Пока акула будет наворачивать свои круги, продвинутая рыба поменяет глубину, и злобная вражина будет вынуждена снова крутиться (правда, делает она это убийственно быстро).

А если есть обширный орган, способный быстро качать кислород в кровь, почему бы не использовать его как продолжение дыхательной системы? Особенно если в мелкой прогретой воде кислорода не хватает и приходится заглатывать воздух ртом, всплывая на поверхность. А это уже и есть легкие.

Однако версия возникновения легких из плавательного пузыря имеет огромный недостаток, ведь древнейшие известные рыбы с достоверным плавательным пузырем появляются заметно позже, чем рыбы с легкими. Посему более вероятно, что цепочка событий была прямо противоположной: легкие возникли у рыб, живших в регулярно пересыхавших водоемах, и лишь дополняли жабры, а после на их основе возник плавательный пузырь. Девонский период был чрезвычайно жарким, за всю историю Земли теплее было только в кембрии. Слаборазвитая корневая система растений плохо держала берега, водоемы были неустойчивыми, быстро наполнялись от дождей и еще быстрее испарялись и утекали в песок, а горячая вода содержала мало газов. Из-за неразвитости корней деревья то и дело падали в воду, а на их гниение опять же уходила масса кислорода. В итоге заморы были обычнейшим бичом девонских рыб.

Дополнять дыхательную систему легкими надо еще и потому, что жаберные щели в мелком грязном водоеме легко забиваются илом, а ведь совсем немножко выше – и воздуха хоть отбавляй. Современные двоякодышащие Dipnoi: четыре вида протоптеров Protopterus из Африки, чешуйчатник Lepidosiren paradoxa из Южной Америки и рогозуб Neoceratodus forsteri из Австралии – при спячке во время сухого сезона могут дышать вообще только легкими, причем месяцами. Наземные четвероногие возникли, впрочем, не из двоякодышащих, а их родственников – кистеперых Rhipidistia, типа девонской Gyroptychius agassizi, имевших аналогичное строение легких. Сейчас существует лишь два вида их родственников латимерий Latimeria (из некогда разнообразной группы целакантов Coelacanthiformes), живущих на больших глубинах в Индийском океане, а потому потерявших дыхательную функцию легких.

А теперь, Уважаемый Читатель, наберите в ваши легкие побольше воздуха и для лучшего проникновения осильте следующий абзац на одном вдохе…

С очень большой вероятностью похожие органы появлялись неоднократно. Ведь легкие двоякодышащих и кистеперых рыб – это вырост нижней части глотки, а плавательный пузырь костистых – верхней. Правда, легкое могло и переползти с нижней стороны наверх. В пользу этого говорит, во-первых, расположение легких у двоякодышащих: хотя соединяются с глоткой они снизу, сами лежат на верхней стороне тела, огибая глотку справа, вслед за ними загибаются и кровеносные сосуды, в том числе с левой стороны на правую; у рогозуба же легкое непарное, хотя и с намеком на раздвоенность. Во-вторых, у костистых рыб эритрин Erythrinus плавательный пузырь открывается на боковой стороне глотки, а сам расположен сверху; к тому же его передняя часть имеет альвеолы и выполняет роль легкого. В-третьих, очень своеобразная и даже загадочная костистая (не двоякодышащая!) рыба многопер Polypterus имеет вполне развитые парные легкие, расположенные на нижней стороне тела. Тут мы встречаемся с очередной упущенной возможностью. Наши кистеперые предки перед выходом на сушу жили, судя по всему, на мелководье, а сами были не такими уж маленькими. Метровому полену, лежащему в луже, трудно задирать голову так высоко, чтобы заглотнуть воздух ртом (они, конечно, старались, благодаря чему мы приобрели еще и шею в качестве бесплатного приложения; шея сделана в основном из жаберных мышц и, похоже, возникала независимо в разных линиях рыб и первых амфибий: Шишкин, 2000). Обширная поверхность ротовой полости быстро сохнет, да к тому же в иле и грязи широкой пастью недолго наглотаться всякой гадости. А ведь наверху морды есть аккуратные маленькие ноздри. У обычных рыб носовые полости функционируют исключительно как обонятельные органы, у них даже есть пара ноздрей с каждой стороны – для входа и выхода воды. В новых условиях возникают хоаны – внутренние носовые отверстия, соединяющие носовую полость с глоткой, так что воздух идет по прямой в новообретенные легкие. Кстати, хоаны, по-видимому, тоже возникали независимо у двоякодышащих и кистеперых: одна задача – одно решение, но несколько разными способами. И кто ж мог знать, что такое очевидное усовершенствование станет проблемой у человека, который появится через четыреста с лишним миллионов лет? Ведь ноздри и хоаны открываются в глотку сверху, а легкие сформировались как нижний вырост глотки. Получился перекрест дыхательных и пищеварительных путей. Для рыб это, видимо, не было великой проблемой, ведь они не жуя глотали крупную добычу, которая в любом случае не могла провалиться в легкие, а вот у наземных существ начались сложности: при глотании (особенно хорошо пережеванной пищи) еда того и гляди может шмякнуться в гортань или трахею. Конечно, возникли предохранительные клапаны – небо наверху и надгортанник внизу; у всех приличных млекопитающих они смыкаются, а потому звери либо глотают (и тогда на полном автомате надгортанник опрокидывается пищей, закрывая гортань, а небо поднимается, перекрывая носоглотку), либо дышат. Посему они в принципе не могут подавиться. Так же система работает и у шимпанзе, и у новорожденного человека, поэтому младенец либо дышит (обычно он при этом еще и вопит), либо сосет молоко (обычно утверждается, что он делает это одновременно, но на самом деле попеременно). Но два миллиона лет назад – четыре сотни миллионов после появления легких и хоан – человек стал делать первые попытки говорить. Голосом общаться удобно, но для обогащения набора сигналов нужно усложнение звукопроизнесения, членораздельность речи. Кто четко и внятно сообщает информацию окружающим, тот имеет больше шансов на выживание, да и на прекрасный пол может произвести должное впечатление, так что его гены будут увеличивать свою частоту. Но для говорения нужна подвижность гортани: расположенная за толстым языком, она и сама не имеет нормальной амплитуды, и языку мешает. И вот гортань начинает свое движение вниз, в свободную часть шеи. У зверей в таком случае либо удлиняется мягкое небо, либо надгортанник, но грандиозность задачи у человека не оставила ему таких возможностей – если бы небо и хрящ увеличились пропорционально длине шеи, то не получилось бы уже ни глотать, ни дышать. Поэтому свершилось ужасное – мягкое небо и надгортанник разомкнулись, расстались навсегда. Их разлучение позволило нам говорить, но оказалось роковым – теперь мы можем погибнуть подавившись. Ведь пища уже вовсе не гарантированно попадает в горло и пищевод, геометрически ей гораздо проще угодить в гортань – дыхательную систему. Конечно, возникли рефлекторные защитные механизмы, но уж больно своевольно наше сознание: мы можем захотеть и говорить, и дышать одновременно, тогда надгортанник останется открытым, а мы подавимся. Это редкостный случай возникновения откровенно вредного признака в качестве побочного эффекта, а возможно такое, ибо польза от говорения намного перевешивает опасность. Все же далеко не каждый болтун гибнет, подавившись едой, зато теперь каждый может повышать свою приспособленность говоря. А упущенная возможность, о которой упоминалось в начале этого бесконечного абзаца, проста: будь мы потомками не кистеперых, а костистых рыб, у которых плавательный пузырь – бывшее или потенциальное легкое – вырост верхней стенки глотки, или возникни мы чуть позже из более продвинутых двоякодышащих, у которых не только легкое, но и вход в него мог бы переползти наверх, у нас не было бы злосчастного перекреста. Запросто могла бы возникнуть некая горизонтальная перегородка между дыхательной и пищеварительной системами, да и без нее сила тяжести вела бы пищу куда следует – в пищевод и желудок, а не в трахею и легкие. Кто знает, может, речь возникла бы намного раньше? И ведь есть же прецеденты среди костистых рыб – те же илистые прыгуны, дышащие на суше кожей и наджаберным дыхательным органом – полным аналогом легкого. Но в девоне костистых рыб еще не было, так что воздушную среду захватили потомки кистеперых, а после конкуренция с их стороны была уже непреодолима, и у костистых не было шансов стать новыми, более совершенными четвероногими. Поспешишь – людей насмешишь…

Уффф… Можно выдохнуть. Спасибо кистеперым рыбам за их нелегкую болотную жизнь, обеспечившую нас способностью так здорово дышать!

Соединение носовой и ротовой полостей имело и иные последствия: диалектически оформился и их разделитель – небо. Его задняя часть – мягкое небо, а его самый большой вырост – язычок, который очень наглядно показан в мультиках, где он эффектно болтается, когда кто-то кричит. Мягкое небо, как уже говорилось, во время глотания поднимается, перекрывая носоглотку. Но у системы есть недостаток: если человек лежит на спине и при этом очень расслаблен – смертельно устал, вдребезги пьян – или у него ожирение и язычок просто тяжел, мягкое небо свисает вниз и закрывает носоглотку. Поскольку человек упорно продолжает дышать, воздух, идущий через нос, колеблет язычок и возникает храп (конечно, существуют и другие его причины). Спасти положение можно, повернув человека на живот или хотя бы на бок (чтобы язычок свесился в другую сторону и открыл путь воздуху) или же приведя его в чувство – растолкав или хотя бы громко хлопнув, крикнув, пнув (чтобы мышцы пришли в тонус и подняли мягкое небо). Бывает, впрочем, что ничего не помогает, а окружающие ни в чем не виноваты. Тогда приходится идти на крайнюю меру – удаление язычка мягкого нёба. Правда, без него не получится жадно глотать еду большими кусками (иначе сокращение глотки будет толкать пищу в том числе и в нос), но, может, оно и к лучшему, особенно если причиной храпа было ожирение. Нездорово будет и пить в лежачем положении: вода будет выливаться через нос. Но на какие жертвы не пойдешь ради блага близких!

Впрочем, когда я излагал эту тему на одной лекции, один из студентов рассказал, что некоему его знакомому-родственнику сделали такую операцию, а он таки храпеть не перестал. Каким органом он продолжал это делать, науке неизвестно; вероятно, языком, который тоже может заваливаться в глотку. Можно предложить еще одну операцию…


Вряд ли девонские кистеперые рыбы храпели, но именно их жизнь создала наши свойства – приятные и не очень.

Глава 12

Звено 7: руки-ноги

(поздний девон, 385–365 млн лет назад)

Большинство девонских кистеперых рыб жило в не очень глубоких пресных водоемах. Но времена были дикие, качественные редуценты были в дефиците, поэтому растения (а к середине девона уже появились деревья приличного размера), падавшие в воду (деревья-то появились, а корневая система у них была крайне непрочная, поэтому они то и дело падали, а корни были маленькие, потому что несовершенные редуценты и вообще почвообразователи не могли обеспечить должного развития почвы, чтобы имело смысл отращивать большие корни; в общем – время еще не пришло), оставались лежать там большими кучами, загромождая пространство. Теплая вода – девон, как мы помним, был очень жарким – плохо растворяет кислород, поэтому в близких к анаэробным условиях несчастные редуценты, как ни старались, не могли быстро переработать утонувшие стволы. В следующем – карбоновом – периоде такие завалы еще увеличились, и из них получились такие грандиозные залежи каменного угля, что человечество жжет их уже сотни лет и все никак не изведет. Но и в девоне бардака хватало. Свободно плавать в таких условиях было сложно, тем более довольно крупным хищникам. Поэтому они стали ползать по дну и всем этим топлякам. Плавники у них видоизменились в толстые конические отростки, неспроста вся группа в целом называется лопастеперыми Sarcopterygii, а их важнейшее подразделение – кистеперыми Rhipidistia. Среди их современных потомков латимерия, перешедшая к жизни в глубоком море, все же не отказалась от старых привычек и тоже может ходить по дну, поочередно переставляя мясистые “ноги” с прочным основанием. Некоторые ископаемые кистеперые тоже жили в море; например, Tinirau clackae из Невады (387 млн лет назад) по некоторым чертам строения оказывается ближе к четвероногим, чем многие пресноводные родственницы.

Позднее рыбы неоднократно изобретали хождение по дну. Этим занимаются родственники удильщиков Antennarius, Brachionichthys и Sympterichthys, а также короткорылый нетопырь Ogcocephalus darwini, они делают это практически так же, как и амфибии, – шагая на видоизмененных плавниках, на которых даже появляются аналоги пальчиков. Bathypterois grallator стал ходячим треножником, он опирается на чрезвычайно удлиненные лучи плавников. Десяток видов илистых прыгунов Periophthalmidae вообще едва ли не большую часть времени проводят на суше и даже преимущественно на деревьях, вернее, на корнях мангровых деревьев, поднимающихся над водой выше человеческого роста (рыба, живущая на корнях деревьев, торчащих над водой, – не самый стандартный образ!). Неспроста они очень похожи на амфибий, а их грудные плавники, хотя и совсем не похожие на ноги, используются именно как лапки: ими они могут обхватывать стволики и веточки (в этом им помогают брюшная присоска и толстый хвост, служащий опорой), на них они прыгают, подобно лягушкам.


Обезьяны и все-все-все

Рис. 10. Antennarius (а), Brachionichthys (б), Sympterichthys (в) и короткорылый нетопырь Ogcocephalus darwini (г).


Ближе к концу девона среди нескольких линий кистеперых параллельно возникли аналоги ног. Сколько всего было таких попыток – точно неизвестно. Из среднедевонских кистеперых к амфибиям наиболее близки Eusthenopteron, Tinirau и особенно Platycephalichthys. Но с “почти ногами” рыбы получили новые возможности. Ведь к этому времени на суше скопилось много всего вкусного: уже зеленели леса, а по ним ползали скорпионы и многоножки, первые пауки и насекомые-ногохвостки. Такой банкет никак нельзя было пропустить. Хотя первые насекомые были слишком мелкими для того, чтобы их ловили рыбы, но кормили собой тех, кем кормились рыбы.

Были и иные причины выползать на берега – например, для откладки икры в уединенных мелких бочажках, куда не доберутся злые хищники (кстати, кистеперые и сами были злыми хищниками). Так или иначе, но около 385–375 млн лет назад кистеперых “прорвало”: Panderichthys rhombolepis из Латвии и России, Elpistostege watsoni и более поздний, но и более распиаренный Tiktaalik roseae из Северной Канады, а также, без сомнения, другие подобные твари поползли сначала по дну, а потом и по илистым пляжам. Их конечности еще трудно назвать ногами, поэтому обычно их все же считают рыбами Elpistostegalia. Но план строения наших рук и ног тут уже хоть и с трудом, но узнаётся. Остается удивляться, как быстро шел прогресс: не минуло и десятка миллионов лет, как уже появились амфибии Ichthyostegalia. Древнейшие из них – Elginerpeton pancheni из Шотландии – имеют ту же датировку, что и пресловутый тиктаалик – 375 млн лет назад. Дальше – больше: Ventastega curonica из Латвии, Hynerpeton bassetti из США, Acanthoostega gunnari и Ichthyostega stensiovi из Гренландии, Tulerpeton curtum из Тульской области – все они зашлепали по девонским болотам. Завоевание суши удалось.


Обезьяны и все-все-все

Рис. 11. Platycephalichthys (а), Panderichthys rhombolepis (б) и Tiktaalik roseae (в).


Минутка фантазии

Многие из первых четвероногих около 365 млн лет назад имели нестандартное с нашей точки зрения число пальцев. Так, Tulerpeton curtum обладал шестью пальцами на передней и шестью на задней лапах, Ichthyostega stensiovi шевелила семью пальцами на задней ноге, а Acanthoostega gunnari – аж восемью на передней. Количество же лучей в плавниках кистеперых может быть еще намного большим. То, что все наземные позвоночные в итоге оказались потомками пятипалой рыбоамфибии, просто-напросто случайность – одна из миллионов, сопровождавших нашу эволюцию. Как знать, будь мы правнуками восьмипалой акантостеги, может, и умелые ручки возникли бы раньше? Какие бы перспективы перед нами открылись! Клавиатуры компьютеров в полтора раза шире, сложнейшие жестовые языки, удивительные театры пальцев, чудесные манипулятивные способности – мечта фокусника и карманника… Впрочем, тогда мы бы мечтали о десятке пальцев. Порадуемся же, что наши предки не растеряли и тех пяти, что имели.

Совсем иное строение конечностей мы могли бы иметь, произойди наши предки от двоякодышащих. Плавник рогозубов имеет хрящевую основу в виде членистого стебля с двумя рядами “веточек” по бокам. Такая структура совсем не похожа на наши руки и ноги. Из нее вышли бы отличные ногощупальца с бахромой гибких пальцев, которыми можно было бы обвивать предметы куда более изящно, чем это делаем мы своими фалангами… Впрочем, прочность подобной структуры невелика, неспроста она проиграла в девонском конкурсе освоителей суши.

От тех времен нам досталась одна странность. В предплечье локтевая и лучевая кости в расслабленном положении, когда ладонь повернута назад, расположены наперекрест. Вроде бы логичнее, если бы они были параллельны, как берцовые кости в ноге. Но эволюционная логика бывает странна. Ведь первые наземные четвероногие ползали на растопыренных в стороны лапах, у них локтевая и лучевая действительно не пересекались, а кисти торчали вбок. Примерно такое же расположение сохраняется и у рептилий. Однако когда зверообразные рептилии – предки млекопитающих – выпрямляли свои передние ноги, более эффективным оказалось развернуть кисть пальцами вперед, так толчок получается мощнее, шаг бодрее. Но кости в предплечье уже не могли поменяться местами и оказались скрещенными.

Надо сказать, что человеческая пятипалая рука сохраняет крайне примитивный план строения. Даже у банальной лягушки, будь она трижды амфибия, кисть более специализирована, чем у нас, хотя бы потому, что у нее и число костей в запястье, и число пальцев уменьшено по сравнению с исходным вариантом. Остается удивляться, как весь бесконечный ряд предков человека умудрился донести до наших времен столь архаичный вариант, ничего не растеряв по пути.

Очередное наше везение заключается в том, что некоторые амфибии эволюционировали слишком медленно. Например, у современных лягушек кости предплечья, а также малая и большая берцовые кости сращены, чтобы было легче скакать. Из таких лапок труднее получить хватательные руки-ноги, чтобы лазить по деревьям (квакшам, впрочем, это удается, но за счет подвижности стопы и присосок на пальцах). Если бы амфибии быстро достигли своего прыгучего совершенства, то, возможно, древесные млекопитающие никогда не возникли бы. А не будь древесных предков, не было бы и слезших с дерева потомков…

Подытожим: руки и ноги развились из плавников, чьим первоначальным предназначением было плавание, а вторым – ползание по дну.

Кстати, о семенах и деревьях…

Предки семенных растений – Runcaria heinzelinii – росли в Бельгии в среднем девоне 385–387 млн лет назад (Gerrienne et al., 2004). Они еще сыпали спорами, но уже не простыми, а особыми, разного размера: мелкими, имеющими претензию быть настоящей пыльцой, и крупными в мегаспорангии, окруженном специальной оболочкой-интегументом, которая того и гляди станет семенной кожурой. Чуть позже китайский плаун Sphinxiocarpon wuhanensis вплотную приблизился к созданию истинных семян. Не прошло и двадцати миллионов лет – и вот в позднем девоне, около 365 млн лет назад, в Северной Америке мы уже встречаем первые семенные растения, Elkinsia polymorpha и Moresnetia zalesskyi. Семена имеют защитные оболочки и питательные вещества, существенно повышающие выживаемость зародышей и позволяющие избежать зависимости от воды. Гаметы более примитивных споровых растений распространяются водой, так что плауны, хвощи и папоротники привязаны к берегам или как минимум очень влажным местообитаниям. Семена растений совершили тот же переворот, что спустя много миллионов лет удалось амниону рептилий: растения окончательно и бесповоротно захватили сушу, сделав возможным выход на нее крупных животных. Пройдут еще многие миллионы лет, и на основе семян голосеменных возникнут плоды покрытосеменных, которые станут основной пищей приматам и создадут человека.

В середине девонского периода совершилось еще одно великое событие, которое в тот момент вроде бы не предвещало появления человека, но было его необходимейшим залогом: возникли деревья! В начале девона – как минимум до 400 млн лет назад – деревьев точно не было, а наземные растения представляли собой невзрачные тонкие слабоветвящиеся псилофиты, не имевшие настоящих листьев и корней и жавшиеся к берегам водоемов. Но 385–386 млн лет назад планета обрела уже настоящие леса. Древнейшим известным деревом является папоротникоподобный Eospermatopteris, или Wattieza, чьи как минимум восьмиметровые стволы возвышались там, где сейчас находится штат Нью-Йорк в США (Stein et al., 2007). Но более того, тщательные исследования показали, что в этом древнейшем лесу было как минимум три вида крупных растений: вокруг папоротников обвивались лианоподобные предки голосеменных Aneurophytales, а между ними пейзаж разнообразили древовидные плауны Lycopsida (Stein et al., 2012). Благодаря постоянному затоплению (это даже не “допотопный”, а настоящий “потопный” лес) многие части стволов и ветвей сохранились в своем окаменевшем великолепии, а палеоботаники могут изучать экосистему конца среднего девона.

Казалось бы, при чем тут деревья? Однако они несколько раз сыграли ключевую роль в эволюции наших предков. Некоторые исследователи считают, что пни, торчавшие под водой, и упавшие стволы, загромождавшие водоемы, способствовали развитию конечностей еще у полностью водных кистеперых рыб, которые, будучи крупными животными, не могли свободно резвиться в подводном буреломе, а были вынуждены ползать по этим завалам, цепляясь зачатками пальцев за кору.

Кроме того, леса стали гостеприимным домом для многочисленных членистоногих, которые, в свою очередь, послужили пищей предкам земноводных и, стало быть, оказались важнейшим условием выхода позвоночных на сушу. Без лесов и букашек в них рыбам нечего было делать на неуютных песчаных берегах.

Далее, надо думать, леса обеспечили тень. Казалось бы – мелочь, но для животных, еще не приспособившихся жить вне воды, высыхание было огромной проблемой. Лучи солнца быстро сушили несчастных пионеров суши, а в вяленом состоянии эволюционировать трудно. Даже современные амфибии предпочитают не выползать под прямой солнечный свет. Тощие и низкорослые псилофиты не могли дать приличной тени, так что потенциальным первооткрывателям вневодных пространств пришлось ждать появления более основательной защиты. Неспроста на границе среднего и позднего девона одновременно появляются и деревья, и первые переходные водно-наземные рыбоамфибии.

Наконец, в далеком-далеком будущем именно деревья стали домом приматам, но до этого должно было произойти много всего интересного…

Выход на сушу сопровождался и иными достижениями: на глазах появились мигающие веки, смачивающие глаз слезой. Сам глаз обрел способность к аккомодации – наведению резкости изображения. Стала гораздо менее актуальна боковая линия – фактически ухо, растянутое вдоль всего бока от головы до хвоста. Она сохраняется у головастиков и лишь редко у взрослых амфибий (например, у прибрежной саламандры Stereochilus marginatus). Взамен появилось среднее ухо со слуховой косточкой.

Были и странности: дыхательная система уползла из глотки (жабры) в грудную клетку (легкие), и сердце последовало за ней, а мозги остались спереди. У рыб артериальная кровь из жабр попадает первым делом в рядом расположенные мозги, но у амфибий система перекосилась: в сердце кровь оказывается смешанной, мозги получают не чистую артериальную кровь. Обычно в школе появление двух кругов кровообращения преподносится как великое прогрессивное достижение, но для амфибий это был, вообще-то, регресс. На самом деле малый круг (от сердца к легким и назад, в котором венозная кровь становится артериальной) возник как попытка выправить возникшее нарушение идеально действовавшей доселе системы, причем первый блин оказался комом. Частично это компенсируется кожным дыханием, у самых продвинутых жаб – появлением частичной перегородки в желудочке (в школе она упоминается как изобретение рептилий, но это не так), но все-таки, когда начинаешь дышать выростом пищеварительной системы и наружными покровами вместо приличных жабр, сразу все не отрегулируешь.

Усовершенствовался у амфибий мочевой пузырь – место хранения воды, чтобы не засохнуть. У амфибий его стенки могут впитывать воду обратно в кровь. Особенно здорово запасаются жидкостью пустынные австралийские жабы Litoria platycephala, из которых аборигены выдавливают воду, чтобы напиться. Если бы над первыми амфибиями не нависала опасность высыхания, наши представления о гигиене выглядели бы совсем иначе.

Согласитесь – у земноводных уже почти наше строение, не хватает пары мелочей. И эти “мелочи” не замедлили появиться…

Глава 13

Звено 8: амнион

(средний карбон, около 340–315 млн лет назад)

Амфибии заселили сушу, но не до конца. Они по-прежнему были привязаны к воде, например необходимостью смачивать голую кожу. Но главным тормозом на пути окончательного завоевания сухих просторов был тип размножения. Амфибии откладывают икру в воду, и головастик живет в воде, дышит наружными жабрами и вообще представляет собой фактически рыбку, причем бесчелюстную. И икра, и головастик при высыхании гибнут. Многие амфибии пытаются решить эту сложность: обвиваются вокруг икры в норе (Ichtyophis), строят гнезда из листьев и слизи (Phyllomedusa и Rhacophorus), вынашивают икру в собственной спине (Pipa и Gastrotheca), голосовом мешке (Rhinoderma darvini) и даже желудке (Rheobatrachus), но все это полумеры. Хорошим выходом является живорождение, его смогли освоить водные червяги Typhlonectes, саламандры Hydromantes, лягушки Limnonectes larvaepartus и жабы Nectophrynoides occidentalis. Любопытно, что у последних головастики в организме матери дышат через хвост! Чем не альтернатива плаценте? Если вдуматься, мы в такой же ситуации дышим животом через пупочный канатик – тоже странное приспособление. Но в карбоне амфибии, видимо, были еще не столь изощренны, так что им пришлось искать иные решения. На кону стоял большой куш, нашедшему доставались все ресурсы пространств, простиравшихся дальше родных болот. Ведь карбоновые растения уже обрели впечатляющие размеры, а некоторые – достаточно развитые корни. Большинство из них, правда, росло наполовину в воде (тут и процветали разнообразнейшие амфибии-“стегоцефалы”), но папоротникоподобные глоссоптерисы потихоньку осваивали более сухие земли, а расплодившиеся насекомые и многоножки так и просились, чтобы кто-нибудь их съел. И к середине периода земноводные изобрели амнион.

Амнион – водонепроницаемая зародышевая оболочка, заполненная амниотической жидкостью, по сути – индивидуальный бассейн для зародыша. В нем он может спокойно плавать, а чтобы никто его не тревожил, из внешней оболочки трофобласта можно сделать прочную скорлупу – кожистую или даже известковую. Получается яйцо, теперь его можно положить куда угодно, закопать в песок или листья, и ничего с ним не сделается. Главное, чтобы оно не замерзло, но этой проблемы в первой половине карбона, кажется, не было. Открытие амниона настолько важно, что рыбообразные и амфибии называются анамниями, а рептилии, птицы и млекопитающие – амниотами, то есть ящерица существенно ближе к нам, чем к тритону или лягушке.

Кстати, о грибах и стрекозах…

Климат в начале карбона был отличный, но в течение всего периода холодало, а завершился он ледниковым периодом. Огромные массы растений захоранивались в виде угля, то есть углерода, а это значит, что из атмосферы постоянно убирался углекислый газ. А углекислый газ создает парниковый эффект, согревающий планету. Когда количество углекислого газа в атмосфере уменьшается десятки миллионов лет, немудрено, что планета зябнет. Как знать, может, так бы и превратилась она в ледышку, если бы не спасительные грибы. Они самоотверженно научились переваривать лигнин – самый несъедобный компонент растений. Поток углекислого газа освежил атмосферу, и вторая половина пермского периода ознаменовалась радикальным потеплением. Восславим же гнилостные грибы за спасение планеты и наше счастливое настоящее!

С другой стороны, многочисленные растения, аккумулируя в своих стволах углерод и выделяя кислород, насытили последним атмосферу, позволив возникнуть гигантским членистоногим: полутораметровым многоножкам Arthropleura, стрекозам Meganeura с размахом крыльев до 65 см и прочим исполинам. Ведь их трахейная дыхательная система – один из главных ограничителей размера, а при избытке кислорода даже с трубочками в мозгах можно подрасти. Насекомые расцвели. Одни карбоновые тараканы чего стоят! А мимо такой усатой шуршащей братии невозможно пройти равнодушным. Если есть так много еды, уползающей и улетающей от водоемов, найдутся и те, кто за ней устремятся. Ради таких вкусняшек не грех и амнион отрастить. Так, в погоне за тараканами, из наших предков-амфибий выковывались наши предки-рептилии.

Стадия головастика у нас никуда не делась, просто сместились сроки вылупления и метаморфоза: у амфибий сначала головастик выходит из икры, а потом теряет жабры и отращивает челюсти; у нас же, напротив, сначала исчезают зачатки жабр и формируются челюсти, а потом ребенок рождается.

Конечно, одним амнионом сушу не завоюешь. Окончательный выход на сухие просторы требует перестройки кожных покровов, органов чувств и конечностей. Кожа становится непроницаемой для воды, глазам и ушам теперь необязательно чувствовать в воде, их можно усложнить (в частности, появляются задние – слуховые – холмики четверохолмия среднего мозга), ноги должны бегать по земле, а грести им уже не надо, в мозге заметно увеличивается мозжечок. Появляется реберное дыхание. Вообще-то амфибии дышат наполовину кожей (безлегочные саламандры так и вообще только ей), а в легкие воздух накачивают горлом, но на суше держать кожу влажной невыгодно, а одним горлом много не надышишь. У современных амфибий ребра обычно редуцированы напрочь, в лучшем случае имеются лишь их маленькие рудименты, ведь они немало весят, а с низким обменом веществ таскать лишнюю тяжесть ой как нелегко. Но массивным карбоновым “стегоцефалам” ребра были нужны для поддержания формы тела, по совместительству же они стали обеспечивать вдох. Исчезни ребра раньше появления амниона – не быть нам теплокровными, не быть нам умненькими-разумненькими.

Но это все – дело наживное. И вот в середине карбона Канады (312–315 млн лет назад) мы встречаем первых рептилий Hylonomus lyelli и Paleothyris acadiana. Внешне они были не очень презентабельны – невзрачные как бы ящерки, – но какой это был прорыв! Актуальность приобретения независимости от воды наглядно подтверждается обилием попыток рептилизации: это нижнекарбоновые Whatcheeridae, Crassigyrinidae, Casineria kiddi и Westlothiana lizziae, а также иные твари. Даже в следующем – пермском – периоде несколько групп амфибий продолжали заново изобретать черты пресмыкающихся.

Тут нам снова повезло. На самом деле не все рептилии стали совсем рептилиями. Как обычно бывает, нашлись консерваторы и ретрограды, сохранившие массу амфибийных черт, например голую кожу без чешуи, но с многочисленными железами. Именно из таких недорептилий и возникли после млекопитающие. А не то трудно было бы создавать потом шерсть и молочные железы. Но это уже совсем другая история…


Обезьяны и все-все-все

Рис. 12. Hylonomus lyelli и пень Sigillaria.


Кстати, о пнях и елках-палках…

Деревья карбонового периода были не совсем такими, как сейчас. Исполинские плауны сигиллярии Sigillaria, похожие на раздвоенные двадцатиметровые кисточки, имели очень слабую древесину в середине и прочную кору снаружи. Когда дерево падало, пень быстро выгнивал изнутри и превращался в огромную бочку-ловушку. Во время паводков туда заносило несчастных зверюшек, а после спада воды они уже не могли выбраться наружу. Благодаря такому коварному устройству стволов сигиллярий мы теперь имеем останки первых рептилий гилономусов Hylonomus: их скелеты так и пролежали в пнях больше 300 млн лет.

Однако пни с трещинами просто наверняка служили тем же существам отличным домом-убежищем, тут они могли чувствовать себя в безопасности, ведь по окрестным болотам ползало немало ужасных хищников. С тех пор пни и дупла исправно служат общежитием для мириад разнообразнейших существ. Отлично описал это Дж. Даррелл в книге “Зоопарк в моем багаже”:


Обкуривать дупло – дело долгое и сложное, своего рода искусство. Прежде чем за него приниматься, надо выяснить, ждет ли вас добыча, заслуживающая таких усилий. Если в самом основании ствола есть большое отверстие, выяснить это сравнительно просто. Вы засовываете внутрь голову и просите кого-нибудь постучать по стволу палкой. И если в дупле прячутся животные, вы, как только стихнет гул, услышите беспокойное движение или во всяком случае догадаетесь о присутствии зверя по ливню гнилой трухи… Теперь можно разжигать костер… Дым будет уходить в полый ствол, как в дымоход. Дальше могут случиться самые неожиданные вещи, ведь в дуплах обитает все на свете – от плюющей кобры до циветты, от летучей мыши до гигантской улитки. Половина интереса в том и заключается, что невозможно предугадать, с чем вы встретитесь[2].


Не исключено, что именно такие места заронили в наших предков склонность к жизни в уютной тесноте – в ней кроется половина смысла самого слова “уют”, немалая часть оставшейся половины – сопутствующий полумрак. Другим вариантом были норы, но их еще надо копать, а пни всегда готовы. Неспроста людей – особенно детишек – так и тянет залезть под выступающие корни и в дупла, когда таковые находятся. В последующем вибриссы млекопитающих стали отличным определителем защищенности; например, когда крыса чувствует со всех сторон стены, ей хорошо, а если ее посадить в обширный вольер, где она не ощущает спасительного окружения, то может и умереть от такого ужаса. Конечно, до млекопитающих в карбоновом периоде было еще не слишком близко, но желание ощущать стены-защиту со всех сторон восходит, по-видимому, еще к тем временам. Когда вам в следующий раз захочется завернуться в одеяло и обложиться подушками, свернуться с ногами калачиком на кресле с высокими подлокотниками и вжаться в его глубокую спинку, обставить квартиру комодами и шкафами непременно темного дерева, с многочисленными полочками, дверцами и таинственными недрами, вспомните о гилономусах в сигилляриевых пнях…

Древесина не только сигиллярий, но и плаунов-лепидодендронов Lepidodendron, и древовидных хвощей-каламитов Calamites была очень слабой и рыхлой, сделанной из первичной ксилемы, прочность ствола обеспечивалась в основном мощной корой, у хвощей к тому же щедро сдобренной кремнеземом. Корни тоже были довольно хилыми, что компенсировалось увеличением их размеров или, иногда, огромным корневищем. Недоразвитость механической ткани не давала возможности таким деревьям обильно ветвиться, даром что высотой они могли быть до 35 м. Метелки с чешуевидными недолистьями-филлоидами язык не поворачивается назвать кронами, а плауновидные Lophiodendron и Tomiodendron так и вообще были чем-то вроде столбов. На таком дереве особо не порезвишься, так что и древолазящие животные в это время даже не предполагались. Но в конце карбона – 323–299 млн лет назад – наконец-то появились голосеменные-кордаиты Cordaites, обзаведшиеся вторичной ксилемой, то есть приличной механической тканью, позволившей им отрастить ветвистые кроны наподобие современных сосен и нормальные устойчивые корни. По сути, растения приобрели внутренний скелет взамен наружного; произошла смена “беспозвоночных членистоногих” растений (хвощи такие и есть – членистостебельные) “позвоночными”. С этого момента стала принципиально возможной жизнь на деревьях. До нее оставались миллионы лет, но именно тогда – в зеленых кронах каменноугольных кордаитов – были заложены предпосылки возникновения приматов и человека.

Глава 14

Звено 9: классы зубов, уши и шерсть

(пермь, 300–250 млн лет назад)

Пермский период был временем чудес. В морях плавали странные акулы Helicoprion с циркулярками во рту, по болотам ползали огромные “стегоцефалы” типа Eryops и Mastodonsaurus с метровыми головами, а Platyoposaurus stuckenbergi успешно изображал из себя крокодила, в лужах бултыхались рогатые Nectridea, амфибии Seymouriamorpha и Chroniosuchidae все еще упорно пытались стать рептилиями. Diadectomorpha настолько странны, что и не разберешь – земноводное это или пресмыкающееся. Среди собственно рептилий тоже что ни тварь, то феномен. По озерам плавали надувные Pareiasauria с третьим глазом на макушке и гавиалоподобные Mesosaurus с полным ртом зубов, Eunotosaurus africanus был похож на длиннохвостую черепаху, по ветвям порхали Coelurosauravidae с фестончатым черепом, невероятно сходные с современным летучим дракончиком Draco. Хватало и других.

Самой же странной и одновременно преуспевающей группой пермского периода стали зверообразные рептилии Theromorpha, известные также как синапсиды Synapsida, в особенности их основная часть – терапсиды Therapsida. Строго говоря, появились синапсиды еще в самом конце карбона, но интересующие нас черты приобрели в перми.

Одно из самых заметных приобретений зверообразных – гетеродонтная зубная система, то есть разделение зубов на классы. Передние обычно уменьшены и используются для отщипывания чего-то не очень прочного; чуть подальше зубы, напротив, резко увеличиваются и становятся клыками, нужными для демонстраций, удержания и убивания добычи или выковыривания корешков; самые задние зубы, на которые приходится самое большое давление, так как они приближены к челюстному суставу, становятся либо острыми режущими гребнями, либо широкими жевательными жерновами. Гетеродонтия возникала в животном мире неоднократно. Уникальны, например, растительноядные динозавры Heterodontosauridae и крокодилы Pakasuchus kapilimai, чья зубная система феноменально напоминала нашу.

Но зверообразные рептилии сделали особую ставку на свои зубы. Если у примитивных пеликозавров Pelycosauria разница в размерах зубов еще не очень заметна, то у всех прочих она уже чрезвычайно велика. Особенно полюбились тероморфам клыки – они огромны почти у всех зверообразных, как хищников (Titanosuchia, Eotitanosuchia и Gorgonopsia), так и растительноядных (Tapinocephalia), а у продвинутых дицинодонтов Dicynodontia остались вообще единственными зубами. Среди Venjukoviamorpha Ulemica invisa имела большие направленные вперед резцы и, видимо, была аналогом грызунов.

Параллельно с зубами менялись жевательная мускулатура и нижняя челюсть; в частности, зверообразные научились жевать, появилась восходящая ветвь нижней челюсти и скуловая дуга на черепе. Теперь стало можно использовать пищу гораздо более эффективно. Когда крокодил ест добычу, чуть ли не больше половины он теряет, потому что может только оторвать кусок и проглотить его целиком. А уже в желудке крупный неразжеванный шмат мяса переваривается, понятно, очень медленно и неэффективно. Еще хуже растительноядным, ведь у растений есть прочная целлюлозная клеточная стенка, недаром травоядные черепахи такие медленные во всех отношениях. Предки млекопитающих справились с этими сложностями: пища меньше теряется, пережевывается, мясо размельчается, клеточная стенка разрушается, и в итоге еда лучше усваивается, а на этой основе можно и обмен повысить.


Обезьяны и все-все-все

Рис. 13. Схема классов зубов.


В последующем некоторые млекопитающие полностью утеряли часть достижений пращуров; например, у дельфинов все зубы одинаковы, а у муравьеда их вообще нет, но у большинства жизнь прямо зависит от гетеродонтности. Неспроста систематика млекопитающих – это в основном систематика зубов, а учитывая, что зубы – самый прочный элемент организма и в ископаемом состоянии сохраняются в основном именно они, эволюция зверей представляется обычно как эволюция зубов. Предки и родственники человека – не исключение. Взаимные пропорции резцов, клыков и моляров надежно отличают, скажем, грацильных австралопитеков от понгид, а парантропов от “ранних Homo”.

Уголок занудства

Зубы современных млекопитающих делятся на классы: спереди это резцы – плоские и широкие зубы, нужные для откусывания кусочков не очень прочной пищи; далее следуют клыки – по первоначальной задумке большие и острые, нужные для убивания или удержания добычи, но часто используемые только как сигнальные приспособления; после – премоляры (они же предкоренные) с назначением промежуточного раздавливания пищи; заканчивают ряд моляры (они же коренные; кстати, стоит подчеркнуть, что “коренные” не значит “постоянные”, это не генерация, а класс зубов) – широкие и часто бугристые, необходимые для пережевывания и перетирания еды. Классы зубов обозначаются латинскими буквами: резцы – I, клыки – C, премоляры – P, моляры – M. Номер верхних записывается верхним индексом (например, I¹), а нижних – нижним (например, M3).

Для простоты зубы считают только в половинке челюсти; количество зубов называется зубной формулой. У человека формула такова: 2123/2123, то есть в верхней челюсти с одной стороны 2 резца, 1 клык, 2 премоляра и 3 моляра, в нижней – то же количество; всего 32 постоянных зуба. Исходная формула для приматов – 2143/2143, причем у предков человека исчезли первые два премоляра в каждой челюсти, так что первый человеческий премоляр в общеприматном масштабе на самом деле P3, а второй – P4.

Молочные зубы обозначаются маленькими латинскими буквами: i, c и m. Секрет в том, что у ребенка на том месте, где у взрослого будут постоянные премоляры, растут зубы, морфологически похожие на постоянные моляры (отчего они называются молочными молярами; соответственно, молочная формула 212/212, всего 20 молочных зубов), а того места, где будут постоянные моляры, у малого дитятки вообще пока нет, так как челюсть короткая. По мере роста челюсти появляется место для постоянных моляров. Правда, для третьего иногда простора не хватает, тогда он упирается в соседние, и начинаются проблемы; прорезывается он позже всех прочих и потому называется “зубом мудрости”. Впрочем, он может и вообще не вырасти. Закавыка, однако, состоит в том, что постоянные моляры являются на своем месте на самом деле первой генерацией зубов, так что в действительности они молочные, просто остающиеся на всю жизнь, а постоянных моляров у нас, строго говоря, вообще нет.

Ежели дожить лет до девяноста и донести до этого почтенного возраста зубы – малореальное сочетание, – то можно осчастливиться третьей генерацией зубов (чаще это происходит с резцами), но это бывает крайне редко. Впрочем, иногда такое случается и в подростковом возрасте, когда, например, уже постоянный премоляр выпадает, а на его месте появляется новый зуб. Когда люди научатся искусственно регулировать эти процессы, можно будет выращивать зубы сколько влезет.

Разные животные могут выращивать неодинаковое число генераций зубов. У акул и рептилий они растут по необходимости. Скажем, аллигатор сменяет каждый зуб в среднем полсотни раз. У большинства млекопитающих все как у людей (хотя, конечно, зубные формулы у всех свои), но у некоторых встречаются экзотические варианты. У некоторых неполнозубых нет молочной генерации зубов, а у кроликов и морских свинок молочные могут сменяться постоянными еще до рождения. У слонов и сирен – ламантинов и дюгоней – новые коренные зубы появляются в задней части челюсти и со временем смещаются вперед, замещая стертые передние, которые по надобности выпадают; таких генераций может быть сколько угодно. У слонов новые зубы перестают закладываться лет этак в двадцать, прорезываться – в сорок, а окончательно стираются в шестьдесят.

Зубами можно ухватить добычу, но сначала ее надо найти. В этом может помочь слух. Рептилии слышат в значительной степени через нижнюю челюсть, ведь они ползают, прижимаясь к земле, неспроста они именуются пресмыкающимися; колебания от почвы через кости передаются к уху. Может, они бы и рады гордо поднять голову, но у них не очень получается, ведь уровень их метаболизма низок, в мышцах мало митохондрий, отчего мускулатура белая и не может долго тонически сокращаться. Поэтому рептилии движутся “мультяшно” – рывками, дерганно. По-своему это удобно: можно быстро метнуться из засады, как это делают крокодилы или удавы, можно даже взлететь – грудные мышцы некоторых птиц устроены все так же, но плавных изящных движений, упругой походки и долгой тяжелой работы без устали рептилиям совершать не дано.

Зверообразные рептилии ускоряли свой обмен веществ и совершенствовали конечности. По крайней мере, они смогли поднять свою переднюю часть тела над землей (в частности, они обрели истинный коракоид – особую независимую кость плечевого пояса; у человека коракоид срастается с лопаткой между 11 и 16 годами, превращаясь в клювовидный отросток, до этого времени ребенок еще немножко зверообразная рептилия). Но челюсть рассталась с почвой, а слышать хотелось. Большинство рептилий, а после и птицы решили эту проблему, усовершенствовав барабанную перепонку и прикрепив ее к задней части щеки, но пеликозавры были неудачниками, они не смогли развить аналогичное строение из-за особой формы височной области и слишком низкого прикрепления нижней челюсти: необходимость повышенного обмена веществ, начинающееся подразделение зубов на классы и, соответственно, боковые жевательные движения челюстей не позволяли приделать барабанную перепонку, как у рептилий, иначе она рвалась бы от нагрузок на челюсть. Укрепление задней части черепа и массивность единственной слуховой косточки-стремени грозили глухотой, а потому тероморфы пошли своим путем. Благо основание черепа и нижняя челюсть предков были сделаны из целой кучи костей. Одна из задних черепа – квадратная – и одна из задних челюсти – сочленовная, соединявшиеся с барабанной перепонкой, “переползли” вглубь, уменьшились и стали наковальней и молоточком. Вокруг они были окружены угловой костью (тоже из задней части нижней челюсти), превратившейся в барабанное кольцо, держащее и барабанную перепонку. Со всех сторон наползли элементы височной кости и скрыли кусок нижней челюсти – по совместительству среднее ухо – внутри черепа. Раз барабанная перепонка углубилась в череп, не мешает приспособить снаружи рупор – ушную раковину, благо ее не так сложно сделать из окружающей кожи. Иначе говоря, наружное ухо – это компенсация компенсации, попытка избежать потери слуха из-за побочных эффектов попытки избежать потери слуха, а не великое прогрессивное достижение.

От былой мозаики нижней челюсти у нас осталась лишь зубная кость. Так мы потеряли подвижность и растяжимость челюстей, навсегда утратили способность заглатывать предметы больше собственной головы (а жаль, иногда очень хочется!), зато по крайней мере не оглохли. Птицы, обладающие единственной слуховой косточкой и не имеющие наружного уха, слышат не хуже млекопитающих. Но зато мы можем жевать, а челюсти наши прочны.

Как уже говорилось, способность пережевывать пищу была одним из элементов, обеспечивающих повышенный обмен веществ. В ускоряющемся мире перми одной из главных ценностей была скорость. Обмен веществ тут как раз более чем важен. Ферменты в клетках обычно работают при определенной температуре, причем в довольно узком диапазоне, важно не остыть и не перегреться. Даже мы, гордящиеся своей теплокровностью, одеваем чего потеплее уже при плюс пятнадцати и жалуемся на жару при плюс тридцати. Холоднокровным же животным тем более непросто. Особенно остро вопрос стоит по утрам: кто первый успел растопить свою ферментативную топку, тот и первый съест хотя бы и холодных, но вкусных медляков или, напротив, успеет убежать от еще не раскачавшихся хищников.

Не раз животные изобретали способы собственного разогрева: бабочки и шмели делают это, трепеща крылышками, тунцы – сокращая мышцы. Много раз амфибии и рептилии независимо изобретали гребни-радиаторы на спине, обогащенные кровеносными сосудами, нагревающиеся прохладным утречком в восходящих лучах солнца и отдающие тепло в полуденную жару. Внешний вид таких животных удивительно схож: амфибия-темноспондил Platyhystrix rugosus, текодонты Arizonasaurus babbitti, Ctenosauriscus koeneni и Lotosaurus adentus, пеликозавры Edaphosaurus и Dimetrodon, динозавры орнитопод Ouranosaurus nigeriensis, зауропод Rebbachisaurus garasbae, тероподы Spinosaurus aegyptiacus и Deinocheirus mirificus, а также многие иные – все они обладали удлиненными остистыми отростками позвонков, между которыми была натянута кожа, а стегозавры Stegosauria ощетинились пластинами, расположенными в два ряда на спине, пронизанными множеством сосудов и выполнявшими всю ту же роль обогревателя или, напротив, охладителя.

Как видно из приведенного перечня, подобным путем пошли и некоторые ранние зверообразные – пеликозавры, причем как растительноядные, так и хищные. Но ползать, а уж тем более бегать с парусом на спине не очень-то удобно. Поэтому продвинутые зверообразные стали теплокровными. Этому способствовали разные приспособления; наверняка примерно в это время легкие обрели альвеолы – пузырьки, за счет которых поверхность выросла во много раз, обеспечивая организм бóльшим количеством кислорода, разогревающим телесную печку.

Усложнение органов чувств не ограничилось ушами. Зверообразные рептилии сохранили голую кожу без чешуи, но с железами. Такая кожа чувствительна и не мешает эти осязательные способности усилить. И вот морды тероморф ощетинились вибриссами – “усами”, которые каждый может лицезреть на любой кошке. Мы – люди, кстати, не уберегли столь ценное наследие. Даже у шимпанзе есть вибриссы, хотя и совсем короткие, незаметные снаружи среди обычных волос. Почти три сотни миллионов лет млекопитающие старательно берегли столь ценное приобретение, а наши предки в самый последний момент потеряли! Конечно, нет худа без добра: исчезновение вибрисс обусловлено мутацией-делецией части гена андрогенового рецептора, то есть регулятора стероидных гормонов, а такие изменения могли существенно сказаться на социальном поведении, взаимоотношении полов и стать важной вехой становления человеческих качеств психики (McLean et al., 2011).

Вибриссы – орган осязания, но принцип их устройства может быть использован и для формирования более основательных покровов. Длинные тонкие белковые выделения кожи (столь медленно выделяющиеся и столь прочные, что кажутся выростами, хотя по существу не отличающиеся, скажем, от затвердевшего пота) – богатейший источник новаций. Все уже догадались, что речь идет о шерсти. Строго говоря, точно мы не знаем, была ли шерсть у зверообразных рептилий, но ряд косвенных данных свидетельствует, что по крайней мере поздние цинодонты Cynodontia – наши непосредственные предки – были уже мохнаты. Шерсть – замечательная новация. Ведь усилившийся обмен позволяет нагреть тело, но этого мало, надо полученное тепло еще и сохранить. И мех тут действует как нельзя лучше. Причем для животных с несовершенной терморегуляцией это свойство даже важнее, чем для продвинутых. Даже современные яйцекладущие звери: утконосы, ехидны и проехидны – имеют густой мех, хотя теплокровными могут считаться лишь с некоторой натяжкой. А дальше из шерсти можно получить много всего интересного: иглы, хохлы, гривы, бороды и даже носорожьи рога.

Человек имеет занятный атавизм, доставшийся нам с тех времен: если нас напугать или выставить на мороз, то волоски на теле – руках, ногах, голове – поднимаются. Называется это пиломоторный рефлекс. У каждой шерстинки для этого имеется своя мышца, тянущая за волосяную луковицу. Вздыбливание шерсти помогает произвести впечатление на противника, увеличив видимый размер (для проверки сравните спокойную и испуганную кошку), или сохранить тепло. Человек – зверек тропический, почти совсем лысый, но нелегкая жизнь предков до сих пор двигает остатками нашей шерсти.

Кстати, о диалектике…

Пермский период ознаменовался двумя великими событиями, кардинально повлиявшими на судьбы еще не созданного человечества. Во-первых, материки в последний раз сползлись на экваторе в суперконтинент Пангею, перекрыв экваториальные течения и вызвав похолодание и осушение климата. Это дало преимущества рептилиям с повышенным обменом веществ и вызвало расцвет зверообразных.

Во-вторых, появились массовые насекомые с водными личинками – веснянки Plecoptera, ручейники Trichoptera и основная часть поденок Ephemeroptera (примитивные поденки появились раньше), которые аккумулировали в своих щуплых тельцах скапливающиеся в водоемах ценные химические элементы – прежде всего азот и фосфор, – а при разлете взрослых разносили эти вещества по водоразделам. Хотя каждая козявочка эфемерна, но вместе они – сила! Появился надежный канал возврата жизненно важных элементов из воды на сушу, что позволило растениям удалиться от берегов. Парадоксальным образом один из самых засушливых периодов стал временем озеленения пустынь: до этого лесами обрастали в основном берега морей, озер и рек, теперь же леса распространились вглубь континентов. В частности, в перми возникли засухоустойчивые хвойные вольциевые Voltziaceae. Где растения, там и животные – и вот по равнинам и по взгорьям заковыляли пеликозавры, дицинодонты и диноцефалы, за ними погнались горгонопсы и эотитанозухи, а под ногами у них путались тероцефалы и цинодонты – наши предки.

Такая вот диалектика: материки сползались, насекомые разлетались, а вместе они делали общее дело – создавали человека.

Менялось и зрение, причем частично в очень нестандартную сторону. Дело в том, что у первых амфибий и рептилий было не два, а три глаза. В рудиментарном виде третий сохраняется у некоторых современных лягушек, ящериц и гаттерий, причем может даже иметь хрусталик, сетчатку, нерв и вполне различает свет от тьмы, хотя и покрыт снаружи кожей; расположен он посреди головы. Третий глаз образуется на основе либо пинеального, либо парапинеального органа. У продвинутых зверообразных рептилий парапинеальный орган исчез совсем, а пинеальный погрузился вглубь увеличившегося мозга и стал эпифизом. У нас он выполняет массу функций, но многие из них по-прежнему завязаны на суточные ритмы. Конечно, свет на эпифиз прямо попасть уже не может, но зрительный нерв и тракт от стандартных глаз оканчивается в нескольких миллиметрах от эпифиза и связан с ним напрямую, так что с поступлением сигналов проблем нет.

На свету в эпифизе вырабатывается серотонин – один из главных нейромедиаторов, благодаря чему нам не хочется спать. У человека серотонин еще образно называют “гормоном счастья”, так как он отвечает в числе прочего за хорошее настроение. Совмещение функций приводит к тому, что настроение на свету действительно повышается, есть даже такой способ если и не лечения, то облегчения депрессии – освещение солнечным светом. В темноте в эпифизе серотонин преобразуется в мелатонин, и человек засыпает (на этой основе сделано отличное снотворное). Конечно, сон и бодрствование определяются многими другими факторами, ведь слепые люди тоже хотят спать, но регуляция через освещенность у нас преобладает. Кстати, любопытно, у ночных лемуров “гормоном счастья” является мелатонин?

Можно добавить, что некоторые особо экзальтированные граждане пытаются “открыть себе третий глаз” (иногда буквально – просверливая дырку в черепе), чтобы “связаться с космическими информационными потоками”, но делают это почему-то со стороны лба. На самом деле, из-за беспрецедентного разрастания конечного мозга эпифиз у нас оказался обращен назад; если уж и открывать себе третий глаз, то надо делать это на затылке, между мозжечком и затылочными долями полушарий. Впрочем, как раз в этом месте под черепом находится синусный сток – место соединения венозных синусов с кровью от мозга, так что попытка открывания “заднего глаза” гарантированно кончится фатально. Лучше мозг вообще не трогать…

Минутка фантазии

Третий глаз – это, конечно, круто, но наши зверообразные предки могли бы позавидовать миксинам. У этих бесчелюстных рыбообразных светочувствительные рецепторы, кроме собственно двух глаз, расположены еще и вокруг клоаки. Вот ежели бы этакую способность да развить бы!.. Это вам не банальный третий глаз на лбу, это ж круговой глаз вокруг… сами понимаете чего. Какие безграничные возможности утеряны! Впрочем, миксины здравствуют и поныне, может, через сотню-другую миллионов лет они еще возьмут реванш?

Зверообразные рептилии имели массу замечательных достижений: прогрессивный мозг, хорошо развитые обоняние и зрение, наверняка более сложное поведение и, вполне вероятно, заботу о потомстве (хотя по-прежнему откладывали яйца). Позднепермская Dvinia prima, даром что рептилия, для неискушенного зрителя выглядит скорее как крыса. Кстати, как обычно бывает в эволюции, сразу несколько групп зверообразных рептилий попытались стать млекопитающими. Представители обширнейшей группы Therocephalia занимались этим миллионы лет, но так и не смогли обогнать наших предков Cynodontia.

Что же случилось? Что вызвало все эти события? Прогресс зверообразных рептилий был инициирован и подстегивался ужасным похолоданием на границе карбона и перми – одним из самых мощных за всю историю планеты, почти достигавшим значений плейстоценовых оледенений. Лавразия и Гондвана сомкнулись в единую Пангею, перекрыв экваториальное течение и нарушив мировые циркуляции тепловых потоков. В центре суперконтинента климат к тому же стал засушливым, зима отделилась от лета. Теплокровность, шерсть и эффективное пережевывание были в такой ситуации более чем уместны. Нам повезло, что похолодание наступило до того, как пресмыкающиеся успели закоснеть в своей рептилийности; трудно представить, как кожные железы и мех могут развиться на основе, скажем, черепах (впрочем, рептилийность черепах, как это ни покажется странным, сама по себе большой вопрос, но это совсем другая история). Слава пермскому оледенению – оно создало все основные предпосылки для появления в будущем млекопитающих.

Но все эти великие достижения не дали тероморфам решающих преимуществ. Дело в том, что их задние конечности оставались на удивление примитивными, они отставали от прогресса передних. Это отражалось и на внешнем виде: зверообразные выглядят как бы вечно присевшими на корточки, тщящимися поднять переднюю часть тела, но бессильно осевшими сзади. Техническое решение не находилось слишком долго, а конкуренты не дремали, тем более что холода закончились и уже к границе перми и триаса на всей планете сменились жарой, сопоставимой с девонской и эоценовой. В самом конце перми по России и Польше враскорячку бегал Archosaurus rossicus, а к концу триаса архозавры нашли способ поставить тело на прямые ноги. Теперь они могли быстро бегать, затрачивая намного меньше энергии, ведь стопы оказались прямо под центром тяжести. Архозавры, правда, в противоположность тероморфам не смогли толком выпрямить передние ноги, но это было не так критично, они просто встали на две задние. А эффективная терморегуляция со способностью согреваться изнутри – да кого она интересует в термоэру, когда и за полярным кругом снег не выпадает? Зверообразные безнадежно проиграли – на долгих 180 миллионов лет…

Глава 15

Звено 10: первые млекопитающие

(триас, 225 млн лет назад)

Граница перми и триаса ознаменовалась великим вымиранием – самым масштабным из тех, что затронули позвоночных, а возможно – вообще самым грандиозным из всех. Масса животных исчезла бесследно. Особенно пострадали морские организмы, но и по суше как Мамай в обнимку с Гитлером прошли – 75 % наземных видов было сметено с лица Земли. Бóльшая часть амфибий и рептилий канули в Лету. Но, как это обычно бывает, освободившееся место поспешили занять выжившие.

Пангея треснула и начала медленно расползаться, высвобождая пути для океанических течений, перемешивающих свои воды и согревающих планету. Заметно потеплело.

Триас – уникальный, чрезвычайно интересный и важный период, полсотни миллионов лет безвременья, когда не было никого “самого главного” – доминирующей группы животных, но появились все, кто играл главные роли на сценах будущего: перепончатокрылые и двукрылые насекомые, акулы более-менее современного типа, хрящевые ганоиды Chondrostei и костистые рыбы Teleostei, примитивные лягушки, черепахи, ихтиозавры, крокодилы, динозавры, птерозавры, птицы и млекопитающие. На первые места было много претендентов, порой весьма неожиданных; например, амфибии Trematosauroidea попытались завоевать море – странно для животных с проницаемой голой кожей; до сих пор непонятно, как им это удавалось, нынешние земноводные в соленой воде жить не могут.

На суше тоже все желающие столбили высвободившиеся места под солнцем. Впрочем, некоторые занимали места под луной: в ночной прохладе наработки зверообразных рептилий весьма пригодились, терапсиды выправили имевшиеся недостатки, и к середине триаса можно говорить уже о млекопитающих. Древнейший известный нам зверь – Adelobasileus cromptoni из Северной Америки (225 млн лет назад). Позже появились и другие подобные создания. Внешне все они напоминали землеройку. К сожалению, мы знаем об этих животных до крайности мало, ведь до нас дошли преимущественно зубы и обломки челюстей. Но мы видим, что зубная и слуховая системы у них были уже явно не рептильными.

Впрочем, черты пресмыкающихся не могли исчезнуть сразу и навсегда. Так, Morganucodon watsoni (205 млн лет назад) имел свободные шейные ребра, не имел эпифизных окостенений длинных костей (что весьма странно) и, скорее всего, был яйцекладущим. Крайне мелкие размеры – 10 см без хвоста при весе 20–30 г – и сравнение с современными однопроходными показывают, что из яиц появлялись, скорее всего, фактически эмбрионы. Этой особенностью первые млекопитающие принципиально отличались от рептилий, у которых вылупившиеся детеныши полностью самостоятельны и отличаются от взрослых лишь размерами и неспособностью к размножению. Очевидно, мизерных и беспомощных детенышей надо старательно выращивать. По всей вероятности, уже в триасе, а то и в перми мамы начали выкармливать малюток молоком. Первоначально молочные железы возникли из потовых, особой разницы между ними у однопроходных нет. У утконоса, ехидны и проехидн нет сосков, а молоко выделяется прямо на животе, на двух молочных полях, фактически потеющих молоком, которое детеныши слизывают.


Обезьяны и все-все-все

Рис. 14. Adelobasileus cromptoni (а) и Morganucodon watsoni (б).


Выкармливание детенышей некими выделениями типично не только для млекопитающих. У рабочих пчел вырабатывается маточное молочко, и если им кормить личинку, то из нее разовьется новая матка, – поистине царская диета (будущих рабочих кормят пергой – смесью пыльцы и меда). У некоторых скатов и акул еще в утробе матери эмбриону в рот впячивается специальный вырост, выделяющий аналог молока. Кожными выделениями кормят молодь рыбки дискусы Symphysodon aequifasciata, а также самцы индийских сомиков-мистов Mystus aor и M. seenghala. В зобе голубей образуется “птичье молоко”, которым они кормят птенчиков в первые дни после вылупления; пингвины и фламинго выделяют аналогичное вещество стенками пищевода и желудка, причем у последних “молоко” розовое – как и сами птицы.

Выкармливание молоком повлияло и на зубы млекопитающих. У рептилий после вылупления зубы успевают смениться несколько раз, а челюсть растет, в итоге положение зубов относительно друг друга получается довольно хаотичным. У млекопитающих до некоторого момента зубы не нужны и даже вредны. У детенышей их нет, число смен сокращается, а когда зубы появляются, челюсти уже имеют более-менее крупные размеры, так что зубы выстраиваются в более постоянном и стандартном порядке, чем у рептилий. Становится возможным точное смыкание-окклюзия, а это опять же повышает эффективность хватания, разрывания и жевания пищи.

Забота о беспомощном потомстве неизбежно должна способствовать и развитию мозга и усложнению поведения.

Уголок занудства

Млекопитающие унаследовали от зверообразных предков и развили целый комплекс особенностей. Теплокровность-гомойотермия и интенсивный обмен веществ обеспечиваются интенсификацией дыхания, что возможно благодаря исчезновению брюшных ребер, появлению диафрагмы, тянущей легкие в новом направлении, и альвеолярному строению этих легких.

Млекопитающие обрели поясницу: поясничные ребра окончательно срослись с поперечными отростками позвонков (нынешний поперечный отросток поясничного позвонка – это большей частью именно реберный отросток, то есть бывшее ребро, а настоящий поперечный если и виден, то в виде маленького пупырышка – добавочного отростка). Дело в том, что диафрагма отделила грудную полость от брюшной, так что дыхательная функция поясничных ребер стала неактуальной. С другой стороны, конечности стали вертикальными и переместились под тело, а из-за этого горизонтальные движения позвоночника грозят неустойчивостью и падением (рептилиям проще – у них ноги враскорячку, да и вообще они лежат на пузе, а не приподняты над землей, так что можно изгибаться вбок сколько угодно, не упадешь). Со звериным положением ног лучше изгибать позвоночник вверх-вниз, но поясничные ребра этому мешают, стучась друг об друга, поэтому млекопитающие от них избавились. Навсегда пропали у млекопитающих брюшные ребра: защищать живот у маленькой и в любом случае уязвимой зверюшки нет смысла, а спасаться гораздо проще, убегая, извиваясь и протискиваясь в щели, чему лишние кости только мешают. Итогом стала вертикальная подвижность поясничного отдела позвоночника, теперь мы можем наклоняться вниз. Без этого гораздо труднее было бы создать поясничный лордоз, прямохождение и собирательство руками в полусогнутом положении. Как бы мы копали картошку и дергали морковку на даче с поясничными и брюшными ребрами?

По той же причине и тому же принципу исчезли и шейные ребра.

Теплую кровь разносит по телу четырехкамерное сердце, а из двух дуг аорты сохраняется только левая (птицы, что характерно, избавились как раз от левой, оставив правую – симметричное и равное по сути решение): это дает экономию сил, ведь в одном сосуде трение крови о стенки вдвое меньше, чем в двух. Полученное тепло сохраняется благодаря шерсти, которая заодно усиливает осязательные способности. Кожа сохраняет и развивает многочисленные кожные железы, в том числе запаховые, сальные, потовые и на их основе – молочные. Конечности совершенствуются, выпрямляются под тело (хотя и не сразу, и не у всех).

Безъядерные эритроциты млекопитающих лучше переносят кислород. Замечательно, что у амфибий эритроциты очень большие, но плотность их невелика, ведь этим задумчивым животным надо не так много кислорода. У рептилий красные кровяные клетки заметно меньше и вытянутее, ведь более бодрый характер подразумевает большие затраты кислорода, а при уменьшении объема площадь уменьшается медленнее, так что в том же объеме крови можно иметь большую площадь мембран и, стало быть, переносить больше кислорода. Птицы и млекопитающие теплокровны, но по-разному решили геометрическую задачу дальнейшего прироста площади клеток. Эритроциты птиц стали еще мельче и еще вытянутее – так их можно уложить плотнее, зазоров остается меньше. Млекопитающие же (начиная с яйцекладущих), кроме уменьшения размера, избавились от ядра и вогнули стороны эритроцитов внутрь, а некоторые – копытные, которым надо много бегать, – еще и вытянули. Такие “плюшки” можно сложить еще плотнее (и плотность действительно растет на порядки), больше кислорода – больше метаболизма, лучше работа мышц и мозга.

Крупный головной мозг с развитыми полушариями конечного мозга, покрытыми новой корой неокортексом, – общая черта всех млекопитающих, от однопроходных до человека. Некортекс в числе прочих взял на себя функцию управления сознательными движениями, импульсы которых пошли по новому корковоспинномозговому пути (соответственно, возникли элементы этого пути – ножки мозга, продольные волокна моста и пирамиды продолговатого мозга). Не обошлось и без “мусора”: вентральный таламус, управлявший движениями у рыб и амфибий, у рептилий, птиц и особенно млекопитающих стал простым переключателем импульсов; по большому счету, он тормозит процесс, без него мы могли бы двигаться быстрее, но коли он уже есть в мозге, то деться никуда не может. Мутация, которая провела бы аксоны коры сразу до мышц без переключения на вентральном таламусе, слишком маловероятна.

Самые первые млекопитающие имели мозг в 3–4 раза больше, чем у тероморф того же размера, заметно бо́льшую улитку внутреннего уха, гораздо более крупные и сложные обонятельные полости (сопоставление данных по современным животным показывает, что в разы увеличилось число обонятельных рецепторов). Изменения сказались и на внешности: у рептилий – и в том числе зверообразных – носовые отверстия на черепе разделены широким костным промежутком. У млекопитающих он сузился до тонюсенькой носовой перегородки, ушедшей внутрь (опять впячивание – универсальный процесс формообразования, проходящий красной нитью через всю эволюцию), так что снаружи осталось непарное носовое отверстие, хотя ноздри на мягком носе сохранились парными, разделенными лишь хрящом. Благодаря этому теперь мы можем вставлять в носовую перегородку кольца, косточки и прочие красивые бирюльки – очевидный прогресс по сравнению с рептилиями.

Высокий обмен веществ у млекопитающих обеспечивается массой приспособлений. Одним из них является диафрагма – куполообразная мышца, разделяющая грудную и брюшную полости. Как ни странно, в эмбриональном состоянии диафрагма образуется из шейных мышц. Если же вдуматься, это логично, ведь легкие – вырост глотки – снизу должны быть ограничены именно мышцами, расположенными рядом с глоткой, то есть именно шейными. Иначе говоря, у нас низ головы провалился аж до живота (другими же словами, немалая часть нашего тела выше диафрагмы – это рыбья голова). Вообще, такое уползание части шеи до середины туловища было возможно, видимо, у созданий, у которых шея была еще существенно недоделанной – на уровне самых первых рептилий или даже амфибий. Так что зачатки диафрагмы, видимо, появились заметно раньше зверей.

Кстати, и строение легких, и уровень обмена у млекопитающих уступают птичьим. Правда, у птиц диафрагма не содержит мышечных волокон, а выполнена лишь соединительной тканью, зато у них есть воздушные мешки – выросты легких, проникающие между органами и даже внутрь костей. Благодаря этому у птиц двойное дыхание: на вдохе воздух из легких уходит в передние воздушные мешки, часть пришедшего снаружи воздуха заполняет сами легкие, а часть со свистом пролетает в задние воздушные мешки; на выдохе из передних мешков использованный воздух таки выдыхается окончательно, а из задних идет в легкие. Таким образом, насыщение крови кислородом происходит непрерывно. Благодаря этому и обмен птиц куда выше звериного; скажем, у колибри даже в состоянии покоя сердце выдает 500 ударов в минуту, а в полете тарабанит со скоростью 1200 ударов в минуту, то есть 20 в секунду! Впрочем, не факт, что птицы были в триасе, а если и появились, то им было далеко до колибри. Но крокодилы, динозавры и птерозавры наверняка уже тогда обладали диафрагмой.

Минутка фантазии

Птицеподобные существа в триасе однозначно имелись. Об этом свидетельствуют, во-первых, следы на песке в Аргентине, оставленные 220–225 млн лет назад, во-вторых, кости протоависа Protoavis texensis из Техаса с датировкой 210 млн лет. Далеко не факт, что эти двуногие животные могли летать, но они с большой вероятностью обладали многими птичьими чертами, в частности теплокровностью и оперением. Если бы они так не увлеклись полетом, то быстро могли бы стать весьма развитыми животными.

Современные птицы имеют очень сложное поведение; например, вороны интеллектом не уступают мелким приматам. Главное и очевидное ограничение – размер мозга. С большой умной головой не очень-то полетаешь. Птицы так и не развили настоящего неокортекса. Зато они компенсировали его отсутствие сложностью мозжечка и полосатого тела, которое у них устроено сложнее, чем у млекопитающих. Полосатое тело – комплекс ядер конечного мозга – отвечает у человека в основном за память и эмоции, а птицы им еще и думают. Это, кстати, весьма любопытно: птицы мыслят, но совсем не тем местом, что мы.

Если бы птицы не стали летать, они могли бы развить свои способности гораздо лучше. Разумные птицы могли бы быть гораздо моральнее людей, так как размышляли бы теми же центрами, что управляют эмоциями. Могли бы поумнеть и вернувшиеся на землю птицы (а такие появлялись уже в меловом периоде, стоит вспомнить патагоптериксов Patagopteryx deferrariisi, гаргантюависов Gargantuavis philoinos, бапторнисов Baptornis advenus и гесперорнисов Hesperornis regalis). Если бы птицам не мешали жить динозавры, например на каком-нибудь уединенном острове, а условия располагали к интеллектуализации, то, глядишь, появилось бы пернатое “парачеловечество”. Как не повезло птицам! Как повезло нам!

Многим млекопитающие могут показаться прямо-таки совершенством. Но не так казалось в триасе. Все помянутые замечательные свойства еще долго не давали млекопитающим преимуществ перед рептилиями. Несколько раньше – как минимум 231 или даже 243 млн лет назад – появились динозавры: двуногие, быстрые, зубастые. Что толку в теплокровности и выкармливании детенышей молоком, если и так тепло, а здоровенный ящер может проглотить тебя целиком? При мелких размерах теплокровные животные становятся заложниками своего обмена веществ: они уже не могут делать ничего, кроме поддержания этого обмена, должны все время есть, есть и есть. Крупных зверообразных динозавры вытеснили, первыми изобретя вертикальные задние ноги, а потом было поздно: в крупный размерный класс путь млекопитающим оказался заказан до конца мезозоя. На долгие миллионы лет воцарилось динозавро-тероподное иго.

Оставалось прятаться, уйти во мрак ночи и микролабиринты лесной подстилки. Жизнь, конечно, на любителя, но тоже не такая плохая. Судя по некоторым местонахождениям, звери и по численности, и по видовому разнообразию частенько существенно опережали динозавров, так что еще вопрос, как правильнее называть мезозой – “веком динозавров” или “веком млекопитающих”. Но жизнь во тьме зарослей диктует свои условия. Зрение первых млекопитающих ухудшилось, зато они стали лучше нюхать. На каждый обонятельный рецептор приходится свой собственный ген, получаемый, впрочем, незамысловатым удвоением одного из предыдущих с некоторой его модификацией. В итоге из примерно сотни рецепторов, имевшихся у предков тероморф, получилось более тысячи у особо чувствительных современных зверей, известные рекорды принадлежат крысе – 1284 и мыши – 1194 (Kishida, 2008). Между прочим, это заметный процент генома! Многие приматы имеют примерно пятьсот рабочих генов (плюс еще триста нерабочих) и, соответственно, обонятельных рецепторов, но предки человека простились со значительной их частью, сохранив лишь 387 действующих штук (Fleischer et al., 2009). Хуже человека запахи чувствует только утконос (262 рецептора) и китообразные, у которых почти все или даже все обонятельные гены поломаны. Но свято место пусто не бывает даже в геноме: упрощение обоняния у приматов компенсировалось совершенствованием зрения, которое у нас лучше, чем у любых других зверей. Впрочем, в триасе до приматов было еще далеко…

Глава 16

Звено 11: живорождение и плацента

(юра, 160 млн лет назад)

Млекопитающие триаса и первой половины юрского периода были большей частью яйцекладущими. Живыми примерами служат однопроходные – проехидны, ехидны и утконосы. Но яйца по-своему уязвимы. Неспроста в самых разных группах животных возникает живорождение. Среди онихофор, насекомых, акул, костных рыб, земноводных и рептилий полно примеров такого способа размножения. Чем млекопитающие хуже? И вот в юрском периоде они тоже научились вынашивать детенышей. Собственно, поначалу разница была небольшой: просто раньше сначала самка откладывала яйцо, а после из него вылуплялся малыш, теперь же сначала детеныш вылуплялся, а потом рождался. Такой вариант называется яйцеживорождением, он типичен, например, для части скорпионов и гамазовых клещей, некоторых гадюк и ужей, морских змей и многих ящериц.

Но если вылупление происходит еще в организме матери, то зачем нужна скорлупа? Почто тратить дефицитный кальций? Лучше внешнюю оболочку – трофобласт, из коей раньше делалась скорлупа, сделать проницаемой и питать через нее растущий плод (до сих пор у однопроходных это обеспечивал желток яйца, но много ли запасешь его в яйце размером в сантиметр, где еще и детеныш поместиться должен?). И тут возникает настоящее живорождение. Для млекопитающих это уровень сумчатых. Однако когда плод вырастает чуть побольше, трофобласт уже не может в достаточной мере снабжать его питанием, ведь объем плода растет в кубической степени, а площадь трофобласта – в квадратной. Чуть вырос – надо рожать, пока не задохнулся, поэтому новорожденный, скажем, кенгуренок – фактически эмбрион. Он только и может, что проползти, извиваясь, по шерсти матери и присосаться к соску. Понятно, что смертность от всяческих невзгод такого недоделанного потомства будет очень большой. Конечно, мать не тратит слишком много энергии для его вынашивания, но все равно нехорошо, когда уже родившийся потомок гибнет.

Чтобы повысить жизнеспособность детенышей, хорошо бы их подращивать до мало-мальски приличного состояния еще в утробе матери. А для этого надо подкармливать эмбрион, поставлять ему вещества и энергию. Трофобласт с этим явно не справляется. Как увеличить площадь, чтобы она догнала скорость увеличения объема? Нарастить на ней ворсинки! И они появляются, так что трофобласт становится хорионом – ворсинчатой оболочкой. Ворсинки контактируют с кровеносной системой матери, получая из нее все нужное. Если же капилляры плода и матери сплетаются так, что уже и не разберешь, где чей сосуд, то это уже можно назвать плацентой. Появление плаценты – уникального органа, сформированного двумя организмами, матери и детеныша, – стало величайшим достижением, позволившим рожать достаточно развитых детенышей, что снизило их смертность и стало залогом будущего прогресса.

Понятно, что такое замечательное решение не могло возникнуть однажды. Плацента в том или ином виде имеется у онихофор Onychophora (животных, похожих на червей, появившихся еще в конце докембрия – венде), акул-молотов Sphyrnidae, усатых собачьих акул Leptochariidae и многих других хрящевых, ночных ящериц Xantusiidae и сцинков Tiliqua rugosa. Даже растения имеют аналог плаценты! Среди сумчатых бандикуты Peramelemorphia тоже обзавелись хориоаллантоисной плацентой, но очень маленькой, почти игрушечной, причем безворсинчатой, так что их детеныши несильно обгоняют в развитии других сумчатых сверстников.


Обезьяны и все-все-все

Рис. 15. Схема образования плаценты.


Но плацентарные млекопитающие превзошли всех. Они даже разработали несколько вариантов ворсинчатой плаценты, каждый из которых имеет свои особенности и позволяет осваивать разные стратегии размножения, а через это – самые разные стили жизни. У приматов один из самых жестких для матери вариантов – гемохориальная плацента, в которой ворсинка плода с капилляром пробивает насквозь капилляр матери и омывается ее кровью со всех сторон. Это обеспечивает ускоренное питание дитяти, но гарантирует обильные кровопотери роженицы, ведь вся плацента (а это, напомним, наполовину – слизистая матки) целиком отторгается. Соответственно, детеныш-ребенок оказывается хорошо подрощенным (что, впрочем, не означает какой-либо самостоятельности), а мать должна долго восстанавливать свое основательно подорванное здоровье.

Кстати, для формирования плаценты и зародышевых оболочек должна произойти имплантация – погружение бластоцисты (одной из ранних зародышевых стадий дитятки) в слизистую матки. И тут дремучесть пращуров опять настигает нас. У рыб закон развития един для всех икринок независимо от оплодотворения, ведь оно же внешнее. И организм современных женщин продолжает штамповать яйцеклетки по штуке в месяц независимо ни от чего, причем даже если они не оплодотворяются, слизистая матки подготавливается к их имплантации, а потом они расточительно отторгаются вместе с этой слизистой, создавая массу проблем, – система, очевидно, дурацкая, но, как и многие подобные, возникшая как побочный результат незамысловатости жизненных нужд и реалий далеких предков.

Но это еще не все проблемы, ведь с точки зрения матери растущий внутри нее плод – паразит, мало того что высасывающий ценные вещества, кислород и дефицитный кальций, так еще и гадящий продуктами своего обмена. Ко всему прочему плод имеет половину чужой – отцовской – генетики, у него, например, может быть совсем другая группа крови. Конечно, иммунная система героически пытается его истребить и отторгнуть. Однако размножение важнее личного блага, так что материнская иммунная система должна быть подавлена, но и совсем выключать ее нельзя, ведь мать и так ослаблена – все лучшее детям. Для избирательной регуляции собственной защиты – ослабления около плода – была разработана целая хитроумная система. И один из ключевых элементов этой системы – ген-подавитель иммунитета в плаценте – был заимствован млекопитающими у вирусов (Kjeldbjerg et al., 2008). Как говорят в народе: “С паршивого вируса – хоть гена клок”. Вирусы – мастера лицемерия, ведь их существование (жизнь ли это – еще вопрос) напрямую зависит от умения обманывать рецепторы клеток хозяина и прикидываться своим. Но эволюция, как Читатель уже знает, любит причудливые кульбиты. Злобный патоген дал нам возможность растить и рожать деток, а не эмбрионы. Иначе как бы выглядели классические изображения “мать и дитя” – страшно подумать…

Казусы анатомии настигают нас и после рождения. Ведь нить жизни – пупочный канатик – связует нас с матерью через живот. У родившегося ребенка на этом месте зарубцовывается шрам – пупок. А проходит он не где-нибудь, а в весьма ответственном месте – через белую линию живота, мощный сухожильный апоневроз, на котором сходятся все мышцы брюшного пресса. Ведь брюшные ребра давно исчезли, теперь напору внутренних органов изнутри и напастям снаружи противостоят только четыре слоя мышц. Стоит нам перенапрячь свой пресс, сдавливаемому кишечнику некуда деваться, и он устремляется в единственном возможном направлении – в пупок, выпячиваясь в виде грыжи.

Строго говоря, мы не знаем, когда появились первые плацентарные звери, ведь сама плацента, понятное дело, не сохраняется, а определить тип выращивания детенышей по зубам – задачка покруче, чем решал Шерлок Холмс. Но палеонтологи всю жизнь только такие задачки и решают. Поэтому Juramaia sinensis, жившая в Китае 160 млн лет назад, признана именно древнейшим плацентарным млекопитающим (Luo et al., 2011).

Юрский период был в целом спокойным временем: пятьдесят миллионов лет субтропического климата, почти одинакового по всей планете. Флора и фауна менялись не спеша. Впрочем, нельзя сказать, что это был застой. Именно в юре появились осетры, червяги, саламандры и лягушки, многие группы морских рептилий и динозавров, археоптериксы и, вероятно, другие птицеподобные создания. Именно в юре вымерли последние зверозубые рептилии. Многие из них достигли, кстати, поразительного сходства с современными млекопитающими, блестящими примерами чего могут служить Kayentatherium wellesi и Bienotherium yunnanense, чьи зубы были специализированы до крайности. Группа докодонтов Docodonta вообще непонятно к кому относится – рептилиям или зверям. И дело не в плохой сохранности, а именно в переходности черт. Особенно привлекают внимание Castorocauda lutrasimilis – аналог бобра – и Haldanodon exspectatus – копия выхухоли. Совсем настоящие млекопитающие (хотя и не плацентарные) тоже были разнообразны, чего стоит, например, китайский Volaticotherium antiquum – планирующий наподобие летяги зверь.

Весь этот праздник жизни вершился на фоне и в зарослях голосеменных растений – хвойных, гинкговых, беннеттитов и саговников. Но эти деревья были не банальными елками, а весьма продвинутыми. В конце юры появляются гнетовые Dinophyton и Eoantha, беннеттиты Manlaia и Baisia. Их шишки имели вид цветов, привлекавших насекомых-опылителей. Но раз “цветы” поддельные, то логично, что и “бабочки” тоже ненастоящие. И действительно, в роли бабочек выступали сетчатокрылые Kalligrammatidae и скорпионницы Aneuretopsychidae. Впрочем, в начале юрского периода появились и настоящие бабочки – Archaeolepis mane порхала по Англии уже 190 млн лет назад, – но еще долго они не занимали ведущего положения в экологической нише опылителей. Коллективных насекомых, вероятно, еще не было.

Есть, правда, намеки – в виде специфической пыльцы и древесины, что местами уже возникли и первые настоящие покрытосеменные (некоторые палеоботаники доказывают, что цветковые были уже в среднем триасе: Hochuli et Feist-Burkhardt, 2013), но даже если это и подтвердится, широкого распространения они точно не получили. По голосеменным же скакать по крайней мере скучно, а порой и нелегко: толстые прямые ветки расходятся однообразными мутовками и могут образовывать довольно густую жесткую сеть. На земле же травянистых растений в юрском периоде фактически не было, их суррогатом выступали низкие папоротники, хвощи и плауны – в них трудно прятаться, а сами они малопитательны. Листовой опад был беден, наверняка немного было живущих в нем червей и насекомых – лучшей пищи для мелких теплокровных зверьков. Посему, при всем разнообразии юрских млекопитающих, они никак не могли реализовать свой потенциал в полной мере. Но время шло, приближалась революция…

Глава 17

Звено 12: древесность, прыгучесть, хватательная кисть

(средний и позднейший мел, 115–108 и 65 млн лет назад)

Середина мелового периода ознаменовалась радикальной сменой флоры и фауны насекомых. Растения все эти миллионы лет тоже не скучали, а изобретали цветок, привлекающий опылителей красивыми лепестками и вкусным нектаром, двойное оплодотворение, обеспечивающее новое поколение питательными веществами эндосперма, а также околоплодник, который, будучи съеден или прилепившись к шерсти и перьям, гарантирует распространение семян. Все эти замечательные свойства в комплекте сложились у покрытосеменных, или цветковых, растений к середине мела. Примерно 115–108 млн лет назад грянула революция: цветковые захватили планету. Параллельно появились и новые насекомые – бабочки, мухи, термиты, муравьи, пчелы и наездники (некоторые из них возникли раньше, но развернуться в полный рост смогли только сейчас). Как при любой революции, не обошлось без жертв: вымерли многие и многие голосеменные и связанные с ними насекомые.

Кстати, о плодах и термитах…

Попытки изобрести цветок и плод предпринимались разными растениями еще в юрском периоде. Тогда цвели “цветы”, сделанные из шишек и их чешуй беннеттитов и гнетовых. Их опыляли юрские аналоги бабочек типа сетчатокрылой Kalligramma haeckeli и скорпионницы Pseudopolycentropus latipennis. Но это были неправильные “цветы” и неправильные “бабочки”, и они не делали совсем никакого меда. Наверное, на их основе тоже можно было развить что-то большее, но, как обычно бывает в эволюции, если какой-то комплекс сложился не полностью, то успех вовсе не обеспечен. Первые попытки вырваться из мира шишек потерпели неудачу.

Появление цветковых растений покрыто завесой тайны. Есть несколько гипотез их происхождения, а остатки пыльцы интерпретируются порой противоречиво, но ясно, что, хотя они могли появиться еще в юрском или даже триасовом периоде, первые надежные их останки датируются раннемеловым временем 135–140 млн лет назад, а расцвета цветковые достигли только в середине мела, около 115 млн лет назад. Показательно, что цветковые появляются в отложениях сразу в большом количестве и разнообразии, практически невозможно назвать самого древнего представителя. Это говорит о том, что до середины мела цветковые уже прошли немалый эволюционный путь, только мы об этом знаем пока недостаточно.

Цветковые отличаются от своих предков массой особенностей, но главные из них взаимосвязаны размножением: это цветок, закрытая со всех сторон тканями завязи семяпочка, образующийся из этих тканей околоплодник и двойное оплодотворение, когда яйцеклетка, оплодотворенная одним спермием, становится зародышем, а центральная клетка, оплодотворенная другим, превращается в питательный эндосперм – фактически брата-близнеца, предназначенного для съедения зародышем (для пущей тучности эндосперм обычно триплоидный, а иногда даже полиплоидный: больше генов – больше синтеза белков – больше еды новому поколению). Завязь условно можно сопоставить с маткой у млекопитающих: она заботливо окружает и защищает эмбрион. Пыльцевое зерно не просто падает сверху на яйцеклетку, а должно прорастать сквозь столбик пестика: это уменьшает риск оплодотворения не тем видом, от которого заведомо не будет проку, и поражения бактериями или грибами.

Семя, окруженное околоплодником, составляет настоящий плод. Получающийся из завязи околоплодник предназначен для распространения семян, очень часто с расчетом на то, что животное съест мякоть, но не сможет разгрызть семя, содержащее зародыш, ради которого все и затевается. Ради защиты дитятки семя, во-первых, окружено очень жесткой семенной кожурой; во-вторых, может быть ядовитым; в-третьих, растения отдают на откуп животным сахара в мякоти, сдабривая их ароматами (для наглядности можно вспомнить сливу). Животные с точки зрения растений делятся на хороших – которые едят околоплодник, но не уничтожают семена – и плохих – кои старательно разгрызают именно семена, добираясь до самого питательного и разрушая самое ценное. Приматы в целом хорошие, так как у них обычно не хватает силы жевательных мышц и прочности зубов, чтобы разгрызть семенную кожуру. Показательно, что в тропических лесах от 25 до 40 % семян распространяют именно приматы (например: Chapman, 1995); почти все остальные проценты приходятся на птиц. Лучший пример плохих животных – грызуны, чьи резцы заточены именно на разгрызание твердых оболочек. Впрочем, среди приматов тоже встречаются злодеи: например, некоторые шимпанзе умеют колоть орехи кола камнями. Если вы, Уважаемый Читатель, съедая яблоко, оставляете сердцевину нетронутой, вы – хороший примат. Я же, признаюсь, примат зловредный…

Некоторые цветковые растения, впрочем, умудрились даже семеноядность зверей и птиц поставить себе на службу. Злаки рассчитаны на то, что их будут есть, но зерна прикреплены на стебель непрочно; пока животное съедает несколько зернышек, оно стряхивает на землю еще с десяток. Правда, коварные люди селекцией вывели плохо осыпающиеся сорта злаков, но и это пошло им на пользу – ведь с помощью земледельцев эти растения захватили такие площади, какие и не снились их диким предкам.

Эволюция цветковых растений подстегнула эволюцию насекомых. Некоторые из тех, что прочно ассоциируются у нас с цветами, были и раньше, например, древнейшая бабочка Archaeolepis mane летала по раннеюрской Англии уже 190 млн лет назад. Но подлинный бум начался именно с появлением цветов и нектара. Бабочки создали спрос на нектар, а нектар сделал из грызущих молей приличных бабочек. И понеслось… Древнейшие пчелы Melittosphex burmensis навеки завязли в бирманских янтарях 92–100 млн лет назад, а муравьи Palaeomyrmex arnoldii и Sphecomyrma freyi – 80 млн лет назад. Мир преобразился, наполнился цветами, жужжанием и порханием, благоуханием и вкусными плодами. С этого момента барельефные натюрморты в лучших традициях сталинского барокко будут неотступно преследовать нас; весь долгий путь к человеку будет усыпан огрызками.

Напрямую не связанные именно с цветковыми, но участвовавшие в среднемеловой революции термиты появились, исходя из филогенетической логики, еще в конце юрского периода, а древнейший известный термит грыз древесину уже в раннем мелу, 137 млн лет назад (Engel et al., 2009). Трудно сказать, насколько существенным звеном в экосистеме были те термиты, но точно известно, что их далекие потомки стали важным блюдом для австралопитеков, а прочность их домов послужила одним из стимулов развития орудийной деятельности.

Млекопитающие получили от этой революции все, чего им не хватало: нектар, сочные плоды, толпы восхитительных насекомых да еще отличное убежище в придачу, – чего еще желать?! И звери радостно бросились обживать новый роскошный ресторан-гостиницу. Как весело скакать по раскидистым ветвям, выглядывая из густой листвы в поисках вкусняшек и скрываясь от злобных динозавров! Как уютно шуршать в плотной траве и опаде – здесь не страшны кровожадные тероподы! Неспроста во второй половине мела число млекопитающих быстро росло и превзошло число динозавров.

Трудно сказать, какие конкретно из десятков меловых млекопитающих стали в итоге приматами, но, учитывая данные по древнейшим приматоморфам, можно очертить их облик довольно внятно. Это были древесные животные размером с мышь, причем умеющие не просто лазать, но и неплохо прыгать. Питались они всем подряд. И, судя по палеоценовым находкам, были они многочисленны.


Обезьяны и все-все-все

Рис. 16. Реконструкция Purgatorius.


Почти живым воплощением этого Великого Предка является Purgatorius – древнейший предок приматов, известный, правда, лишь по одному зубу из самого верха мела Монтаны. Зато из самых низов палеоцена тех же местонахождений с аналогичными датировками 65 млн лет назад имеются уже десятки находок пургаториусов, включая таранные и пяточные кости ног (Chester et al., 2012). Древесный образ жизни и всеядность меловых предков приматов определили всю их последующую эволюцию. Благодаря этим особенностям у приматов слабое обоняние, хорошее зрение, отличная координация, хватательная кисть и сложное поведение – и все это легло в основу главных человеческих качеств. Об этом еще пойдет речь впереди, здесь же упомянем лишь некоторое наследие, доставшееся нам с позднемеловых времен.

Жизнь на ветвях предполагает умение за эти ветви хвататься – коготками не уцепишься за тонкий прутик при лихих прыжках. Да и детенышам приходится цепко держаться за шерсть матери, чтобы не рухнуть вниз. Для этого нужны руки и ноги, хорошо поворачивающиеся кистями и стопами внутрь, а также цепкие пальцы. Казалось бы, мы давно слезли с деревьев, но посмотрите внимательно на себя: согнуть кисть в сторону мизинца можно гораздо дальше, чем в сторону большого пальца. Стопы же легко обратить друг к другу (речь не о “носки вместе – носки врозь”, а именно о повороте нижней стороны стопы), но почти нереально вывернуть наружу. Кроме того, сжать пальцы можно с гораздо большей силой, чем разжать. Если взять один свой кулак в другой и одну руку усиленно сжимать, а другую разжимать (для этого, однако, сначала надо напрячь мозг), то сжимающая победит. Опять же – бицепс, сгибающий руку в локте, сильнее трицепса, разгибающего ее (у четвероногих наземных вообще-то прямо наоборот: ведь им надо держаться на выпрямленных передних лапах, но усиленно сгибать их нет большого прока). Смысл ясен: нам надо держаться за ветки и маму, но усиленно разжимать пальцы почти никогда не требуется. По той же причине в руке намного лучше развиты пронаторы – мышцы, поворачивающие кисть ладонью внутрь и назад (кости предплечья при этом будут перекрещены), нежели супинаторы, разворачивающие ладонь вперед. Если полностью расслабить руку, она все же повернется ладонью назад, рука немножко согнется, а пальцы слегка скрючатся, несмотря на то, что “анатомически правильное” положение совсем иное: локтевая и лучевая кости предплечья должны бы быть параллельны, а пальцы выпрямлены. Собственно, в совсем-совсем расслабленном положении рука может находиться либо в глубокой фазе сна, либо у вусмерть пьяного, либо у действительно неживого человека. Благодаря древесной жизни предков, загребущие движения удаются нам гораздо лучше, чем щедро раздающие.

Уголок занудства

Ограничение поворота кисти в сторону мизинца обеспечивается упиранием гороховидной кости запястья в шиловидный отросток локтевой кости; в сторону большого пальца – кости-трапеции в шиловидный отросток лучевой кости. Шиловидный отросток локтевой кости гораздо меньше, чем лучевой, что и позволяет сильнее сгибать кисть в сторону мизинца.

Ограничение поворота стопы вбок (в сторону мизинца) обеспечивается латеральной (наружной) лодыжкой – нижним концом малой берцовой кости, внутрь (в сторону большого пальца) – медиальной (внутренней) лодыжкой – выростом на нижнем конце большой берцовой кости. Латеральная лодыжка торчит вниз гораздо дальше, чем медиальная, поэтому заворот стопы внутрь удается лучше, чем разворот наружу: ноги тоже загребают, они тоже должны обхватывать ветки.

Мышцы-сгибатели пальцев и запястья крепятся большей частью к медиальному надмыщелку плечевой кости; мышцы-разгибатели – к латеральному. Из-за большей актуальности сгибателей медиальный надмыщелок намного крупнее латерального.

Портняжная мышца начинается от верхней передней подвздошной ости и заканчивается на большеберцовой бугристости. Она обеспечивает замечательнейшее движение: отводит и вращает бедро кнаружи, но сгибает ногу в колене и поворачивает голень внутрь. Иначе говоря – это универсальный обхватыватель мам детенышами и стволов взрослыми.

Ясно, что сгибатели в руке важнее разгибателей: если мы повредим первые, мы не сможем лазать по деревьям, если же вторые – мы всегда разожмем пальцы, просто расслабив сгибатели. Поэтому сухожилия разгибателей идут прямо под кожей по тыльной стороне запястья и кисти – их не жалко. А вот сухожилия сгибателей надо беречь! Для усиленной их защиты они проходят через запястный канал, ограниченный со стороны большого пальца костью-трапецией, а с обратной – крючковидной костью. Места же там весьма немного, тем более параллельно идут артерии, вены и нервы. Посему все богатство заключено в одну на все “жилы” фасциальную оболочку. К сожалению, такая система может давать сбой. Когда, скажем, человек радостно щекочет пушистое пузико любимого котика (“Ути-пути, мой хорошенький!..”), гордый зверь может не оценить такой фамильярности. А когти он не чистит, так что, когда котик пропарывает запястный канал (“Ах ты ж, проклятая тварь!..”), злобные микробы устремляются по единому каналу к кончикам сразу всех пальцев (в кисти фасциальная оболочка разветвляется подобно перчатке). А там – в тупике, тепле и комфорте – бактерии начинают бурно размножаться, рука пухнет, краснеет, синеет, чернеет, так что дело может дойти вплоть до ампутации по локоть. Жаль, что эволюция не предусмотрела щекотание пушистых пузиков…


Древесные животные должны отлично оценивать расстояние до объектов, ведь прыгать надо очень точно. Для этого возникает бинокулярное зрение, когда оба глаза повернуты в одну сторону, а поля зрения двух глаз в значительной степени перекрываются. У наземных животных, существующих фактически в двухмерном мире, особых проблем с этим нет. Каждый их глаз, расположенный сбоку головы, показывает плоскую, зато очень широкую картинку, суммарный обзор составляет иногда чуть ли не 360°, а если поля зрения и пересекаются, то где-то далеко перед носом и далеко за ушами, на расстоянии, на котором животное может особо уже и не видеть. Монокулярное зрение не позволяет точно оценить расстояние (чтобы в этом убедиться, достаточно закрыть один глаз, крутануть головой – чтобы мозг забыл относительные размеры предметов – и попробовать уверенно дотронуться до чего-нибудь пальцем), но так ли это важно, скажем, корове? Расстояние до хищника можно примерно прикинуть по размеру, а трава никуда не убежит. Зато можно не вращать глазами, что сказывается и на внешнем виде. Например, глаза лошади или зайца очень выразительные за счет того, что весь видимый глаз занимает радужка и зрачок. Если у лошади виден белок, это значит, что либо она очень испугана, либо у нее серьезный дефект. На качающихся же ветвях надо много двигать глазами, у гляделок должен быть запас подвижности, склера – тот самый белок – становится видна.

Бинокулярное зрение возникает либо у хищников, либо у древесных прыгающих животных. Первым надо точно оценивать расстояние прыжка до добычи, вторым – до ветки. Именно ко вторым относятся приматы. Кстати, показательно, что полная бинокулярность возникла далеко не у первых приматоморфов и даже не у полуобезьян уровня лемуров, а только у собственно обезьян. Люди же спустились с деревьев на плоскость, но полученные в древесных кронах адаптации получили новое назначение. Очень удобно, что теперь мы можем заниматься трудовой деятельностью – скажем, колоть отщепы или водить автомобиль, – не особо рискуя отшибить себе палец или врезаться в едущую впереди машину.

Для скакания по ветвям нужна еще и отличная координация. В частности, в лобной доле человека хорошо развита премоторная зона, отвечающая в числе прочего за согласование поворота глаз и шеи в разные стороны. То есть если непрерывно смотреть на некую точку и вертеть головой, то шейные мышцы будут двигать голову, скажем, влево, а мышцы глаза – поворачивать глазное яблоко вправо. Причем в зависимости от расстояния до объекта скорость движения глаз и шеи будет неодинаковой. А объект может еще к тому же двигаться сам по себе. Эта способность концентрировать взгляд была до крайности актуальна для прыгающих по качающимся веткам приматов, ведь надо очень точно прицелиться, и делать это надо быстро. На конце подгибающейся ветки долго думать вообще вредно, ведь она может согнуться или даже обломиться; коли уж собрался прыгать, необходимо делать это уверенно и бесповоротно. Не потому ли многих людей качает вперед на краю пропасти? У некоторых возникает внутреннее желание сигануть вниз, когда они взглядывают с большой высоты, – решительные предки говорят в нас.

Есть и нехорошие последствия древесной жизни: она сделала нас неряшливыми. Зачем следить за судьбой отходов, если они падают куда-то вниз, в неведомые недра леса, и никогда не возвращаются? Съел, швырнул, нагадил и забыл, что мне за дело до соседей на первом этаже? К сожалению, бесконечно далеки мы от кошек и барсуков…

Древесные предки живут в нас. Показательно, что при опасности человек не зарывается в землю, не прячется в палой листве, не ныряет в воду. Половина охотничьих баек – про то, как охотник, встретившись в лесу с медведем/кабаном/волком, запрыгнул на высоченную (или не очень) елку, без памяти взлетел на ее верхушку, а потом не знал, как спуститься. Так же инстинктивно люди – не хуже мартышки – вскакивают на деревья от злых собак, перепрыгивают через двухметровые заборы, спасаясь от преследователей, и совершают прочие подобные чудеса ловкости. Что характерно, человек обычно при этом сам не знает, как туда залез – “без памяти”.

Столь же показательно устройство наших автобусов, троллейбусов и трамваев: они оборудованы искусственными ветками над головой, за которые люди хватаются, задрав руки вверх. Возникни разумные существа из собак, разве стали бы они делать столь нелепые поручни? Скорее уж, устлали бы пол уютными ковриками, на которых можно устойчиво улечься. А вторые полки в поездах? А ведь некоторые персонажи умудряются ехать и на третьих багажных…


Всеядная диета предков приматов сделала нас удивительно равнодушными к составу и качеству пищи. То есть, конечно, каждый склонен придуриваться по-своему, но в целом человек по-настоящему всеяден. Столь беспринципных пожирателей всего подряд еще поискать: разве что гиены, шакалы да свиньи могут составить нам достойную компанию. Но два вида пищи, бесспорно, преобладали в первобытной диете: насекомые и фрукты.

Фрукты даже на экваторе зреют не каждый день и не на каждом дереве, причем на них находится много желающих, которых надо обогнать; насекомых требуется еще отыскать и выковырять из щелей, а некоторые из них невкусны или даже опасны. Для такого типа питания необходимо обладать острым умом и отличной памятью, в том числе пространственной, причем трехмерной – дело ведь происходит в лесных кронах. Трудность добывания пищи поселила в наших пращурах неискоренимое любопытство. Любознательность – визитная карточка приматов, человек развил ее до небывалых высот, но как бы он сделал это без предка-пургаториуса? Поиск букашек меловым зверьком гарантировал то, что Уважаемый Читатель дочитал до этого места и горит желанием узнать, что же было дальше…

Глава 18

Звено 13: потеря синтеза витамина C, обретение носа и возвращение красного цвета

(палеоген, 55–30 млн лет назад)

Граница мела и палеогена ознаменовалась исчезновением динозавров. На самом деле вымирание коснулось в основном морских организмов, а на суше пострадали еще лишь птерозавры да энанциорнисы. Многие насекомые и растения вообще не заметили какой-либо разницы. Опустим сорок сороков гипотез мелового вымирания, упомянем лишь, что популярная “астероидная” версия, как бы ни была она эффектна, вряд ли что-то объясняет; ее упоминание лишь вызывает либо веселый заливистый смех, либо скрежет зубовный и рефлекторное – по И. П. Павлову – выделение яда у профессиональных палеонтологов. То есть астероид был, но он не стал причиной катастрофы. Метеориты падали и до, и после. Для нашей же истории довольно и вымирания динозавров. Ведь уже 180 млн лет они были доминантами среди позвоночных – по размерам тела и положению в пищевой цепи. И вот млекопитающие получили свой шанс и смогли, наконец, в полной мере реализовать свои замечательные способности. Правда, в палеоцене и даже эоцене подавляющее множество зверей было по-прежнему мелкими крысоподобными существами, а верх пищевой цепочки занимали гигантские бегающие хищные птицы вроде Gastornis и многочисленные наземные крокодилы – как мезозухии Mesosuchia, так и эузухии Eusuchia. Однако уже в палеоцене появились и крупные всеядные млекопитающие типа тениодонтов Taeniodonta и пантодонтов Pantodonta – существа, немыслимые для мезозоя.

В эоцене мир заполнили тропические леса. Сколь бы странным это кому-то ни показалось, доселе мир не знал такого биома. В мезозое мир был теплым, но все же не тропическим. Лишь в эоцене континенты переползли в нужное положение, циркуляция воздушных и водных потоков поменялась и появилась климатическая зональность, а с ней и тропики (Еськов, 2007). Собственно, именно эти климатические и биотические перемены позволили приматам окончательно стать приматами (до этого момента правильнее говорить все же о “приматоморфах”). Даже вымирание динозавров было далеко не столь важным. Высокие деревья с густой листвой и смыкающимися кронами, обилие насекомых и фруктов – вот то, что создало из пургаториусов и плезиадаписовых – приматов.

Тема фруктов не отпускает нас. На них рады налегать любые приматы. Но особенно они пришлись по вкусу нашим предкам в начале эоцена, около 55 млн лет назад или несколько раньше. Такая любовь, впрочем, наградила нас очередной неприятностью. Вообще-то почти все млекопитающие, включая лемуров, умеют сами синтезировать в собственном организме витамин C. Но во фруктах его содержится огромное количество, тем более что приматы ели плоды прямо с ветки – свежее некуда. Когда возникала мутация, нарушающая синтез аскорбиновой кислоты, то ничего страшного не происходило: ценное вещество в избытке поступало в организм с пищей. Стабилизирующий отбор перестал работать, высшие приматы – начиная с долгопятов – потеряли ценную способность, да для них она и не была ценной (Ohta et Nishikimi, 1999). А вот когда люди выбрались за пределы тропической и субтропической зоны, начались проблемы. Хуже всех было, конечно, морякам дохолодильниковой эры. При недостатке витамина C развивается цинга – смертельное с некоторой стадии нарушение обмена веществ. Может, генные инженеры поправят положение?.. Кстати, приматы в своей беде не одиноки. Среди грызунов тоже есть любители фруктов, разучившиеся синтезировать C, например морские свинки; у них, впрочем, конкретная мутация была иная (Nishikimi et al., 1992).

Любовь к фруктам живет в нас и поныне. Сладкое любят все люди, хотя не все в этом признаются. Главное тут, конечно, сахар. Правда, во фруктах не совсем те углеводы, что в свекле, так что современные любители сладкого чая или булочек с сахарной пудрой рискуют заработать диабет или ожирение. Предкам столько легко усваиваемых углеводов зараз никогда не доставалось. До сих пор организм рассуждает как в старые голодные времена: “Всё, что есть, надо съесть”, а что съедено лишнего, будет срочно запасено в виде жира на черный день. И тут встает неожиданная проблема современного цивилизованного общества: черный день никак не наступает! Круглосуточные супермаркеты завалены едой, холодильник до потолка вмещает явно больше, чем желудок. Свободное время в сочетании с неестественной жизнью, вызывающей постоянный стресс, подстегивают жировую клетчатку к росту – а вдруг завтра будет плохо? Но завтра опять магазин открыт, холодильник полон, а электрическая лампочка позволяет не спать и найти холодильник в ночи… Впрочем, в палеогене до холодильников было далеко.


Примерно в это же время – с эоценовых долгопятоподобных предков – начинается эра носа. У полуобезьян нос кожистый, с мощной хрящевой основой, срощенный с верхней губой. У долгопятов и всех высших приматов нос отделен от верхней губы. Редукция ли обоняния тому виной или потребности общения, а скорее всего – сочетание того и другого, но нос наконец отлепился ото рта. Нос – это центр лица, можно сказать, лицо лица! Неспроста карикатуристы обращают именно на него основное внимание. Собственно, главным итогом появления носа стала мимика, ведь мышцы верхней губы получили возможность работать по новым осям и с большей свободой. Рот человека окружен целым веером мышц, тянущих губы во всех возможных направлениях и обеспечивающих подавляющую часть наших мимических способностей. Мышцы глаз намного беднее в своих возможностях, а мышцы носа и ушей вообще пора заносить в Красную Книгу.

Уголок занудства

Веер мышц рта (начиная от центра снизу): подбородочная мышца, мышца, опускающая нижнюю губу, мышца, опускающая угол рта, мышца смеха, щечная мышца, мышца, поднимающая угол рта, большая скуловая мышца, малая скуловая мышца, мышца, поднимающая верхнюю губу, мышца, поднимающая верхнюю губу и крыло носа. Вокруг все это окружено круговой мышцей рта.

Рептилии и птицы имеют четыре вида светочувствительных белков-опсинов в колбочках сетчатки глаза: они видят ближний ультрафиолет, синий, зеленый и красный цвета. Предки млекопитающих миллионы лет прятались от динозавров в лесной подстилке и выползали из листьев только по ночам. В темноте да в валежнике не очень-то поглядишь. Поэтому древнейшие звери потеряли “ультрафиолетовые” и “красные” колбочки, сохранив только “синие” (и тех немного) и “зеленые” (утконос утратил только один вид колбочек, но он и с ними почти слепой). Большинство зверей различают только синий и зеленый, а главными рецепторами становятся палочки, обеспечивающие сумеречное нецветное зрение. Строго говоря – и зачем видеть красный? Цветочки, что ли, разглядывать? Трава – она и есть трава… Кстати, это приводит к любопытному казусу: защитная окраска оленят – ярко-оранжевая с белыми пятнышками. Человек без особых проблем увидит олененка на зеленой траве, но для волка это неразрешимая задача – оранжевый и зеленый для него одинаковы, а пахнуть олененок отказывается. Большинство зверей – дальтоники, не различающие красный и зеленый.

А мы можем гордиться своими предками: первые обезьяны, перешедшие порядка 30–40 млн лет назад к дневному образу жизни и преимущественной фруктоядности (и тут фрукты!), вновь приобрели способность видеть красный цвет. Это важно – найти спелые плоды и молодые, зачастую красноватые листья, содержащие больше белков, в зеленой листве. Правда, до ящериц и воробьев нам по-прежнему далеко, но хоть бобров превзошли – и то хорошо. Приятно сознавать, что мы небезнадежны: человеческие гены, кодирующие опсины, весьма полиморфны, причем они могут находиться в хромосомах в нескольких копиях и в разных вариантах, так что некоторые люди фактически видят два разных красных цвета (Verrelli et Tishkoff, 2004).

Крайне интересно, что у узконосых и широконосых обезьян вторичное обретение “зеленых” рецепторов произошло независимо. Тут нам опять повезло: у узконосых (то есть наших предков) это получилось удвоением-дупликацией одного из двух остававшихся “цветных” генов, причем для обретения “красного видения” понадобились всего три мутации. У широконосых обезьян – обитателей Южной Америки – “красный” ген возник как аллель старого опсинового гена, расположенного на X-хромосоме, так что все самцы и часть самок остаются “зелеными дальтониками” и только гетерозиготные самки отличают красный от зеленого. Спасает положение развитая социальность, а особые способности избранных самок могут повышать их значение в группе – воинствующий феминизм торжествует. Среди южноамериканских обезьян лишь ревуны продвинулись до обретения полноценного “красного” зрения и равенства полов по этой важной способности (Dulai et al., 1999).

Кстати, некоторые австралийские сумчатые вроде бы тоже заново обрели прежние рептилийные способности, причем, вероятно, в полной мере, так что нам не стоит зазнаваться.

Кстати, о раках и сказках…

Все эти способности в буквальном смысле блекнут в сравнении с беспозвоночными. У бабочек и пчел пять типов колбочек. Но и это не предел: всем далеко до раков-богомолов, у разных видов которого в глазах двенадцать, шестнадцать или даже двадцать один вид цветовых рецепторов (Thoen et al., 2014). Так что то разноцветье кораллового рифа, которое видим мы, – жалкое подобие реальности, отражающейся в глазах и ганглиях раков-богомолов. Даже с нашим умным-преумным мозгом мы в принципе не можем представить, в каком радужном мире живет это сказочное существо. Неспроста даже для наших убогих глаз рак-богомол выглядит чрезвычайно нарядно.

Между прочим, колбочки функциональны только на ярком свету. В сумерках работают только “черно-белые” палочки; неспроста же в темноте все кошки серые. С другой стороны, сей физиологический факт можно использовать, например, при съемках фильмов, когда надо создать сказочный эффект: если на черном ночном фоне человек видит яркие цвета, это крайне необычно и воспринимается как что-то фантастическое, ведь в темноте не может быть ничего цветного. По тому же принципу действует салют: на темном небе расцветают сочные вспышки красного, синего и зеленого, и это настолько неестественно, что невозможно оторвать взгляд. Может быть, и притягательная сила ночного костра отчасти имеет корни в принципах работы наших палочек и колбочек?

Если смотреть на вопрос шире, в природе просто не так много источников энергии, чьей мощности хватает для возбуждения наших колбочек: кроме Солнца, это Луна (которая, собственно, отражает свет того же Солнца), звезды, вулканы, пожары, светлячки и морские флуоресцирующие животные. Человек добавил к ним множество новых, теша свои колбочки и ассоциативные зоны мозга.

Конечно, менялось не только зрение. Слуховой аппарат у полуобезьян включает барабанные капсулы, образованные каменистой частью височной кости. Принципиально похожее строение сохраняется у широконосых обезьян Южной Америки, хотя у них капсулы малы, а барабанная пластинка не полностью соединяется с остальными частями. У узконосых же обезьян, к коим имеем честь принадлежать и мы, барабанная пластинка целиком срастается с каменистой и чешуйчатой частями, ограничивая костный слуховой проход. Такой вариант сформировался около 30 млн лет назад; по крайней мере, у чуть более древних проплиопитековых Propliopithecoidea вдоль барабанной пластинки сохранялась щель, а у Saadanius hijazensis ее уже нет. Однако, как часто бывает, древние предки периодически дают о себе знать: если у ребенка барабанная пластинка не полностью срастается с каменистой частью височной кости, а между ними остается зазор, это грозит глухотой, так как получается, что барабанная перепонка частично крепится на мягкие ткани, отчего звуковое колебание передается хуже.

Уголок занудства

Височная кость приматов состоит из трех главных частей: чешуйчатой, каменистой и барабанной (или тимпанической). Чешуйчатая включает чешую, закрывающую мозговую коробку сбоку, а также скуловой отросток, закономерно соединяющийся со скуловой костью. Каменистая часть в числе прочего включает пирамиду, внутри которой расположено внутреннее ухо с органами слуха и равновесия. Барабанная часть у человека представлена тонкой пластинкой, ограничивающей слуховой проход снизу-спереди и срастающейся передним краем с чешуйчатой частью, а задним – с каменистой. Детали строения височной кости эволюционно весьма изменчивы и широко используются для установления родства животных.

Во времена первых обезьян исчез подшерсток. Полуобезьянам и долгопятам он нужен, так как они маленькие и быстро остывают, причем активны по ночам, когда холоднее. Некоторые современные широконосые тоже обладают подшерстком, но узконосые – никогда, стало быть, его утрата приходится на момент сразу после разделения эволюционных ветвей обезьян Старого и Нового Света. Кстати, значит ли это, что широконосые, не обладающие пухом, избавились от него независимо от узконосых? Крупные размеры, фруктовая диета и дневной образ жизни в тропиках сделали утепление неактуальным. Как часто приходится жалеть об этом долгими северными зимами!..


Мы стремительно близимся к развязке… Прошло уже почти четыре миллиарда лет, как появилась первая жизнь, и разница между долгопятом и человеком, по сути, ничтожна – в глобальном масштабе от первых РНК и белков.

Глава 19

Звено 14: прощание с хвостом, прямохождение и разум

(неоген, 15–18,5, 7–4 и около 2 млн лет назад)

Увеличение размеров тела привело к появлению новых способов передвижения – медленного лазания и брахиации (когда обезьяна перехватывает ветки только руками, без помощи ног). До этого момента при лихих прыжках был нужен балансир – хвост, но при весе даже в десяток-другой килограммов система такой балансировки уже не очень-то работает. Неспроста даже у лишь сравнительно крупных лемуров типа индри или широконосых типа уакари хвост заметно укорочен. Другая функция хвоста – сигнальная, его можно распушить и красиво покрасить (например, в полосочку, как у кошачьего лемура), задирать его и размахивать им (как павианы), обвиваться им с хвостом соседа (как делают южноамериканские обезьяны-прыгуны). Но крупные серьезные человекообразные обезьяны выросли из подобных дурачеств, у них есть более основательные способы общения, нежели легкомысленное повиливание хвостиком. Как итог – хвост стал неактуальным. Он исчез.

Многие люди искренне полагают, что отсутствие хвоста – сугубо человеческая черта. Ан нет, его не было уже у проконсулов Proconsul heseloni и Nacholapithecus kerioi как минимум 15–18,5 млн лет назад (Nakatsukasa, 2004; Nakatsukasa et al., 2003, 2004; Ward et al., 1991) или даже раньше. Впрочем, в память нам остался копчик – чаще всего четыре позвонка-кругляшка, еще к тому же срастающиеся между собой, а иногда и с крестцом (кстати, у орангутанов обычно всего три копчиковых позвонка, так что они обогнали нас по бесхвостости). В итоге наружного хвоста у нас нет, но есть внутренний. Обычно он никак не выдает своего существования, но это лишь до поры до времени. Те, кто ломал копчик, подтвердят: перелом хвоста – ужасная вещь. Ни встать, ни сесть, ни лечь…

Иногда хвост проявляется еще более зловещим образом. Ведь он по исходной задумке покрыт тонкой кожей, да к тому же пушист. Сейчас копчик углубился в мышцы, но генеральный план никуда не делся. Иногда у человека формируются первые хвостовые мышцы, но, раз костная основа укоротилась, мышцы становятся трубочкой с пустотой внутри; посему наружная кожа хвоста оказывается вывернутой наизнанку, как чулок, так, чтобы прилегать к верхушке копчика. В итоге образуется как бы хвост наоборот, отрицательный, вдавленный сам в себя хвост. Такая штука называется копчиковым ходом (кстати, он не обязан открываться наружу отверстием, вполне может и зарасти, тогда получается полость между мышцами). Но он же, как полагается приличному хвосту, пушистый, с кисточкой на конце. Растущие внутрь трубки волосы колют и раздражают кожу. Не дай бог туда попадут бактерии, ведь в тепле, уюте и обилии пищи они начинают радостно жить и плодиться. Тогда копчиковый ход ужасно воспаляется, и человеку… ампутируют хвост! Ход прочищают и дезинфицируют, атавистические мышцы удаляют, отверстие зашивают. Операция эта не столь уж редкая, можно сказать – рядовая.

Кстати, об атавизмах…

Во все справочники по эволюции и школьные учебники вошел пресловутый “хвостатый мальчик” как пример редкостного атавизма – проявления древнего признака. Однако в хорошо исследованных случаях такие хвосты оказываются грыжами спинно-мозговых нервов или опухолями, просто вытянутыми кожными отростками без костной основы. Копчик у таких людей вполне стандартный.

Вообще же человек может и пожалеть об утрате столь ценного органа. Вот паукообразные обезьяны используют хвост как пятую руку: они могут висеть на хвосте, брать им предметы, обнимать соседа. Какие возможности мы утеряли! Кстати, нижняя сторона хвоста у цепкохвостых обезьян без шерсти, а голая кожа покрыта папиллярными узорами – как у нас на пальцах. Это показывает, зачем вообще существуют “линии судьбы”: они улучшают сцепление с корой дерева при древолазании. Между прочим, дерматоглифические узоры имеются и на лапках коал – ведь эти милые зверушки всю жизнь проводят на ветвях. Кроме прочего, гребешковая кожа намного чувствительнее гладкой, причем ощущения усиливаются при движении пальца поперек линий, а за счет извилисто-кругового расположения узоров мы прекрасно ощущаем фактуру любой поверхности при любом положении рук.

После того как наши предки покинули кроны, гребешковая кожа пригодилась при орудийной деятельности: булыжник не выскользнет из шероховатых рук трудового человека.


Пока обезьяны скакали по ветвям, они ели свежие фрукты (ох уж эти фрукты – они просто преследуют нашу эволюцию). Когда же человекообразные подросли и потяжелели, они стали жить больше внизу. Теперь все чаще им приходилось подбирать упавшие на землю плоды. А брожение – процесс быстрый, бактерии тоже любят сахарок и не упускают возможности полакомиться. Перекисшие плоды содержат фактически сидр – алкоголь, то есть яд. Естественный отбор не мог не среагировать и одарил первых наземных приматов какой-никакой, но устойчивостью к отравлению этанолом в виде особо эффективной алкогольдегидрогеназы – фермента, разлагающего этот спирт. У подавляющего большинства приматов – лемуров, широконосых, мартышковых, гиббонов и орангутанов – аналогичные ферменты работают на порядки слабее. А вот у горилл, обоих видов шимпанзе и человека все по-человечески: прокисшие фрукты им не так страшны (Carrigan et al., 2014). К великому сожалению, во-первых, некоторые не слишком сознательные граждане воспользовались столь ценной способностью для изобретения и потребления алкоголя, а во-вторых, многие популяции людей уже в последующем вновь ее утеряли, но это уже совсем другая история…

Любопытно, что аналогичную способность независимо развила мадагаскарская руконожка ай-ай, причем даже мутация у нее точно такая же. И тут этот замечательный примат держится в авангарде эволюции. Но о руконожке – позже…

Кстати, с ядовитыми свойствами спирта можно бороться и другими, даже более эффективными способами. Перохвостая тупайя, слизывающая перебродивший нектар бертамовой пальмы в джунглях Малайзии, способна потреблять смертельные по человеческим меркам дозы алкоголя (Wiens et al., 2008) – и ни в одном глазу, даже лапки не заплетаются! Не столь устойчивы к спирту, но тоже любят нектарное пиво обыкновенная тупайя, медленный лори и некоторые грызуны. Так что и в этой области человек не может считаться ни первопроходцем, ни рекордсменом.


Причины и последствия прямохождения рассмотрены в других частях книги, тут же отметим лишь несколько моментов.

Во-первых, выход в саванну был бы невозможен без появления самой саванны. Как ни странно, до сих времен степей в современном смысле просто не существовало. А ведь обширные травяные биомы появились лишь в середине эоцена в Южной Америке, в конце эоцена – в Центральной Азии, в олигоцене – в Северной Америке (Еськов, 2007). В Африке изменения шли медленнее, сюда новые веяния дошли лишь в миоцене. Немалую роль в образовании саванн играют крупные копытные травоядные животные, вытаптывающие и выедающие ростки деревьев. В Южной Америке роль саваннообразователей играли нотоунгуляты Notoungulata и прочие экзотические американские копытные – литоптерны Litopterna, астрапотерии Astrapotheria, пиротерии Pyrotheria и ксенунгуляты Xenungulata. В Северной Америке появились, а в Азии развились, а потом в обновленном виде вернулись в Америку непарнокопытные Perissodactyla, в том числе разнообразные носорогообразные животные и лошади, а также парнокопытные Artiodactyla. В Африке, как ни странно, крупных копытных поначалу не хватало или они были полуводными и листоядными, как, например, хоботные Proboscidea. Лишь когда из Евразии прискакали более-менее готовые лошади и носороги и с энтузиазмом стали топтать африканские опушки, то леса поддались под их копытами. Только тут из болот вылезли слоны и принялись помогать носорогам, гиппарионам и антилопам, выедая даже крупные деревья. Где бы мы были без копытных? Повторимся: появились они в Северной Америке, в степи вышли в Центральной Азии, а решающую роль в появлении человека сыграли в Африке, создав там саванны. Конечно, дело решилось не только вытаптыванием и выеданием, но и подходящей сменой климата, но о миоценовом похолодании речь уже шла выше и еще пойдет ниже. К тому же даже при неизменном климате животные играют часто определяющую роль в формировании биома. Отличные тому примеры – оголившиеся острова, куда добрые моряки заселили коз, отечественные степные заповедники, при полном запрете выпаса скота начинающие зарастать деревьями, а также африканские заповедники, напротив лишающиеся последних баобабов при слишком большой концентрации слонов. Если бы не травоядные, болтаться бы нам по-прежнему на ветвях.

Но ранние австралопитеки покинули кроны.

Обратим внимание на нашу походку, только не на ноги, а на руки. Практически все люди, если ничего не тащат с собой, при ходьбе размахивают руками. Кому-то может показаться, что так проще держать равновесие или что руки болтаются сами собой, по инерции. Ан нет. На самом деле, так наш мозг, а вслед за ним мускулатура отрабатывают четвероногий бег. Более того, не так уж просто заставить себя на ходу держать руки неподвижными строго по швам, идти иноходью или двигать руками с другой частотой, нежели ногами, – такие аллюры были нетипичны для наших предков. Когда еще мозг забудет, что мы не четвероногие?..

Освобождение рук и от четвероногости, и от древолазания напрочь поменяло смысл многих мышц. Например, широчайшая мышца спины изначально нужна была для шагания: она отводила переднюю лапу назад и толкала тело вперед. У древолазов ее назначение поменялось: теперь она подтягивала тело вверх, к руке, ухватившейся за ветку. Поэтому у гориллы такая широченная – практически метровая – спина, ведь весит это животное порой больше двух центнеров, а подтягивается даже на одной руке. Современному же человеку вообще не очень понятно, зачем надо усиленно опускать руку; не исключено, что в не слишком отдаленном будущем широчайшая мышца спины перестанет быть такой уж широчайшей. Так что современные бодибилдеры, с одной стороны, используют исчезающую возможность покрасоваться “крыльями” (впрочем, смешными с точки зрения гориллы и даже шимпанзе с их квадратной спиной – заметьте, без допинга, спортзала и спецдиеты!), а с другой – хвалятся фактически атавистическим признаком. Можно бы еще гордиться третьими молярами, широко разевая рот и тыча пальцем в недра: “Гляньте, какой у меня здоровый вырос!” – или копчиком: “Зацените, а у меня шесть позвонков!”

То же можно повторить и про большую грудную мышцу: она была важна четвероногим для сведения передних лап, чтобы стоять на них выпрямленных. Древесным обезьянам она помогала сводить руки, чтобы прочнее держаться на ветвях. А мы с четверенек поднялись, с дерева слезли… Человеку активно сутулить плечи уже не так актуально; обнимашки, конечно, важное занятие, но не обязательно же ломать любимым ребра.

Для стопы наземного существа боковые движения не только не актуальны, но даже вредны, ведь из-за такого вихляния запросто можно вывихнуть лодыжку. Собственно, польза от подобных поворотов есть лишь хищникам, заграбастывающим добычу в смертельные объятия, норным зверям для копания да горным козлам и баранам, которым приходится ставить ногу на любую неровность скалы. Все же сугубо наземные звери имеют весьма граненый голеностопный сустав, с резким ограничением движений – только вперед и назад, нисколько вбок! Идеально геометричен он у лошадей и коров. Человек слез с деревьев не так уж давно, поэтому у нас форма голеностопа промежуточная – уже не древесная, но еще не вполне наземная, тут эволюции еще есть над чем поработать. Поэтому люди так склонны подворачивать ноги, а бегать быстро не умеют.

Кстати, смысл потеряла и наша малая берцовая кость. Ведь изначально она была нужна как раз для поворота стопы. Теперь же эта кость бесполезна, ведь к большой берцовой она прикрепляется ниже коленного сустава, так что нагрузка на нее не идет, вплоть до того, что даже со сломанной костью вполне можно ходить – будет очень больно, но технически позволительно. У всех приличных наземных бегающих животных малая берцовая за ненадобностью редуцируется – или просто исчезает, или срастается с большой берцовой. У нас этот процесс только начался: развилось довольно прочное и тесное связочное соединение нижних концов малой и большой берцовых костей, в отличие от древесных обезьян, для которых важнее подвижность. Иногда у людей даже встречается врожденное отсутствие малой берцовой кости. Так что наше будущее – без нее.

Кстати, о всадниках…

У людей, много ездящих на лошади, может развиться “комплекс всадничества” (Бужилова, 2001; Ражев, 1996). Один из важнейших его элементов – усиленный рельеф на нижних концах берцовых костей. Дело в том, что всадник, сколько бы он ни катался на лошадке, рано или поздно с нее таки спрыгивает. Лошадь – зверь не такой уж низкий. От удара стопы о землю напрягаются межберцовый синдесмоз (соединительнотканное соединение нижних концов двух берцовых костей), а также передняя и задняя межберцовые связки. Иногда могут даже случиться микротравмы – порвется какое-нибудь микроволокно, лопнет капиллярчик; при этом ничего в общем-то не болит, но день за днем нарушения накапливаются. Обычно человек прыгает на одну и ту же привычную сторону, так что одна нога страдает больше. Рано или поздно связки начинают окостеневать; для начала это отражается в усиленном рельефе в районе малоберцовой вырезки большой берцовой кости и участке над латеральной лодыжкой малой берцовой – как раз там, где кости соединяются. В предельном же варианте кости вообще могут срастись. Но всадник от этого не очень-то страдает: вертеть стопой ему не надо – нога всегда в сапоге, пешком он почти не ходит – вся жизнь в седле, может, так нога будет только прочнее в стремени сидеть.

Конечно, подобные же изменения костей можно заработать и не катаясь на лошади. Можно, например, поработать гребцом на галерах: давление ног на пяточные упоры дает совершенно аналогичный эффект.

Мышцы стопы человека по количеству и местам прикрепления принципиально те же, что у обезьян, хотя функционально уже не те. Человеку не очень нужно шевелить пальцами ног и хвататься ими за ветки. Поэтому мышцы переквалифицировались: во-первых, они поддерживают продольный и поперечный своды стопы, а во-вторых, выполняют роль амортизатора при ходьбе. Обе функции для мышц довольно бестолковы. Своды гораздо эффективнее было бы поддерживать связками. У человека же этим занимаются мышца, отводящая большой палец стопы, мышца, приводящая большой палец стопы, короткий сгибатель большого пальца стопы, короткий сгибатель пальцев и квадратная мышца подошвы – сплошь хватательные мышцы, которыми мы должны бы цепляться за сучья.

Кстати, о жирафах…

Надо брать пример с жирафа: у него от затылка до крестца тянется здоровенное сухожилие, еще с эмбриональных пор растущее медленнее скелета и мышц. Получается, что в шею и спину у него вмонтирована мощнейшая пружина, постоянно тянущая голову назад; жираф не затрачивает ни малейших усилий, чтобы держать шею вертикально. Фактически это победа над гравитацией. Впрочем, проблемы у жирафа возникают, когда ему надо наклонить голову, ведь ему приходится прикладывать неимоверные усилия передних мышц, чтобы растянуть это сухожилие. Да и длинные ноги мешают, приходится странно раскорячиваться каждый раз, когда хочется, например, попить водички. Поэтому жирафы крайне редко пьют и несмотря на то, что живут не в пустыне, превосходят даже верблюдов своей засухоустойчивостью.

Если бы человеческая стопа была снабжена снизу связками, растущими медленнее стопы, мы тратили бы гораздо меньше энергии при ходьбе и стоянии, а плоскостопие если и не исчезло бы из медицинских справочников, сделалось бы редкостью и гораздо реже мучило людей.

Амортизация веса тела мышцами – совсем нелепая затея. Конечно, неприятно было бы стучаться костями об землю, но для смягчения походки гораздо лучше задействовать жировую или соединительную ткань, как это было реализовано у динозавров зауропод и стегозавров и ныне – у слонов.

Мы стопоходящи, имеем несовершенные суставы ноги и недоделанный позвоночник, то и дело дающий сбои. Мы очень медленно бегаем – даже мышь и кошка нас обгоняют! Однако человек на удивление хороший ходок. Миллионы лет прогулок по саваннам сделали человека великим путешественником. Настолько великим, что человеку плохо без ходьбы. Если надо подумать, человек задумчиво вышагивает, нервничает – мечется по комнате из угла в угол, надо отдохнуть – прогуливается в парке, надо набраться впечатлений – идет в поход, читает лекцию – маячит перед доской, общается с избранницей или избранником судьбы – опять же гуляет по разным интересным местам. Часто можно прочитать, что человеку, чтобы сохранить здоровье, надо ходить минимум пять километров в день. Очевидно, такое усреднение имеет мало смысла – и сами люди, и условия их жизни очень различаются, но доля правды в этом есть. Много стоящий или постоянно сидящий человек имеет все шансы заработать себе один из сотни диагнозов, связанных с гиподинамией – малоподвижностью.

Как уже говорилось, скорость нашего передвижения смехотворна. Однако народ не перемудришь, давно сказано: тише едешь – дальше будешь. Мелкими шажками австралопитеки начали свой путь по африканским саваннам, а уже сапиенсы решительным маршем обошли всю планету – аж до Огненной Земли и еще дальше – до Северного и Южного полюсов. В этом беспрецедентном кругосветном путешествии люди стали удивительно устойчивы ко всяким невзгодам. Скорость человек компенсирует выносливостью. Например, бушмены загоняют зебр, а индейцы – лосей, просто не спеша преследуя их. Зверь мчится гораздо быстрее охотника, но не может бежать два-три дня. А люди – могут. Люди берут измором кого угодно, причем во всех климатических поясах. Великие адаптационные способности были заложены еще в миоценовой африканской саванне. Неспроста первыми людьми на Северном полюсе были европеец, негр и четыре эскимоса – представители трех больших рас человечества.

Однако, как бы далеко ни убрели скитальцы от прародины, тропическое прошлое сквозит тут и там. Человек плохо переносит холод. Он изобрел одежду, приручил огонь, но подшерсток не вернулся на его тело, разве что в виде шубы. Поднятый край, ограничивающий дно гайморовой пазухи (полости внутри верхнечелюстной кости), не создавал трудностей в Африке, но вне тропиков стал проблемой: теперь из-за этого бордюра при насморке в пазухе скапливается слизь, так что можно довести дело до воспаления – гайморита. По этой же причине лучше всего сморкаться, низко наклонив голову. Кстати, мартышкообразные обезьяны в процессе эволюции избавились от гайморовой пазухи – не осталось даже следов, так что им гайморит не страшен; человекообразные же сохраняют примитивное строение, имевшееся еще у самых первых обезьян (Rossie, 2005).

Прямохождение создало одну уникальную черту пищеварения человека: оно у него стало частично внешним. Освободившиеся руки и умная голова позволяют богато манипулировать пищей: резать ее, тереть на терке, отбивать колотушкой, сбраживать и ферментировать сотней способов, жарить на вертеле или сковородке, варить в горшке или бизоньем желудке, тушить, запекать в земляной печи или духовке. Мы не обходимся лишь своей слюной (хотя именно от нее зависит успех приготовления кавы и чичи), как пауки, миноги или некоторые жуки. Мы поставили себе на службу бактерий и дрожжевые грибы, лимоны и даже циветт (любителям кофе “Лювак” посвящается). В свою очередь, готовка пищи увеличивает ее усвояемость и позволяет уменьшить жевательный аппарат и пищеварительный тракт, что делает человека зависимым от наружного пищеварения (истинная ода кулинарии: Рэнгем, 2012). Цепная реакция в действии. Каков апофеоз этого процесса – трубочка из баночки прямо в вену?..

Эволюция – странный процесс, в ней плюсы запросто оборачиваются минусами и наоборот. В саванне много опасностей и мало укрытий, ушами хлопать тут нельзя (впрочем, мышцы уха редуцировались заметно раньше), только вздремни – тут же окажешься в чьем-то желудке. А потому первые саванные приматы стали больше бодрствовать. Исследования показывают, что человек действительно спит заметно меньше – в среднем семь часов, – чем другие приматы, некоторые из которых умудряются проводить в объятиях Морфея до семнадцати часов (Samson et Nunn, 2015)! Кроме хищников, видеть сны мешали и недружественные соседние группы других австралопитеков, поскольку от них спрятаться на открытой местности тоже некуда. Казалось бы, синими кругами под глазами и головной болью тут не отделаешься. Но нет худа без добра. Если спать приходится меньше, то будем спать лучше, будем спать глубже! У предков человека в пять раз с 5 до 25 % – удлинилась фаза быстрого сна, наступило Время Снов. А эта фаза необходима для переработки информации, полученной мозгом во время бодрствования, в частности – перевода кратковременной памяти в долговременную, то есть усвоения знаний. Высвободившиеся же дневные часы можно занять полезным и важным, например изобретением чего-то новенького, а полученные навыки лучше усвоятся за счет новообретенного качественного сна. Удобно! К тому же можно уделить больше времени общению с сородичами и воспитанию детишек, что опять же повышает общий интеллектуальный уровень, способствует сплочению группы и снижению агрессии, а в сумме – обеспечивает выживание. Так трудности создавали человека, так закалялся разум.

Несколько миллионов лет от прямохождения до разума – мгновение в общем масштабе. Примерно 2 млн лет назад по планете ходили уже разумные существа. О предпосылках и последствиях этих событий много говорится в других частях этой книги. Здесь же помянем лишь два момента.

Человек отличается от животных развитым чувством юмора. Конечно, у животных оно тоже есть, и всюду процитирована шутка гориллы Коко, называвшей себя “хорошей птичкой”, но юмор обезьян довольно топорный, это настоящая его заря. Ясно, что происхождение и эволюция юмора – огромнейшая тема, достойная отдельной монографии, но попробуем осветить ее с одной из сторон: шутка как обман.

Когда человек шутит, он обманывает, сбивает с толку и провоцирует другого человека. Неспроста один из самых востребованных видов юмора – черный. Выдается некая тревожащая информация, адресат приходит в тонус, ведь все необычное потенциально опасно. Опасность надо на всякий случай отпугнуть, лучший способ для этого – показать свои клыки. Человек начинает ощериваться, губы растягиваются, готовые показать зубы… Но потом жертва шутки соображает, что в реальности опасности никакой нет. А коли опасности нет – так это же здорово, это же просто отлично! Это радость! Происходит разрядка напряжения. Оскал превращается в улыбку, набранный для вопля ужаса воздух судорожно вырывается из груди – человек начинает смеяться. Неспроста крик страха и смех слабо отличимы, по крайней мере в своем начале; вот продолжение у них может быть разное – протяжное в первом случае и отрывистое во втором.

Шутник же решает свои задачи. С помощью шутки очень здорово привлекать к себе внимание и, соответственно, успешно достигать поставленных целей. Например, если лектор вещает студентам полтора часа на одной ноте, то, сколь несомненно важные и нужные вещи он бы ни сообщал, студенты имеют все шансы заснуть и пропустить информацию мимо ушей. Человеку трудно долго удерживать внимание, ведь мы хоть и не легкомысленные шимпанзе, но и не хищники-засадники, способные часами сторожить мышку у норки. А вот если лектор разбавит свой монолог парой удачных шуток, это выведет слушателей из ступора, приведет их в сознание (шутка в лекции – что-то странное, неспроста это, надо прислушаться!), и цель будет достигнута. Если бы я написал классический учебник по антропологии, он был бы короче и информативнее, но шансов на прочтение у него было бы меньше, чем у популярной книжки, текст которой разбавлен всяческими хохмами.

Таким образом, юмор – это обман первоначальных ожиданий. Когда начальник на планерке с суровым видом заявляет: “Завтра всех уволю”, то первой нормальной реакцией будет ужас. Если обстановка такая, что это явно не шутка, то засмеется только дурак или же смех будет натянутым, деланым и противоестественным. А вот если после первой доли секунды оторопи до сотрудников начинает доходить, что это неправда, они распознают обман, и притом обман явственно безопасный, то они начинают весело смеяться.

Потому и люди без чувства юмора вызывают подозрительное к себе отношение. Если человек неспособен генерировать и распознавать шутки, то он не может отличить реальность от нереальности, значит, он не так уж адекватен. Чрезмерная и постоянная серьезность – вовсе не повышенная реалистичность, а напротив – уход от действительности! Конечно, к такому человеку надо относиться как минимум с настороженностью.


Чем разумнее существо, тем меньше у него врожденных форм поведения. Ведь разум – это способность реагировать нестандартно, оперировать разнообразной информацией, делать прогнозы, обучаться. Чем разумнее становился человек, тем больше времени уходило на его обучение. А обучение наилучшим образом удается как раз в детстве, когда мозг еще не закостенел и взрослые проблемы не мешают постигать новое. Чем сложнее становилась культура, тем дольше надо было постигать ее тонкости, зато и жить становилось лучше, жить становилось веселее. Смертность уменьшалась, детей требовалось рожать меньше. Закономерным образом детство удлинялось, а этап взрослой жизни относительно укорачивался.

У мартышкообразных обезьян детство составляет 3–5 лет, у шимпанзе – 7–9 лет, у человека – около 15-ти. Но столь долгое время организм не может совсем не расти, эволюционно выгоднее и технически гораздо проще отложить лишь половое созревание, а не весь ростовой процесс. Поэтому у людей появляется особый период – подростковый, когда размеры тела и потенциальные возможности мозга уже почти взрослые, а полноценно размножаться еще нельзя.

Взросление австралопитеков шло скорее по обезьяньему сценарию, но на неком этапе развития Homo стало истинно человеческим. Такие процессы для ископаемых видов изучать очень трудно, но мы точно знаем, что у современного человека на детство приходится чуть ли не половина жизни, по крайней мере ее треть. Ведь половое созревание происходит в лучшем случае лет в 12, а то и сильно позже. А средняя продолжительность жизни “в естественных условиях” – лет 35–40, разве что едва больше, а иногда и меньше. Это и логично, ведь вместе со снижением смертности до возможного минимума удлинение детства автоматически приводит к сокращению взрослости: если в 15 лет появляются первые дети (новые с интервалом в два года), то в возрасте родителей около 30 лет их дети уже рожают внуков. Для поддержания стабильной численности популяции родителям пора бы и умирать. Делая скидку на смертность – длина жизни в 35–40 лет оказывается в самый раз. Иначе численность популяции будет расти, ресурсы перерасходуются и всем станет плохо. Судя по определенному скелетному возрасту, такая система существовала у неандертальцев и сапиенсов вплоть до появления производящего хозяйства. Правда, у людей всегда имелись два универсальных выхода: во-первых, можно было заселить новые территории, а во-вторых, задействовать новый ресурс. Сапиенсы в этом смысле были, похоже, пластичнее неандертальцев.

Кроме того, сказанное про средний возраст не означает, что все прямо-таки обязаны были умирать строго в 40 лет. Конечно, всегда были отдельные люди, жившие дольше, пример этого есть даже в Дманиси с датировкой 1,8 млн лет назад. Но лишь в верхнем палеолите сапиенсы сделали одно из величайших открытий в своей истории – они изобрели бабушек. Вероятно, впервые процент пожилых людей, уже не размножающихся (это важно, чтобы численность оставалась постоянной, а ресурсы не переистощились; кстати, тут впервые у приматов появляется пострепродуктивный возраст), не охотящихся и даже ничего не собирающих, но активно участвующих в общественной жизни, вырос до таких значений, что стал важным фактором развития. Пожилые люди обладали ценнейшим ресурсом каменного века – жизненным опытом. Они могли делиться им с зеленой молодежью, чтобы та постигала хитрости выживания не на собственных ошибках. Причем времени у пожилых людей всегда не в пример больше, чем у любых других возрастов, они могут сидеть с детьми хоть сутками. Родители получают свободное время и могут потратить его с пользой. В итоге всем хорошо: дети учатся, родители отдыхают или занимаются своими важными взрослыми делами, опыт прошлых поколений не исчезает, а передается дальше и может быть развит. Очевидно, вся группа получает существенное преимущество перед “безбабушковыми” соседями. В кратчайшие сроки такая значительная новация должна была распространиться по всему миру, а отставшим от прогресса оставалось завидовать и стареть.

Многие исследователи считают, что именно с появлением бабушек (дедушки тоже, конечно, были, но вероятность их выживания была намного меньше, чем у бабушек) связано бурное развитие культур верхнего палеолита, появление искусства, мифологии, даже окончательное формирование языка и в целом – успех именно сапиенсов в освоении Ойкумены. Да здравствуют бабушки!

Эпилог

Конец цепи или продолжение истории?

Предки человека прошли долгий и хитрый эволюционный путь. Эволюция – не мудрая тетя с задумчивым взглядом и благими целями, а отбор – не злобный дядька с охряпником наперевес. Это статистические процессы дифференцированного воспроизводства генов в определенных условиях среды. Человек собран большей частью вовсе не из человеческих частей. В нашем теле переплелись элементы, возникавшие для сиюминутных нужд выживания всех предков – от первых клеток до собственно людей: бактериальные митохондрии и рыбьи жабры, амнион рептилий и лапки пургаториуса. Органы зачастую возникали вовсе не для того, для чего мы используем их теперь. Мы берем яблоко производными плавниковых складок, откусываем отвердениями кожи – запасниками кальция, фосфора и фтора, слышим и жуем жабрами, дышим частью пищеварительной системы, а думаем об этом переразвитым обонятельным анализатором. Условия для этого обеспечили девонская жара и пермские холода, отсутствие нормальных корней в девоне и появление их в карбоне, деревья и плоды, ракоскорпионы и динозавры, термиты и пчелы, лошади и носороги. Уберите элемент – получится ли картина? Или она окажется совсем иной?

Потерь на этом пути было не меньше, чем приобретений. Где отличное обоняние предков, где ближний ультрафиолет, где наш хвост? Было бы нам лучше с ними? Или это был бы уже не совсем человек?

Будет ли продолжение истории? Для этого надо не уничтожить свою планету, свою среду обитания. Пока человек не очень преуспел в созидании, а пора бы. Хочется верить, что книга эволюции человека не закончилась, что впереди еще много занимательных страниц, что кто-то в будущем сможет написать на них: “Неокортекс, двуногость и живорождение, как это ни странно, были свойственны нашим примитивным предкам, но именно благодаря им…”

Корни разума

Часть четвертая, совсем короткая, но очень важная, рассказывающая о том, как набраться ума-разума, в некотором роде подводящая итог части третьей и необходимая для постижения части пятой

Что сделало приматов приматами? Какое уникальное сочетание признаков стало достаточным для появления разума? Как это ни странно, крайне сложно выявить признаки, однозначно свойственные всем приматам и одновременно отличающие их от других отрядов. Однако не все безнадежно. Принципиальными экологическими особенностями первых приматов, необходимыми для появления человека, представляются: дневной образ жизни, древесность, прыгание по тонким ветвям, всеядность с преобладанием фруктоядности, малое количество детенышей и большая продолжительность жизни.

Дневной образ жизни был, вероятно, свойствен древнейшим предкам приматов, по крайней мере, многие тупайи активны именно днем, а некоторые плезиадапиформы имели маленькие глазницы. Таким образом приматы могли избежать конкуренции с большинством млекопитающих, ведь те-то были как раз ночными. Это же выводило приматов из-под гнета большинства хищников, ориентировавшихся на серое большинство, мельтешащее по ночам. Днем проще общаться, это способствует социальности. На свету удобно пользоваться зрением, сохраняется и развивается цветное зрение.

Очевидно, что одной из важнейших черт приматов является их древесность. Однако давно было замечено, что приматы обладают массой особенностей, отсутствующих у других древесных животных.

Жизнь на деревьях позволила сохранить и развить хватательные способности кисти, ее пятипалость и способствовала совершенствованию осязания. Хотя некоторые приматы – потто, галаго, паукообразные обезьяны, игрунки, колобусы, гиббоны – в итоге приобрели крайне специализированные формы кисти, у большинства видов во все времена сохранялись умеренные ее пропорции и противопоставление большого пальца. Хватательная же функция кисти, в свою очередь, позволяет использовать ее для манипуляции пищей, что опять же должно быть обеспечено развитием мозга.


Обезьяны и все-все-все

Рис. 17. Кисти разных приматов: потто (а), игрунки (б), гиббона (в), колобуса (г), коаты (д).


Древесность бывает разная. Приматы в большинстве своем передвигаются по деревьям быстро, в основном прыжками, причем способны бегать по тонким ветвям и даже их кончикам (Orkin et Pontzer, 2011). Резвые скачки в сложном мире качающихся веток должны иметь мощное обеспечение в виде большого мозга. Конечно, на каждую стройную концепцию есть свои белки, не знающие о необходимости цефализации, но тенденция тем не менее очевидна. Секрет не слишком мозговитых белок в том, что они передвигаются в основном вдоль стволов и толстых веток. С дерева на дерево эти зверьки предпочитают перебираться или по почти соприкасающимся толстым ветвям, или по земле, а длинные прыжки с тонких веток на другие тонкие ветки совершают крайне редко. Даже летяги прыгают со ствола на ствол, большая прицельность при этом не нужна. Но и среди белок есть свои исключения. Восточная серая белка Sciurus carolinensis способна, в отличие от прочих родственников, кормиться на кончиках тонких веток без адаптаций, свойственных приматам. Кроме того, есть тупайи, поссумы и хамелеоны, тоже кормящиеся на кончиках тонких веток, но не обладающие великим интеллектом, ногтями и бинокулярностью (хотя все они не прыгают подобно приматам). Таким образом, жизнь на кончиках веток могла быть важнейшим фактором эволюции приматов только при условии отсутствия приспособлений к другим способам добывания пищи (Orkin et Pontzer, 2011) – вывод замечательный, учитывая столь часто постулируемую экологическую и этологическую пластичность приматов!

Для лихих прыжков необходима отличная координация, ее обеспечивает целый комплекс. Бинокулярное – объемное – зрение возможно благодаря повороту глаз вперед. Очевидно, закрепляется ведущая роль зрения среди всех органов чувств, ведь прыгать по кронам на слух, на ощупь или по запаху просто самоубийственно (летучие мыши могли бы поспорить, но не могут – летать с большим мозгом не получается). Ясно, что жизнь на деревьях также способствовала развитию вестибулярного аппарата. Полученная от зрения, осязания и органа равновесия информация о трехмерном расположении объектов должна обрабатываться в мозге очень быстро, ведь ветки качаются, ветер дует, к плодам крадутся конкуренты. Важно правильно оценивать расстояние между собой и местом, куда прыгаешь, чтобы не ухнуть вниз. Вместе с тем обоняние редуцируется – на вольном ветру, гуляющем в листве деревьев, оно не столь актуально.

Кстати, о медведях и собачках…

Вестибулярный аппарат обезьян развит не в пример лучше многим и многим животным. Бесконечное перемещение по ненадежным ветвям сделало нас устойчивыми. Без миллионов лет скакания в кронах спуск на землю не завершился бы появлением двуногости. Все же на четвереньках стоять надежнее, да и падать в случае чего ниже. Конечно, можно и медведя научить ездить на велосипеде, и собачку – ходить на двух ногах, причем даже на передних, но им это дается с трудом и в целом ни к чему. Чуть что, они стремятся вернуться в устойчивое положение. А первые австралопитеки ничтоже сумняшеся поднялись вертикально (точнее сказать – не опустились обратно, ведь перед спуском на землю они лазали по деревьям именно вертикально).

Качающееся обезьянье прошлое, кстати, позволяет людям осваивать профессии монтажников-высотников и моряков. Хорошо быть обезьяной!

Некоторые ученые предположили, что специфика приматов обусловлена ориентацией на зрение в совокупности с жизнью на ветках и насекомоядностью (Cartmill, 1972), но эта точка зрения подверглась основательной критике (Sussman, 1991). Уже самые первые приматоморфы имели склонность ко всеядности, чем они, собственно, и отличались от насекомоядных. Переход с преимущественно насекомоядной диеты на всеядную мог быть первым толчком к появлению приматов. Избегание пищевой специализации – необязательная, но весьма характерная черта нашего отряда. Редкие случаи насекомоядности приматов относятся как раз к сравнительно поздним временам: галаго, золотые потто, лори, долгопяты являются одними из самых специализированных форм и ориентируются в основном на слух, а не на зрение.

Слепая кишка имеется у всех приматов, свидетельствуя об их исходной всеядности. С другой стороны, специализированно растительноядные формы возникали среди приматов тоже не так уж часто. Крайность в этом направлении представляют тонкотелые Colobinae, у которых в связи с исключительной листоядностью даже возникает многокамерность желудка, подобная варианту жвачных копытных Ruminantia. Однако даже самые листоядные приматы стремятся получать более питательную пищу, регулярно поедая фрукты и насекомых. Цветное зрение помогает современным колобусам выискивать среди зелени красноватые листья, более богатые белками, обезьяны предпочитают есть их, оставляя зеленые нетронутыми (Moffat, 2002). Возможно, подобно вели себя уже плезиадапиформы.

Очевидно, именно из-за всеядности ранние приматы – за исключением самых специализированных форм – не утеряли клыки и мало кто из них обзавелся большой диастемой между передними и задними зубами, столь характерной для сугубо растительноядных животных. Клыки сохранялись и по причине повышенной социальности приматов, так как играли важнейшую роль в регуляции внутригрупповых взаимоотношений.

Высокоэнергетическая всеядность, ориентированная на жирных насекомых и сахаристые фрукты, кроме прочего, позволяла укоротить пищеварительный тракт (с толстым животиком не очень-то попрыгаешь) и ослабить жевательный аппарат. Возможно, важнейшим признаком, обеспечившим в далеком будущем и наше появление, стало соотношение жевательной мускулатуры и мозговой коробки. Жевательные мышцы крепятся у млекопитающих на сагиттальном гребне, тянущемся по верху мозговой коробки; таким образом, они окружают ее, уже с младых ногтей своим давлением способствуют раннему зарастанию швов черепа и препятствуют росту мозга. У приматоморфов, начиная с плезиадапиформов, стала усиливаться тенденция к ослаблению обоняния и развитию стереоскопичности зрения. Это привело к повороту глазниц вперед, уменьшению обонятельных луковиц и решетчатой кости, а в итоге – появлению заглазничного сужения черепа в том месте, где у всех приличных зверей находится обонятельный мозг (для гоминид сильное сужение – примитивный признак, а для приматов как отряда – прогрессивный, таковы причуды эволюции). Таким образом, значительная часть сагиттального гребня оказалась в передней части мозговой коробки, а коробка, соответственно, сдвинулась от мышц назад, освободившись от их гнета и получив возможность увеличиваться более долгий срок в онтогенезе (раньше нагрузка жевательных мышц передавалась на кости всего свода и приводила к раннему зарастанию швов, так что мозг не мог расти). Фактически редукция мозга привела к росту мозга! Парадокс, но факт.

Эволюция ранних приматов шла в тесной связи с эволюцией цветковых растений (Sussman, 1991). Даже стремление приматов забираться на кончики веток может быть связано именно с питанием цветами и плодами. В этой связи никак нельзя пройти мимо того факта, что главный “эволюционный бум” среди млекопитающих, согласно исследованиям по коннексии палеонтологических и генетических данных, случился отнюдь не в начале палеоцена, а намного раньше – около 80 млн лет назад (Bininda-Emonds et al., 2007; Meredith et al., 2011). Заметно меньший всплеск семействообразования приходится на время около 100 млн назад лет и примерно такой же – на начало палеоцена. Тогда как последний, очевидно, связан с вымиранием динозавров, два древнейших примерно совпадают с появлением цветковых растений и установлением их доминирующей роли в мире растений. Приматы по таким расчетам возникли от 90 до 70 млн лет назад. Что любопытно, согласно этой концепции, приматы появились раньше тупай, что крайне странно, учитывая очевидную примитивность последних (Meredith et al., 2011). Древнейшие плацентарные или близкие к плацентарным звери – начиная со среднеюрской Juramaia sinensis и продолжая меловыми азиатскими и американскими видами – в современной фауне больше всего схожи именно с тупайями, которые, таким образом, выглядят самыми примитивными плацентарными современности, по крайней мере в экологическом смысле (Luo et al., 2011). Даже насекомоядные экологически более прогрессивны, поскольку ведут преимущественно наземный образ жизни, тогда как исходным был, видимо, древесный. Хотя тупай уже давно не включают в отряд приматов, все же родство этих групп несомненно.

Наконец, все приматы – сторонники так называемой K-стратегии размножения. Это значит, что детенышей рождается мало – почти всегда только один, зато родители без устали пекутся о нем, кормят, чистят, воспитывают, холят и лелеют. Ненаглядная кровинушка растет в условиях, близких к идеальным. Детская смертность оказывается минимальной (конечно, все познается в сравнении). Кроме приматов, так же ведут себя слоны и киты. Противоположный вариант – r-стратегия, предполагающая огромное число потомков, подавляющая часть которых гибнет. Она типична, например, для большинства насекомых, костистых рыб и амфибий.

Детеныш у приматов рождается беспомощным, но – за счет немногочисленности и относительной крупноразмерности матери – с заранее большим головным мозгом. За долгое детство он успевает обучиться всем жизненным премудростям, тогда как жестко врожденных форм поведения у приматов фактически нет. Продолжительность жизни в целом у приматов тоже велика; опять же это приводит к накоплению опыта. В сочетании с повышенной социальностью все это обеспечивает передачу этого опыта следующему поколению через обучение. Так социальность становится залогом выживания и успеха и получает шанс усложняться до человеческих высот. Хочется верить, что и до бóльших…

Уголок занудства

Принципиальные экологические особенности первых приматов, необходимые для появления человека: дневной образ жизни, древесность, прыгание по тонким ветвям, всеядность с преобладанием фруктоядности, малое количество детенышей, большая продолжительность жизни.

Итоги дневного образа жизни: древесность, выход из-под гнета большинства хищников, социальность, сохранение и развитие цветного зрения.

Итоги прыгательной локомоции: хватательная конечность и развитие осязания руки, развитие вестибулярного аппарата, развитие бинокулярного зрения и закрепление ведущей роли зрения, большая скорость нервных реакций, редукция обоняния.

Итоги всеядности с упором на фруктоядность: избегание пищевой специализации, редукция обоняния, развитие зрения, ослабление жевательного аппарата и укорочение пищеварительного тракта, смещение жевательных мышц в переднюю часть черепа и высвобождение задней из-под давления этих мышц, увеличение головного мозга.

Итоги малого количества детенышей при сравнительно крупных размерах и большой продолжительности жизни: развитие головного мозга, накопление жизненного опыта, развитие социальности.

Принципиальные экологические особенности человекообразных приматов, сделавшие возможным появление человека: укрупнение размера тела, выход в саванну, увеличение доли мясной пищи в диете.

Итоги укрупнения размеров тела у древесных человекообразных обезьян: ограничение возможностей к прыганию, исчезновение хвоста, тенденция к спусканию на землю, увеличение головного мозга.

Итоги выхода в саванну: завершение становления прямохождения, некоторый рост головного мозга, расширение диеты, освобождение рук, усиление трудовой деятельности, усиление социальности.

Итоги увеличения доли животной пищи в рационе первых людей: ослабление жевательного аппарата, размеров зубов и массивности черепа, увеличение мозга, появление каменных орудий труда, усиление социальности.

Этапы прогресса, или Чем мы отличаемся от ежей?

Часть пятая, которая многим покажется не имеющей отношения к человеку, так как в ней говорится о ежах и слонах, прыгунчиках и китах, о том, почему они не стали людьми, но исподволь подводящая Уважаемого Читателя к мысли, почему книгу читает он, а не муравьед

Человеческая линия эволюции уникальна, как и вообще любая эволюционная линия. Но ведь планету населяли миллионы разных существ. Почему же среди них не нашлось других, которые смогли бы стать разумными?


Отличия человека от моржей, львов и даже кротов для большинства людей вполне очевидны. Вопрос об отличии от ежей может показаться странным, но это как поглядеть. С палеонтологической точки зрения вопрос актуален, животрепещущ и совсем не прост.

Приматы – удивительно разнообразная группа животных. У нормального человека при слове “примат” в мыслях, наверное, появляется облик макаки, шимпанзе или мартышки из мультфильма. Ассоциация с лемуром, думается, возникает лишь у статистически незначимого меньшинства. Однако немалую часть своей истории приматы были преимущественно лемуроподобными существами, да и в настоящее время примерно треть видов относятся к ним. Впрочем, мультфильм “Мадагаскар” в последнее время мог выправить статистику в этом отношении. Но вот долгопятов, надо думать, вспоминают уж совсем редкостные чудаки. А ведь палеонтологически долгопятоподобные приматы составляли огромную и очень важную группу приматов. А от долгопятов и лемуров недалеко и до плезиадаписов. А от плезиадаписов до ежей – рукой подать…

Глава 20

Примитивные млекопитающие

Древнейшие млекопитающие типа Morganucodonta, их позднетриасовые предки – протомлекопитающие типа Adelobasileus cromptoni и Sinoconodon rigneyi, равно как и предки этих предков – циногнатовые Tritylodontidae, не отличались разнообразием внешности и образа жизни, ограничиваясь стилем землеройки (хотя большинство тритилодонтов были растительноядными). С ранней юры среди докодонтов Docodonta и других млекопитающих появились довольно разнообразные формы, однако подавляющее большинство их не имеют к современным зверям прямого отношения. Тем более удивительны примеры конвергенции – необычайного сходства некоторых мезозойских и современных зверей. Особенно интригует недавнее открытие Agilodocodon scansorius, среднеюрского докодонта из Китая, внешним видом и образом жизни напоминающего тупайю или даже лемура (Meng et al., 2015). Его моляры похожи на зубы полуобезьян, а резцы – игрунок. Этот зверек лазал по деревьям и питался смолой, надгрызая кору деревьев. Уровень развития докодонтов был в среднем ниже, чем даже у утконоса с ехидной, но надо же было с чего-то начинать. Как знать, может, скоро обнаружатся другие, более продвинутые юрские “параприматы”?

Общими предками и насекомоядных, и приматов, и рукокрылых, и хищных, и панголинов могли быть примитивные верхнемеловые звери вроде Cimolestes. Они имеют настолько “обобщенное” строение, что никак не помещаются в формальные классификационные схемы, зато годятся на роль всеобщих пращуров. Предложено выделение отряда цимолестов Cimolesta, объединяющего массу верхнемеловых и раннепалеоценовых зверей, включая разномастные подотряды пантолестов Pantolesta, дидельфодонтов Didelphodonta, тениодонтов Taeniodonta, апатотериев Apatotheria, пантодонтов Pantodonta, тиллодонтов Tillodontia, палеориктид Palaeoryctidae и даже, возможно, панголинов Pholidota с заламдолестесами Zalambdalestidae, но рамки такого отряда кажутся чересчур резиновыми; сам Cimolestes иногда включается и в палеориктид Palaeoryctidae, и в дидельфодонтов Didelphodonta.

Видимо, основной бум возникновения новых отрядов пришелся на верхний мел, тем более что в начале палеоцена отряды становятся более-менее различимы. Впрочем, и тогда разница между насекомоядными, первыми копытными и хищными вовсе не всегда очевидна. Иллюстрацией могут служить дидимокониды Didymoconidae, относившиеся к креодонтам Creodonta или мезонихиям Mesonychia, а ныне выделенные в собственный отряд дидимоконид Didymoconida (Лопатин, 2001). Последовательность возникновения отрядов остается невыясненной по палеонтологическим остаткам. Тут могут помочь данные генетики.

Известно, что классификации, построенные по генетическим данным, резко отличаются от “морфологических”. Например, по генетическим данным ежиные с землеройковыми и рукокрылые попадают в разные подразделения группы лавразиатериев Laurasiatheria, приматы с шерстокрылами и тупайи – в разные ветви эуархонтоглиресов Euarchontoglires (или в одну – в зависимости от схемы), а тенреки с прыгунчиками – в афротериев Afrotheria; на высоком уровне лавразиатерии с эуархонтоглиресами объединяются в бореоэвтериев Boreoeutheria и противопоставляются афротериям с неполнозубыми Xenarthra. По морфологии же все они: ежи, землеройки, тенреки, прыгунчики, летучие мыши, тупайи и шерстокрылы – до крайности схожи и вполне могут быть включены в единую группировку.

На первый взгляд, разница морфологической и генетической схем огромна, однако на второй – парадокс легко разрешим. В меловом периоде среди примитивных плацентарных дифференциация еще не зашла настолько далеко, чтобы можно было различать их на надсемейственном уровне; однако некий набор мутаций в разных группах различался, не влияя, впрочем, на внешний вид, принципиальные особенности морфологии и этологии; с тех пор этот набор незначимых генетических отличий еще заметно усилился. В итоге мы имеем несколько современных линий, примитивные представители которых сохранили морфологический план предков, но имеют генетические расхождения, восходящие к самым основам плацентарных.

В сущности, разница “морфологических” и “генетических” схем – это разница “горизонтальной” классической и “вертикальной” кладистической таксономии. У обоих подходов есть плюсы и минусы. Морфологический – единственный применимый в палеонтологии, но резко ограничен неполнотой палеонтологической летописи и случаями конвергенции и резкой специализации. Генетический подход дает нам представление о последовательности расхождения филогенетических линий, что лишь редко и с трудом удается определить по ископаемым находкам. Однако генетический подход на современном уровне не дает представления о сущности и масштабе находимых генетических отличий и пока мало надежен для определения времени расхождения эволюционных линий. “Вертикальная” систематика опирается только на точки дивергенции – расхождения линий и, в сущности, зависима от времени: давно разошедшиеся группы считаются резко различными, даже если за миллионы лет они практически не поменялись, тогда как недавно дивергировавшие таксоны не имеют шансов получить высокий ранг, сколь бы ароморфными ни были их достижения. Те незначительные мутации, которые в настоящее время различают какие-нибудь виды одного рода, в далеком будущем могут быть расценены как значимые для выделения отрядов. То есть сейчас мы считаем их видами одного рода, а систематики далекого будущего будут вынуждены числить их в разных отрядах, даже если за это время у них не появится существенных отличий в строении и поведении. Или же – в гипотетическом пределе – два древних детеныша из одного помета, у одного из которых появилась некая мутация, должны быть с точки зрения “генетической” кладистики отнесены к разным отрядам, очень древних – к разным классам, а очень древних – к разным типам. У “горизонтальной” систематики свой труднопреодолимый минус – вечная проблема выбора приоритетных для систематики признаков. Компромиссный путь пока не выработан; видимо, он должен быть “двух-” или даже “трехмерным” – учитывать и время расхождения линий, и суть появляющихся отличий.

Кстати, об игуанах…

Противоречия между морфологическими и генетическими данными – обычнейшее явление. На первых порах развития молекулярной систематики генетики были склонны крайне свысока относиться к “устаревшим” морфологическим методам классической систематики, сваливая все нестыковки на конвергенцию, специализацию и субъективность анатомов. Но в последнее время все больше данных свидетельствует о неоправданности такого высокомерия. Морфологи-герпетологи оправились после потрясений, вызванных успехами генетики, собрались с силами и провели блистательное исследование филогенетических взаимоотношений ящериц (Gauthier et al., 2012). Расхождения с молекулярной систематикой, особенно в части филогенетического положения игуан, вышли не в пользу последней; для ее оправдания приходится предполагать слишком много обратных мутаций и возвращений признаков в исходное примитивное состояние после миллионов лет специализации, причем признаков как морфологических, так и этологических, определенных как на современных, так и ископаемых видах, как у взрослых, так и эмбрионов. Очевидно, в данном случае генетика дает какие-то сбои, специалистам не стоит расслабляться и уповать, что секвенаторы и кластерный анализ автоматически покажут всю правду. Еще есть над чем работать, а приматологи, глядя на игуан, должны крепко задумываться и не терять навыки морфологического анализа.

Позднемеловые и палеоценовые звери эволюционировали странными путями (Кэрролл, 1993а, б; Основы палеонтологии, 1962). Внешне они были большей частью весьма сходны – мелкие землеройкоподобные создания с остренькой мордочкой, пятипалыми лапками и длинным хвостом. Сугубо внешностью сходство не ограничивалось. Хотя выделяют несколько отрядов палеоценовых млекопитающих, различия их бывают слабоуловимы даже для специалистов. Дополнительной сложностью является то, что большей частью от этих зверюшек сохранились лишь зубы. А строение зубов, понятно, сильно привязано к питанию, а питание, понятно, у всех было, во-первых, схожим, то есть отсутствовали строгие различия между отрядами, а во-вторых, могло и меняться от вида к виду, то есть внутриотрядное разнообразие было большим. Лучше могли бы работать признаки основания черепа – например, набор костей в составе слуховой капсулы, – но основание черепа сохраняется плохо, у зверюшек размером с мышь и подавно, и известно для небольшого количества древних видов.


Обезьяны и все-все-все

Рис. 18. Hadrocodium wui.


Такая ситуация приводит к тому, что описан целый ряд видов, родов, семейств и даже более крупных таксонов, “зависающих” где-то между отрядами. Например, апатемииды Apatemyidae, выделяемые обычно в собственный отряд Apatotheria, зависают между насекомоядными, плезиадаписовыми и приматами; анагалиды Anagalidae вроде бы очень похожи на тупай (которые сами промежуточны между насекомоядными и приматами), но тоже имеют специфику, позволяющую считать их самостоятельным отрядом Anagalida; Amphilemuridae включались в приматов, но ныне зачислены в надсемейство или отряд ежиных Erinacoidea или Erinaceomorpha. Как минимум два семейства шерстокрыловых – Mixodectidae и Placentidentidae – имеют необычайное сходство с насекомоядными. Целое надсемейство микросиопоидов Microsyopoidea имеет спорный статус, его коренное семейство Microsyopidae от схемы к схеме плавает между грызунами, насекомоядными, шерстокрылами и приматами. Picrodontidae раньше считались насекомоядными, теперь – плезиадапиформами. Adapisoriculidae гуляют от сумчатых и насекомоядных до тупай и плезиадапиформов.

Древнейшие млекопитающие или их непосредственные предки были крошечными животными, примером чему служит Hadrocodium wui из ранней юры Китая: он достигал всего 3,2 см в длину и весил 2 грамма (Luo et al., 2001). Правда, еще более древние позднетриасовые млекопитающие типа Morganucodon или Megazostrodon (иногда объединяемые в отряд Morganucodonta) были все же побольше – аж целых 10 см, но тоже входили в весовую категорию землероек. Понятно, что сохранилось от них немного, кости столь малых созданий могут не очень явно отражать какие-то особенности строения мускулатуры, да и оценить таксономические различия на таком материале крайне сложно.

Уголок занудства

Один из важнейших для систематики млекопитающих признаков – строение слуховой капсулы. Оно может варьировать в пределах одного отряда, но в общем и целом отражает родство. У тупай слуховая капсула образована энтотимпаником – внутренней барабанной костью; такое же строение имеется у лептиктид, некоторых насекомоядных, некоторых прыгунчиковых, анагалид, рукокрылых и множества более далеких групп. У шерстокрылов слуховая капсула образована, кроме энтотимпаника, еще и эктотимпаником – наружной барабанной костью, что встречается у грызунов, зайцеобразных и разного рода копытных. У приматов ее основным элементом является каменистая кость – редкостный вариант, имеющийся только у некоторых ежиных, тенреков и прыгунчиковых (у других ежиных, тенреков и прыгунчиковых встречаются и другие варианты строения, в том числе уникальные). Таким образом, приматы отличаются от подавляющего числа других отрядов, включая тупай и шерстокрылов. Свидетельствуют ли эти факты в пользу особо близкого родства приматов и насекомоядных и отдаления их от тупай и шерстокрылов? Скорее всего, нет. У некоторых ранних групп приматообразных животных окостеневшая слуховая капсула могла отсутствовать или не прирастать к черепу, в этом уличены Ignacius, Phenacolemur и Microsyops из плезиадапиформов, а вот адаписовые – например, Pronycticebus – уже имели каменистую слуховую капсулу, сросшуюся с основанием черепа. То же прослеживается в ранней эволюции ежиных – у древнейших форм капсула не окостеневала. Таким образом, окостенение капсулы появилось позже сложения таксономических групп и не может явно говорить об их родстве.

У многих групп палеоценовых и эоценовых млекопитающих проявилась тенденция к развитию длинных долотоподобных передних зубов, далеко выступающих вперед, с постоянным ростом и редуцированной эмалью. Этим отличались многобугорчатые, некоторые сумчатые, залямбдалестиды, тиллодонты, поздние тениодонты, апатемииды, некоторые ископаемые землеройки и ежи, грызуны, зайцеобразные, даманы, паромомиоиды, микросиопоиды, плезиадапиформы и плезиопитециды, не говоря о совсем уж экзотичных хоботных, пиротериях, десмостилиях и нотоунгулятах. С одной стороны, эта особенность сама по себе мало о чем говорит, так как сопровождается самыми разными вариациями строения прочих зубов и возникала по разным поводам. Склонность резцов к увеличению обеспечивалась за счет разных мутаций, и в разных группах увеличивались разные резцы (у тениодонтов вместо резцов ту же форму приняли вообще клыки). Показательно, что, несмотря на неоднократное возникновение такой зубной системы среди разных линий приматов, в наши дни ее имеет лишь один вид – мадагаскарская руконожка. Вероятно, остальные владельцы больших резцов не выдержали конкуренции с грызунами, а руконожку спасла ее крайняя специфика и изоляция (впрочем, гигантской руконожке, вымершей около тысячи лет назад, и это не помогло).

Кроме строения зубов и слуховой капсулы, приматы отличаются от насекомоядных крупными размерами глаз. Насекомоядные вообще видят плохо, глаза у них крошечные. Приматы видят хорошо и имеют большие глаза. Эти различия возникли, думается, очень рано, еще до стадии плезиадапиформов, и были, вероятно, связаны с образом жизни: насекомоядных – в лесной подстилке и приматов – на деревьях и кустарниках. Соответственно, обонятельный орган у насекомоядных велик, а у приматов – мал. Впрочем, у прыгунчиков большие глаза, а у Palaechton из плезиадапиформов – маленькие, так что и этот признак неидеален.

Мораль: практически нет каких-то универсальных и к тому же легко проверяемых признаков, которые бы помогли оценить эволюционную близость групп млекопитающих. Поэтому палеонтологам приходится хитрить и мудрствовать, чтобы выявить преемственность или, напротив, конвергенцию сходных форм.

Почему насекомоядные не стали разумными?

Древнейшие насекомоядные – Paranyctoides – известны из середины верхнего мела, чуть более раннего времени, чем древнейшие приматоподобные существа. Впрочем, как обычно бывает, таксономическая принадлежность этих ранних форм спорна. Они равно могут быть сближены с ежеподобными и землеройкоподобными. Достоверные насекомоядные в узком смысле Eulipotyphla появляются в палеоцене. Тогда в Америке, Европе и Северной Африке широко были распространены палеориктиды Palaeoryctidae – землеройкоподобные животные, но они, как и землеройки Soricidae, с самого начала были привязаны к земле и оказались достаточно специализированными роющими животными, к тому же особо-насекомоядными, судя по очень высоким и острым бугоркам зубов (что в будущем сделало из них хищников – Creodonta и Carnivora). В среднем и позднем палеоцене уже имеются представители семейства ежовых Erinaceidae, например североамериканский Mackennatherium и германский Adunator. Ежовые, таким образом, чуть ли не самое древнее из современных семейств млекопитающих, исключая разве что броненосцев Dasypodidae. Неудивительно, что они сохранили массу примитивных черт, а потому плохо отличимы от прочих древних зверей и имеют множество сходств с совершенно разными современными млекопитающими.

Никтитерииды Nyctitheriidae – существа, возможно, не только землеройкоподобные, но и близкородственные собственно землеройкам Soricidae, известны из палеогена. Любопытно, что первоначально они были древесными, в противоположность современным родичам и, возможно, потомкам – землеройкам Soricidae и кротам Talpidae. К среднему эоцену насекомоядные имели уже почти современный облик и вели нынешний образ жизни. С деревьев они были почти полностью вытеснены более развитыми приматами. Впрочем, вытеснялись они, возможно, не только вниз – в почву, но и вверх – в воздух, ведь часть никтитериид, вероятно, дала летучих мышей. Зубы никтитериид и рукокрылых почти неотличимы, и не исключено, что часть палеоценовых родов, известных лишь по зубам, относятся к древнейшим летучим мышам.

Между насекомоядными и шерстокрыловыми промежуточны палеоценовые Mixodectidae, а Г. Осборн считал их грызунами. Предками миксодектид могли бы быть палеориктиды, ежиные или их близкие родичи (Szalay, 1969). Близки к предкам приматов лептиктиды Leptictida – особый отряд палеогеновых зверей, хотя даже самые ранние их представители – Gypsonictops из верхнего мела – оказываются более специализированными, чем миксодектиды. Лептиктиды были хищными и явно специализировались к передвижению на задних ногах, причем не только прыжками, но и бегом (Leptictidium), некоторые стали внешне несколько похожи на современных прыгунчиков, а размеры их колебались от мышиных до длины в полметра и даже больше. Строение лептиктид (кстати, во многом похожих на ежиных), с одной стороны, примитивно, с другой – у них имеются явные черты специализации; это позволяет говорить о близости лептиктид ко всем примитивным отрядам млекопитающих, включая приматов, но не позволяет утверждать, что лептиктиды были их прямыми предками. Имеются и другие верхнемеловые млекопитающие, имеющие в целом примитивное строение, но с элементами специализации, например Procerberus. Как итог, их систематика остается крайне спорной.

Апатемииды Apatemyidae – одна из групп неопределенного положения; их относили и к насекомоядным, и к плезиадапиформам и выделяли в собственный отряд апатотериев Apatotheria, говорилось о близости апатемиид к грызунам, копытным, хищным, тениодонтам, тиллодонтам, кондиляртрам и, конечно, приматам. Впрочем, их зубы оказались слишком специализированы уже к началу палеоцена, чтобы можно было выводить из апатемиид кого-либо. Сильно увеличенные передние резцы – особенно нижние – делали их похожими на плезиадапиформов, грызунов и кускусов, близки они были и по стилю жизни, но сильно уступали большинству конкурентов в размерах, так как были величиной с мышь. Апатемиид отличала очень массивная голова, вытянутые тонкие пальцы и крайне длинный хвост. Жили они на деревьях. По всей видимости, апатемииды питались преимущественно насекомыми, которых добывали из-под коры деревьев подобно руконожкам и новогвинейским полосатым поссумам Dactylopsila – простукивая стволы, прогрызая в них дырочку мощными зубами и доставая добычу удлиненными вторым и третьим пальцами. Апатемииды известны со среднего палеоцена Европы и Северной Америки; поздние виды дотянули до среднего олигоцена, но, по всей видимости, проиграли эволюционную гонку приматам, грызунам и – в особенности – дятлам (Koenigswald et Schierning, 1987). Древнейшие дятлы, хотя еще и без своей знаменитой долбежной адаптации, известны из того же среднеэоценового местонахождения Мессель в Германии, что и апатемиид Heterohyus; отверстия, похожие на следы работы дятлов, найдены в стволах эоценового леса в Аризоне. Поздние апатемииды увеличились в размерах и, вероятно, пытались перейти на новые источники пищи, но дятлы победили. Ставка на специализацию, как обычно, оказалась роковой. Аналогичная адаптация, возможно, возникла у крупного плезиадапида Chiromyoides в позднем палеоцене Северной Америки и Европы. Любопытно, что предок руконожки Plesiopithecus teras с характерной специализацией зубов известен из верхнего эоцена Египта, но и сюда добрались зловредные дятлы, так что руконожка нашла убежище лишь на далеком лесистом острове. На Мадагаскаре и Новой Гвинее дятлов нет, поэтому только тут сохранились экологические аналоги апатемиид – руконожки и полосатые поссумы.

Уголок занудства

Первые приматы имели менее высокие и не такие острые бугорки моляров, более мощные и широкие скуловые дуги и не столь вытянутую мордочку, нежели ежиные. Верхние зубы ранних приматов поперечно более узкие, чем у насекомоядных, есть и более специфические отличия в строении зубов; в частности, пониженная разница между высотой тригонида – “трехбугорчатой” части – и талонида – “пятки” нижних моляров (Szalay, 1969). Например, древнейший приматоморф Purgatorius из верхнего мела США – вернее, единственный известный нижний моляр – определен как приматоморф именно по сочетанию квадратных очертаний с притупленностью бугорков тригонида, точно такие же зубы известны из нижнего палеоцена (хотя у Purgatorius тригонид высокий, а талонид узкий, и имеется стилярная полка, что не позволяет однозначно определить его как примата). Все эти особенности иногда связывают с переходом с сугубо насекомоядной диеты на смешанную, включающую фрукты и листья (Szalay, 1969). Конечно, судить о питании по зубам получается не всегда. Например, у современных шерстокрылов зубы остробугорчатые, “насекомоядные”, тогда как питаются эти звери листьями и плодами. Может, меловые предки приматов имели подобное же сочетание зубов и диеты, а потому мы не узнаём их среди прочих насекомоядноподобных зверюшек?

Все насекомоядные в широком смысле имеют очень слабое развитие мозга. Интеллект у ежа понятно какой. Да и каким ему быть, коли масса мозга у него – чуть больше трех граммов, извилин на нем нет, а большая часть отвечает за обоняние? Ежу понятно, что извилинами с таким мозгом не пошевелишь – извилин-то нет! Малые размеры тела, правда, обеспечивают землеройкам рекордные показатели относительной массы мозга, но они же приводят к необходимости высочайшего метаболизма – опять же рекордного для млекопитающих. Необходимость согревать махонькое тельце не оставляет энергии и возможностей для сколь-либо существенного интеллекта и, кроме прочего, сокращает продолжительность жизни. Насекомоядные – заложники своего размера и прожорливости. Ежи, впрочем, зимой превращаются фактически в холоднокровных животных, но спячка еще в меньшей степени способствует разумности.

Почему грызуны и зайцеобразные не стали разумными?

Грызуны возникли, вероятно, как группа роющих существ, питающихся твердыми растительными кормами; по крайней мере, многие древнейшие представители вели именно такой образ жизни. Часть даже самых ранних верхнепалеоценовых и нижнеэоценовых родов – Paramys и Ischyromys – имели белкоподобный облик и, возможно, лазали по деревьям, но конкуренция со стороны плезиадаписовых – тоже древолазящих и грызуноподобных в строении черепа, но более интеллектуальных – очевидно, была слишком велика. Поэтому, несмотря на то, что в последующем – где-то с верхнего эоцена и после – многие грызуны перешли к древолазанию и питанию фруктами, а многие стали не прочь съесть и чего животного (летяги – страшные враги всех певчих птиц), грызуны не смогли выйти на новый эволюционный уровень. К этому времени в тропиках приматы уже прочно заняли соответствующую экологическую нишу, а вне тропиков, видимо, не хватало фруктов и развесистых деревьев, так что у белок, сонь и древесных дикобразов не осталось шансов стать разумными. Впрочем, не исключено, что спустя миллионы лет грызуны отыгрались и “сказали-таки свое веское слово” в вымирании парантропов, но это можно считать лишь пакостной местью неразумных созданий, но никак не заявкой на эволюционно-интеллектуальное превосходство. Однако примитивность в сочетании с неимоверными темпами видообразования – максимальными среди млекопитающих – оставляют грызунам надежду на разумное будущее.

Вероятно, грызуны начали эволюционную гонку несколько позже приматоморфов. Мелкие размеры (отдельным видам – Phoberomys pattersoni из верхнего миоцена Венесуэлы и Josephoartigasia monesi из плиоцена Уругвая – удалось достичь размеров очень крупной коровы или маленького носорога, но исключения – одно из основных свойств живой природы, да и большими мозгами такие мегакрысы похвастаться не могли: Sánchez-Villagra et al., 2003; Rinderknecht et Blanco, 2008), преимущественная растительноядность, значительная морфологическая специализация, малая продолжительность жизни, большое количество детенышей – достаточные причины для сохранения простого строения мозга и слабой социальности. Даже самые социальные суслики и голые землекопы особым интеллектом не блещут, простота добывания корма и мощный пресс хищников способны задавить всякие проблески разума. Грызуны смогли вытеснить многобугорчатых Multituberculata (которые вымерли как раз в конце эоцена – одновременно с расцветом грызунов), но “приматный” путь развития им был уже заказан. И это притом, что эволюционный корень приматов и грызунов был един! Впрочем, есть еще серые крысы – они и всеядны, и социальны, и не так уж бестолковы для своего размера; на них вся надежда на возрождение разума после исчезновения людей.

Древнейшие грызуны Rodentia известны из позднего палеоцена Северной Америки, а примитивнейшие – из нижнего эоцена Азии; в Азии в верхнем палеоцене тоже имеется несколько “грызуноподобных” видов, так что возникнуть отряд мог и там и там. Эти архаичные формы очень схожи с азиатскими анагалидами Anagalida. Получается интересная ситуация: анагалиды признаны неродственными приматам, приматы – близки к грызунам, а грызуны тем не менее потомки анагалид. Путаница была распутана новейшими исследованиями, в которых было показано, что сходство грызунов с анагалидами конвергентно. В настоящее время в качестве предкового для грызунов и зайцеобразных (или же только зайцеобразных) называется эндемичный азиатский отряд миксодонтов Mixodontia, и даже конкретнее – мимотониды Mimotonida и эвримилоиды Eurymyloidea (Лопатин, 2004), известные с раннего палеоцена. Любопытно, что древнейшие приматоморфы связывают Северную Америку с Европой, а грызуны – Северную Америку с Азией; вероятно, это связано с распространением в области с наименьшим сопротивлением со стороны других отрядов. Не значит ли это, что в палеоцене и эоцене в Азии кто-то составлял приматам серьезную конкуренцию? Впрочем, дело может быть просто в благоприятности экологических условий. Может, в Азии в палеоцене было меньше густых лесов, где могли бы жить приматы?

Как итог, грызуны имели с приматами одних предков в верхнем мелу, но в палеоцене их линии уже заметно разошлись – как экологически и морфологически, так и по эволюционной судьбе.

Близки к грызунам зайцеобразные Lagomorpha. Препятствия на пути “приматизации” зайцеобразных были теми же, что и для грызунов, хотя и с любопытной поправкой. Строение челюстей, тип прикуса и механика пережевывания пищи зайцеобразных – с боковыми движениями – позволяют каждому виду осваивать широкий спектр экологических условий и огромные ареалы без особой морфологической перестройки. Грызуны же специализируются именно на морфологическом уровне. Поэтому современные зайцеобразные насчитывают от силы полсотни видов, тогда как грызуны – несколько сотен родов и около 1700 видов. Таким образом, зайцеобразные с самого начала своей эволюции ступили на путь “специализации к неспециализации”, столь часто постулируемый как особо прогрессивный и якобы давший приматам невероятные эволюционные преимущества. Однако зайцеобразные “слишком рано” “вышли в саванну” – специализировались к наземному бегу и, хотя древесные зайцы тоже в природе существуют, так и не развили сколь-либо выраженной подвижности и цепкости “рук”. Зацикленность на растительной пище у зайцев еще большая, чем у грызунов, так что особых поводов для увеличения мозга и усложнения поведения в их истории не возникало. Пищухи Ochotonidae достаточно социальны, но не настолько, чтобы их можно было сравнивать даже с лемурами. Да и возникли зайцеобразные слишком поздно – лишь в среднем эоцене, так что шансов составить конкуренцию приматам у них уже не оставалось.

Почему копытные не стали разумными?

Еще одна крайность – копытные травоядные Ungulata. Среди палеогеновых млекопитающих особым разнообразием отличалась группа кондиляртр (Condylarthra), возникшая в самом начале палеоцена. Древнейший – Kharmerungulatum vanvaleni – найден в позднем мелу Индии (Prasad et al., 2007). Несколько лучше представлены североамериканские роды кондиляртр Protungulatum, Oxyprimus, Baioconodon и Mimatuta. Protungulatum gorgun был найден в слоях, содержащих зубы динозавров, а потому обычно упоминается как позднемеловой. Выяснилось, однако, что течением реки слои позднего мела и раннего палеоцена были перемешаны; Protungulatum с наибольшей вероятностью является раннепалеоценовым.

Как и для всех прочих плацентарных, корни кондиляртр теряются в густом тумане границы мела и палеоцена; в качестве предков назывались желестиды Zhelestidae – мелкие зверьки позднего мела Средней Азии, Европы и Северной Америки, – но родство этих групп поставлено под основательное сомнение (Archibald et Averianov, 2012; Wible et al., 2007). Сами кондиляртры с наибольшей вероятностью являются сборной группой, но известные черты ее представителей столь плохо различимы, что практически невозможно адекватно разделить ее на части (Wible et al., 2007).

Среди кондиляртр можно найти формы, весьма напоминающие приматов: их зубы тоже имеют притупленные бугорки, более-менее прямоугольную форму коронок и прочие тонкости, схожие с признаками нашего отряда. Неспроста статус некоторых животных долгое время оставался или до сих пор остается под вопросом: кондиляртры это или приматы? Примером могут служить Decoredon anhuiensis из палеоцена Китая, Hyopsodus и Promioclaenus из палеоцена и эоцена Северной Америки. Первоначально кондиляртры были стопоходящими всеядными животными, причем в диете немалую роль играли плоды и листья – как и у приматов, а сами они могли лазать по деревьям. Неудивительно, что некоторые тенденции эволюции самых ранних – нижне– и среднепалеоценовых – представителей группы весьма напоминали эволюцию приматов. Например, бугорки на молярах тоже стали понижаться, зубы стали закругляться и вытягиваться. Однако в дальнейшем кондиляртры пошли большей частью по пути приспособления к наземному бегу и питанию жесткой растительной пищей, дав в числе прочих парно– и непарнокопытных Artiodactyla и Perissodactyla. Посему морда их стала удлиняться, а не укорачиваться, как это было у приматов, жевательные зубы резко увеличились, выросло и число бугорков на них, конечности стали менее гибкими и полупальцеходящими, а первый палец не только не получил тенденции к противопоставлению, но вообще стал редуцироваться, вместе с пятым. Когти преобразовались не в ногти, а в копыта. Предполагалось, что некоторые примитивнейшие копытные с когтями на пальцах – эоценовые североамериканские агриохериды Agriochoeridae – могли даже лазать по деревьям, хотя вряд ли очень ловко, так что конкуренции на этом поприще с уже существовавшими тогда приматами они, конечно, выдержать не могли. Показательно, что древнейшие копытные отличались примитивным строением черепа и зубов, но имели довольно специализированные конечности. Учитывая, что большую часть сведений о древних млекопитающих мы извлекаем из зубов, этот факт заставляет задуматься.


Обезьяны и все-все-все

Рис. 19. Кондиляртры Hyopsodus (а) и Chriacus (б).


Одним из “звоночков”, которые могли определить будущую судьбу кондиляртр, является приспособленность самых ранних представителей не просто к жизни на земле, но к рытью. Хорошим примером может служить род Chriacus, разные виды которого жили в Северной Америке на протяжении всего палеоцена и в начале эоцена. Chriacus имел гибкие конечности с пятью пальцами, увенчанными когтями; он мог бегать, лазать по деревьям, ел все подряд – фрукты, насекомых, мелких животных; его нижние резцы даже приобрели вид “зубной щетки” для чистки шерсти – как у лемуров. Но его передние конечности явно предназначены иногда копать – и этим кондиляртры отличаются от приматов. Кондиляртры были универсальнее, приматы – специализированнее, а потому первые не смогли вытеснить последних на деревьях, а последние не могли спуститься на землю. Некоторые кондиляртры довольно долго вели соревнование с приматоморфами за жизнь на деревьях: белкоподобные гиопсодонтиды Hyopsodontidae появились на границе палеоцена и эоцена – тогда же, когда настоящие приматы и грызуны. Те, другие и третьи были очень схожи экологически и, следовательно, имели массу параллелей в морфологии. Однако приматы и грызуны имели более длинную историю становления древесности, а землю уже захватили потомки кондиляртр, так что гиопсодонтидам не оставалось ничего, кроме вымирания (хотя поначалу они, как всякие малоспециализированные формы, были крайне многочисленны и часто представляют большинство млекопитающих в местонахождениях).

Большинство потомков кондиляртр стали специализированными растительноядными копытными животными, однако некоторые и после имели шанс вступить на “приматный путь”. К примеру, среди пантодонтов Pantodonta монгольская нижнеэоценовая Archaeolambda planicanina, насколько можно судить по ее зубам, была всеядно-насекомоядной, приматы тогда в Монголии почти отсутствовали (достоверно известен лишь один вид Altanius orlovi), так что некоторые пантодонты могли занимать их экологическую нишу; впрочем, вряд ли археолямбда была очень похожа на приматов, учитывая внешний вид других пантодонтов. Но пантодонты не смогли превзойти даже представителей южноамериканской фауны, известных своей низкой конкурентоспособностью, – в раннем палеоцене Южной Америки жил пантодонт Alcidedorbignya inopinata, а в последующем эта группа там исчезла. (Одновременно сей факт говорит о наличии хотя бы ограниченной связи между материками в раннем палеоцене, так что теоретически приматоморфы могли заселиться в Южную Америку уже тогда; а может, и заселились, но после исчезли? Вдруг новейшие изыскания откроют нам южноамериканских палеоценовых плезиадапиформов?)

Как выглядели и жили некоторые ранние растительноядные, можно представить, наблюдая современных даманов Hyracoidea, хотя современные даманы, без сомнения, достаточно специализированы и не могут считаться “живыми ископаемыми”. Часть их признаков отдаленно напоминает вариант приматов, например стопо– или полустопохождение, плоские ногти на пальцах (коготь сохраняется на первом пальце задней ноги – точь-в-точь как у лемуров), способность лазить по деревьям (впрочем, за счет влажности подушечек пальцев, а не их хватательной способности). Однако все же подавляющая часть их черт явно сближается с более крупными растительноядными; явного родства с приматами у даманов, конечно, нет.

Переход к растительноядности независимо повторили несколько групп млекопитающих. Например, ранние среднепалеоценовые диноцераты Dinocerata были похожи на ранних кондиляртр и креодонтов, но скоро превратились в огромных носорогоподобных зверей с рогами и копытами. Такая же судьба ожидала и многих других зверей. Эволюция их совершалась, как правило, очень быстро, даже самые ранние представители уже имеют все главные признаки своей группы. Впрочем, некоторые смогли сохранить некоторые первоначальные черты вплоть до современности. Хорошим примером могут служить свиньи Suina. Свинообразными были самые первые парнокопытные. Их примитивные зубы – низкокоронковые бугорчатые – во многом напоминают, с одной стороны, зубы приматов, с другой – сохраняют общий план у современных свиней. В немалой степени этому способствует, конечно, всеядный характер питания. Масса примитивных признаков, кстати, сохраняется у них и в строении конечностей. Фактически свиней можно рассматривать как эволюционно очень продвинутый экологический аналог наземных приматов (наше далекое будущее?).


Все наземные растительноядные невыгодно отличаются от приматов низким интеллектом и упрощенно-механизированными конечностями, движущимися лишь в одной продольной плоскости и потерявшими всякие шансы стать хватательными. Низкокалорийность растительной пищи приводит к усложнению и специализации пищеварительной системы, оттягивающей на себя энергетические и эволюционные акценты. С другой стороны, корневища, трава и листья не прячутся, не убегают и активно не сопротивляются. Добыть их несложно, а цвет почти всегда зеленый, что не способствует развитию цветного зрения. Все это в совокупности приводит к малой интеллектуальности копытных, вошедшей в массу поговорок и ругательств.

Почему хищные не стали разумными?

Обратная крайность – хищники. Хищный образ жизни вели предки млекопитающих еще до появления этой группы. Древнейшие млекопитающие все были хищниками в широком смысле слова. Впрочем, поеданием червячков и букашек дело не ограничивалось, о чем недвусмысленно свидетельствуют кости пситтаккозавра в желудке триконодонта Repenomamus robustus из нижнего мела Китая (Hu et al., 2005). А ведь родственный ему Repenomamus giganticus был вдвое больше – около метра в длину.

Хищники уже с самых ранних форм – нижнепалеоценовых кондиляртр арктоционид Arctocyonidae и верхнепалеоценовых креодонтов Creodonta – достаточно специализированы, но в их строении проглядывает более древнее состояние: когти не очень острые, зубы не имеют хищнического лезвия и в целом похожи на зубы насекомоядных и приматов, в скелете имеется хорошо развитая ключица, конечности стопоходящие. Многие из них хорошо лазали по деревьям. Вероятно, они были еще не абсолютно хищными, а всеядными. Из родственников современных хищных уже в нижнем палеоцене виверравиды Viverravidae были заметно специализированными к питанию насекомыми. Вместе с тем у среднепалеоценовых миацид Miacidae на фоне усиления хищнического комплекса имелся такой почти “приматный” признак, как умеренное противопоставление большого пальца. Виверравиды и миациды в настоящее время часто определяются как Miacoidea и исключаются из хищных в узком смысле слова, а настоящие хищные современного отряда Carnivora появляются в середине эоцена. Впрочем, преемственность всех этих групп достаточно очевидна, а экологически они не особо отличались.

Таким образом, хищники в широком смысле Carnivoramorpha успели занять свою экологическую нишу, по сути дела, раньше приматов, что объясняет, почему приматы не стали хищнее, чем могли бы. Конечно, гоминиды в итоге отыгрались по полной программе (все крупные и многие мелкие хищники сейчас в Красной книге), но в палеогене до этого было еще далеко. Впрочем, многие хищные вторично вернулись ко всеядности и – вспоминая панду – даже специализированной растительноядности. Показательно, что, например, у енотовых Procyonidae в связи с этим моляры приобрели квадратную форму и притупленные бугры, а лапки развили необычайные манипулятивные способности. Еще больше похожи на зубы приматов моляры большой панды Ailuropoda melanoleuca.

Причина “неприматизации” хищников видится в несоциальности всеядных форм и хищнической специализации социальных; про специализированных несоциальных можно вообще не вспоминать. Медведи Ursidae могут собираться группами при изобилии корма – например, нерестовом ходе лосося или созревании ягод, – но при этом никак не общаются между собой, а, напротив, стремятся держаться подальше друг от друга. Вероятно, так же вели себя медведеподобные по стилю жизни мезонихии Mesonychia – странные звери с огромными челюстями, маленькими мозгами и копытами на ногах, появившиеся в самом начале палеоцена в Азии и дожившие до начала олигоцена.

Социальные львы – специализированные хищники, охотники на крупных копытных; впрочем, все прочие кошачьи Felidae несоциальны.

Наверное, максимально приближены к “приматному идеалу” шакалы Canis и носухи Nasua – они и социальны, и всеядны. Но хищнические корни завели морфологию шакалов далеко по пути специализации, так что трудно представить, как они могут перейти к орудийной деятельности. А вот у древесных носух с их подвижными пальцами и общительностью, наверное, неплохие шансы – не зря они так напоминают лемуров. Настораживает лишь одно – долгие миллионы лет носухи остаются носухами и все никак не станут чем-то большим. Вероятно, препятствием на пути разумности становятся слишком длинные когти и носы? Енотовые Procyonidae появились в начале олигоцена – намного позже приматов, – может, у них все еще впереди?

Почему китообразные и ластоногие не стали разумными?

Древнейшие звери, приспособленные к водному образу жизни, известны уже из середины (Castorocauda lutrasimilis: Ji et al., 2006) и конца (Haldanodon exspectatus: Martin, 2005) юрского периода. Бесконечно далеки они от приматов!

Водные млекопитающие обычно довольно интеллектуальны (есть, конечно, дюгони Dugongidae и ламантины Trichechidae, но морская корова и есть корова, хотя и морская). В воде можно почти бесконечно наращивать размеры мозга, тем более что ресурсы позволяют.

Китообразные Cetacea появились в самом начале эоцена, 48–56 млн лет назад. Замечательными примерами четвероногих китов, похожих на помесь крысы с крокодилом, являются Himalayacetus subathuensis из Индии, а также Pakicetus attocki и Ambulocetus natans из Пакистана. Они имели огромную пасть, коротенькие лапки и длинное гибкое тело. А вот мозгами похвалиться они никак не могли. Интересовала их только рыба. Довольно быстро китообразные ушли в море и приобрели современный облик. Еще в олигоцене они достигли церебральных показателей – по абсолютным размерам и складчатости поверхности – уровня продвинутых гоминид (Lilly, 1977), а многие современные виды вдвое превосходят по ним человека. Нынешние китообразные известны своей повышенной социальностью и сложными способами общения, в том числе межвидового.


Обезьяны и все-все-все

Рис. 20. Мозг дельфина


Однако столь же общеизвестной истиной является малая относительная величина мозга китов и дельфинов, а преобразование лап в ласты – не лучший зачин для освоения трудовой деятельности. Кроме того, ловля рыбы и креветок – не самый идеальный стимулятор умственного прогресса. Как бы сложно стая дельфинов ни загоняла косяк рыбы, это остается загоном рыбы; не так сложно обхитрить селедку. (Критики возразят: “А приматы что? Вообще за кузнечиками гонялись да бананы с ветки рвали!” Но в том-то и дело, что приматы занимались разными вещами, долгопяты-кузнечиколовы остаются таковыми и по сей день, а разум появился у всеядных охотников на крупную дичь и собирателей всего подряд в саванне, полной конкурентов.) Что бы энтузиасты и фантасты ни говорили о необычайных достижениях дельфинов, о подводных цивилизациях и светлом будущем нетехнократической цивилизации пацифистов в океанских просторах, шансов на разумность у них немного.

То же можно повторить и о ластоногих Phocidae, Otariidae и Odobenidae (или, обобщенно – и пусть геносистематики покосятся на меня! – Pinnipedia). Пищевая специализация, превращение ног в ласты, а тела в жировой бурдюк не способствуют развитию интеллекта.

Возможно, есть шансы у каланов Enhydra lutris. Эти забавные звери обладают всеми задатками: они высокосоциальны, у них хватательная кисть и богатая трудовая деятельность по раскалыванию морских ежей и раковин гальками. С ними сложность та же, что с енотами: видимо, им слишком хорошо в их среде обитания, миллионы лет они остаются счастливыми обитателями ламинариевых лесов и не собираются переходить на следующий уровень. Видимо, им не хватает своего экологического коллапса, в преодолении которого пришлось бы поумнеть. Может, своего рода саваннизация севера Тихого океана еще осчастливит мир разумными каланами? Правда, для этого надо убрать уже имеющихся конкурентов…

Почему многобугорчатые и сумчатые не стали разумными?

Комплекс, похожий на раннеприматный, развился у многобугорчатых Multituberculata, представляющих самостоятельный подкласс Allotheria, особенно у птилодонтид Ptilodontidae, чья зубная система удивительным образом сочетала специализированность и универсальность. Емко охарактеризовала их В. И. Громова: выступающие вперед “длинные резцы служили для прокалывания и прогрызания твердых плодов, большой задний нижний переднекоренной – для разрезания оболочек более мягких и размельчения крупных плодов, а многобугорчатые заднекоренные – для их раздавливания” (Основы палеонтологии, 1962). Такая зубная система функционально близка к совершенству и может использоваться для питания как растительными кормами, так и животными. Некоторые многобугорчатые вели древесный образ жизни, а Ptilodus даже имел хватательный хвост и мог спускаться по деревьям вниз головой, как белки. Однако многобугорчатые уступали приматам заметно меньшим развитием мозга. То же можно сказать о тиллодонтах Tillodontia: они были всеядны, стопоходящи, сохраняли ключицу, могли лазать по деревьям и имели потенциально хорошие эволюционные шансы. Однако достаточно одного взгляда на их мозговую коробку – узкую, низкую, со всех сторон стиснутую жевательными мышцами, – чтобы понять причины их вымирания. Те же особенности гарантировали ту же судьбу еще нескольких отрядов млекопитающих. Гладкий маленький мозг свел в могилу половину ранних зверей, притом что их образ жизни и размеры колебались от землеройкоподобных до слонопотамовидных.

Другой причиной вытеснения многобугорчатых приматами и грызунами было несовершенство их онтогенеза. Судя по малому отверстию между двумя половинками таза, многобугорчатые рожали очень мелких недоразвитых детенышей, подобно современным сумчатым (имеются и сумчатые кости, но они прямо не связаны с сумкой, поскольку обнаружены также у циногнатовых Tritylodontidae и одного из древнейших плацентарных – Eomaia scansoria: Ji et al., 2002). Сочетание с малыми размерами тела и короткой жизнью оказалось буквально убийственным: такие животные не могли быстро нарастить мозги и накопить жизненный опыт, так что их интеллектуальный уровень оставался крайне низким. К тому же челюсти многобугорчатых могли двигаться только по вертикали и вперед-назад, а жевательные движения им были недоступны. Пока достойных конкурентов не было, все было хорошо – так продолжалось, кстати, примерно 100 млн лет подряд, – но когда приматы и грызуны достаточно развились, они задавили многобугорчатых интеллектом и обогнали их в скорости пережевывания пищи (“хорошо пережевывая пищу, ты помогаешь обществу!”). А ведь еще были тениодонты Taeniodonta и тиллодонты Tillodontia – роющие животные, питавшиеся корневищами, крупные и сильные, так что конкуренция в “грызунячьей” экологической нише в палеоцене была основательной. Однако, к чести многобугорчатых, стоит отметить, что для окончательной победы приматам и грызунам понадобилось не менее 25 млн лет.


Обезьяны и все-все-все

Рис. 21. Многобугорчатое Ptilodus; череп тиллодонта Trogosuss huracoides, вид сверху.


Почти те же причины привели к почти повсеместному исчезновению сумчатых Metatheria. Показательно, что среди сумчатых крысовидных опоссумов-ценолестид Caenolestidae и палеогеновых полидолопид Polydolopidae развилась зубная система, очень похожая на систему многобугорчатых; видимо, они были аналогом последних в Южной Америке. В Австралии такой же вариант известен у крысиных кенгуру Aepyprymnus и карликовых поссумов Burramys.

Самые примитивные сумчатые – опоссумы-дидельфиды Didelphidae и ранние дазиуроиды Dasyuroidea – экологически весьма похожи на предков приматов и древнейших приматов: едят все подряд, хорошо лазают по деревьям, многие имеют хватательный хвост и противопоставляющийся большой палец на задней ноге (на нем даже нет когтя). Однако приматы эволюционировали в крупных и умных животных, а опоссумы остались такими же, какими были еще в меловом и чуть ли не юрском периоде. Конечно, сумчатые тоже не стояли на месте, из опоссумоподобных предков развились аналоги неполнозубых (сумчатый муравьед Myrmecobius fasciatus), насекомоядных (включая сумчатого крота Notoryctes), грызунов (включая сумчатых летяг Petauridae и Acrobatidae) и даже крупных хищников – размером до большого медведя или леопарда (вроде южноамериканских боргиенид Borhyaenoidea и их потомков тилакосмилид Thylacosmilidae, а также австралийских тилацинид Thylacinidae и тилаколеонид Thylacoleonidae). Но показательно, что среди всего изобилия форм сумчатых нормальных аналогов приматов так и не возникло. Сумчатые не дали ни бегающих хищников, ни быстрых древолазов. В Южной Америке опоссумы Didelphidae и Microbiotheriidae, а в Австралии и Меланезии коала Phascolarctos cinereus, кускусы Phalangeridae и Tarsipedidae, а равно древесные кенгуру Dendrolagus проигрывают по всем статьям даже белкам, не говоря уж о мартышках. Среди полуобезьян тоже есть медленные лори, но даже они способны двигаться быстрее древесных сумчатых. Кускусы имеют противопоставляющиеся большие пальцы, всеядны, имеют квадратные моляры – всё знакомые черты, – но на этом сходство с приматами заканчивается. Хоботноголовые кускусы Tarsipes rostratus, питающиеся медом и цветочной пыльцой, экологически весьма напоминают некоторых мышиных лемуров, но и те и другие являются примерами крайней специализации. Любопытно, что даже древесные кенгуру, имевшие прыгающих наземных предков, по деревьям предпочитают двигаться фактически ползком; этим сумчатые принципиально отличны от приматов, один из важнейших признаков которых – адаптация к прыганию.

Очевидно, ключевая разница сумчатых и приматов – в степени развития мозга. Что сдерживало развитие мозга аллотериев-многобугорчатых и сумчатых – вопрос. Уже упомянутое несовершенство системы вынашивания детенышей не позволяло рожать их достаточно развитыми, чтобы уже после рождения они успели набраться ума-разума. У самых продвинутых в этом отношении сумчатых – бандикутов Peramelemorphia – имеется аллантоисная плацента, но безворсинчатая, а трофобласта, препятствующего отторжению плода, у них нет. Посему, как и все прочие сумчатые, бандикуты рожают детенышей фактически на стадии эмбриона. Возможно, еще сотня миллионов лет – и потомки бандикутов покорили бы Землю, но кто ж им даст эту сотню? Видимо, в большом интеллекте до поры до времени не было надобности, поскольку окружение в виде ящериц и динозавров само было не чересчур интеллектуальным, конкурировать было не с кем. А после появления плацентарных было уже поздно, чему свидетельством печальная история всех сумчатых фаун на всех континентах. К примеру, конкуренция с грызунами и приматами называется в качестве основной причины вымирания сумчатых полидолопид в олигоцене. Показательно, что конкуренцию с ранними насекомоядными сумчатые вполне выдержали: еще в нижнем палеоцене палеориктиды проникли-таки в Южную Америку (Marshall et Muizon, 1988), но потом исчезли на долгие миллионы лет (опять же – раз туда добрались палеориктиды, стало быть, могли добраться и плезиадапиформы, но их мы в Южной Америке не находим). Да и современные землеройки смогли заселить лишь самый север Южной Америки, южнее им успешно противостоят опоссумы, которые даже устроили “контрнаступление” на североамериканский континент. Даже в Австралии, про которую слишком часто говорят, что единственное плацентарное там – динго (для начала: а как же человек, эту динго туда переправивший?), имеется масса видов летучих мышей (которые заселились туда еще в эоцене) и около полусотни видов грызунов. Их обычно игнорируют или просто не знают об их существовании, но они есть! И за миллионы лет они не стали чем-то бóльшим и не смогли победить сумчатых Зеленого континента.

Некоторые сумчатые, видимо, пытались преодолеть “мозговой барьер”. Так, нижнепалеоценовый опоссум Pucadelphys andinus из Боливии был довольно социальным животным, о чем свидетельствует выраженный половой диморфизм и обнаружение десятков особей разного пола и возраста в одном месте – на площади одного “гнезда” (Ladevèze et al., 2011). Однако такие продвинутые сумчатые “опередили свое время” и не получили развития, а последующие виды вели одиночный образ жизни.

Почему тениодонты, рукокрылые, птицы и шерстокрылы не стали разумными?

В качестве прогрессивного признака какой-либо группы – часто приматов – иногда называют большую скорость эволюции, но это положение нуждается в категоричном уточнении.

На последовательном ряду палеоценовых тениодонтов Taeniodonta можно увидеть, как из подобного насекомоядным и опоссумам существа Onychodectes через собакоподобного зверя Wortmania может развиться странное чудище вроде Psittacotherium, Ectoganus или Stylinodon размером с медведя. Наверное, среди палеоценовых зверей тениодонты имели максимальную скорость эволюции. При этом никто не считает их особо прогрессивными млекопитающими. Тениодонты могут служить наглядным примером, как можно быстро специализироваться и потерять возможность стать “настоящим приматом”.

Другой пример быстрейшей специализации – летучие мыши Chiroptera. Рукокрылые, вероятно, имелись уже в верхнем мелу Южной Америки и верхнем палеоцене Франции и Германии (Gingerich, 1987; Hand et al., 1994; Hooker, 1996), а однозначные представители нижнего эоцена мало отличимы от современных, причем они обнаружены сразу в десятках видов на всех континентах, включая Австралию. Замечательно, что зубы нижнеэоценовых летучих мышей почти идентичны зубам примитивных плацентарных типа Cimolestes и древнейших землеройковых, так что родство всех этих групп не представляет сомнения, что однозначно подтверждается данными генетики. Несмотря на то, что в генетико-кладистических схемах рукокрылые попадают в лавразиатериев Laurasiatheria, а приматы – в эуархонтоглиресов Euarchontoglires, сходство двух этих групп всегда было очевидно всем систематикам, начиная с К. Линнея, и отразилось в создании группы “архонта” Archonta, объединяющей летучих мышей, приматов, тупай и шерстокрылов. Сходство пращуров представителей “архонта” усиливалось древесным образом жизни предков летучих мышей и шерстокрылов и как минимум преадаптацией к нему у предков приматов и тупай. Очевидно, потому и не удается выявить непосредственных нижнепалеоценовых или меловых предков летучих мышей, что их зубы неотличимы от зубов прочих примитивных зверей. Не исключено, что какие-то палеоценовые формы, известные лишь по зубам и считающиеся ныне приматами, плезиадаписовыми или какими-либо насекомоядными в широком смысле, при лучшей изученности окажутся примитивными летучими мышами. Пока у летучих мышей не было крыльев и эхолокации, мы считаем их “насекомоядными”, когда же эти специализации появляются (судя по Onychonycteris finneyi, полет возник раньше эхолокации: Simmons et al., 2008), мы уже видим готовых рукокрылых. Как и в случае с птицами и птерозаврами, машущий полет летучих мышей возник очень быстро, и палеонтологически уловить момент его становления крайне трудно, для этого надо обладать невероятным везением.

Рукокрылые уникальны в том отношении, что первые этапы их эволюции отличались максимальными темпами, а последующие – крайне низкими (вернее, на уровне видо– и родообразования темпы были велики, но план строения на уровне семейств практически не изменился с нижнего эоцена); можно даже утверждать, что макроэволюция летучих мышей закончилась в то время, когда у приматов она только начиналась. Очевидно, что причиной этого стала адаптация к полету. И без того небогатые заделы строения мозга первопредков были безнадежно задавлены необходимостью облегчения веса; наглядно это выражается в быстром зарастании швов черепа, что было характерно уже для раннеэоценового Icaronycterys. О хватательной способности конечностей речь тоже не идет, скорее уж о цеплятельной; нижнеэоценовый Onychonycteris еще имел когти на всех пальцах крыла, а остальные синхронные родственники – уже потеряли на двух или трех.

К чести рукокрылых, у них есть два существенных преимущества перед насекомоядными: они долго живут, а потому могут накопить богатый жизненный опыт, и очень общительны – вплоть до заботы о голодных сородичах у вампиров Desmodus rotundus. Но эти преимущества сводятся на нет малыми размерами мозга – дорогая плата за покорение небес. Экономия веса была таким важным делом, что рукокрылые избавились даже от “мусорных” участков ДНК, кстати, как и птицы.

Удивительно, но за десятки миллионов лет ни одна летучая мышь не потеряла способности к полету и не вернулась к наземному или древесному образу жизни (в фантастической фауне будущего изобретательный ум Д. Диксона нагрезил хищных наземных вампиров, ходящих на передних лапах и хватающих добычу задними, но этот инфернальный образ пока, к счастью, сугубо гипотетичен и остается на совести своего создателя).

Много шуму в свое время наделала так называемая гипотеза “летающих приматов”, согласно которой мегахироптеры Megachiroptera – крылановые – приобрели способность к полету независимо от прочих летучих мышей – микрохироптеров Microchiroptera, да к тому же возникли из древнейших приматов (Pettigrew, 1986; Pettigrew et al., 1989, 2008). В доказательство приводилось множество доводов, основными из которых был специфический тип нервного соединения сетчатки глаза с верхними холмиками четверохолмия в среднем мозге – уникальный для приматов, шерстокрылов и крылановых, а также отсутствие эхолокации у подавляющего большинства последних, в отличие от мелких эхолоцирующих рукокрылых. Приводились и другие доказательства независимого возникновения макро– и микрохироптеров. В определенный момент концепция “летающих приматов” уже почти взяла верх, но тут же потерпела сокрушительное поражение от генетиков, довольно убедительно доказавших монофилию рукокрылых (Mindell et al., 1991). Были сделаны попытки оспорить эти генетические результаты (Hutcheon et al., 1998), но большинство систематиков их не приняли. Впрочем, признание единого происхождения летучих мышей не может отвергнуть множество удивительных параллелей крылановых и приматов. Даже если эти сходства развились конвергентно, они слишком комплексны, чтобы быть совсем случайными; все же эта ситуация – отражение крайней близости предков обоих отрядов. Нет ископаемых форм, которые бы “зависали” между рукокрылыми и приматами (описан африканский раннемиоценовый крылан Propotto leakeyi, чье имя говорит само за себя, но тут дело в путанице, а не промежуточности: Simpson, 1967; Walker, 1969), – это следствие быстрой специализации первых.

Много рассуждений было посвящено выяснению вопроса, были ли предки летучих мышей насекомоядными или фруктоядными. Зубы древнейших известных форм “насекомоядные”, но палеоценовые вполне могли отличаться большей любовью к произведениям флоры. Незатихающие споры на эту тему, а также существование обоих видов питания среди современных рукокрылых – лишнее подтверждение зыбкости грани между двумя этими диетами, сколь бы различными они ни казались.

В целом последовательность специализаций рукокрылых видится примерно такой: судя по примитивнейшей летучей мыши Onychonycteris, не имевшей развитой эхолокации (хотя есть и другое мнение, что у нее могла быть “гортанная эхолокация”: Veselka et al., 2010) и питавшейся насекомыми, эхолокация возникла позже полета, а первой диетой были насекомые. Другие синхронные рукокрылые тоже насекомоядные, но эхолоцирующие. Судя по отсутствию эхолокации у большинства фруктоядных крылановых и ее наличию у некоторых представителей этой же группы (египетская летучая собака Rousettus aegyptiacus эхолоцирует, щелкая языком), а также по ее сохранению у фруктоядных и нектароядных микрохироптеров, эхолокация могла исчезать у фруктоядных форм, но необязательно; эхолокация и насекомоядность есть у генетически близких к крылановым подковогубовых Hipposideridae, подковоносовых Rhinolophidae, ложновампировых Megadermatidae, свиноносовых Craseonycteridae и мышехвостых Rhinopomatidae; кроме того, насекомоядные неоднократно и независимо переходили к фруктоядности. С другой стороны, все современные насекомоядные формы имеют развитую эхолокацию. Судя по развитию усложненной нервной связи сетчатки и четверохолмия именно у неэхолоцирующих крылановых и примитивному варианту у всех прочих рукокрылых, “приматный” вариант нервной системы возник у крылановых независимо. Все эти тонкости кажутся посторонними для проблемы происхождения приматов, но на самом деле имеют к ней прямое отношение. Ведь общие предки подразумевают, что и приматы имели шансы развить схожие адаптации.

Интересно также, что в качестве одного из лимитирующих факторов, сдерживавших раннюю эволюцию рукокрылых и загнавших их в ночной образ жизни, называется гнет со стороны дневных хищных птиц (Rydell et Speakman, 1995; Speakman, 2001; Simmons et al., 2008). Дескать, в конце мела птиц было много и млекопитающие не имели шанса освоить воздух. Конечно, еще были птерозавры (из меловых нам известны в основном морские рыбоядные, но имелись и другие, которые могли мешать жить птицам) и хищные динозавры, отчего не было мелких насекомоядных птиц. Звери, будучи интеллектуальными созданиями, вероятно, меньше мелькали и лучше прятались в лесной подстилке и ветвях деревьев, почему, собственно, успешно заняли насекомоядную нишу. Птицы серьезно пострадали во время позднемелового катаклизма, бóльшая часть их линий безвозвратно исчезла – например, энанциорнисы Enantiornithes, доминировавшие в мезозое. В раннем палеоцене птиц осталось очень мало, и у зверей появился шанс на полет. Тут-то и возникли летучие мыши и шерстокрылы. К концу палеоцена птицы оклемались, отрастили крючковатые клювы и загнали распоясавшихся зверей в ночь. Более того, в конце палеоцена уже появляются совы – Ogygoptynx wetmorei из США и Berruornis orbisantiqui из Франции; хищные птицы стали преследовать зверей и ночью. В позднепалеоценовых слоях Китая найдены копролиты, или погадки, птиц с останками млекопитающих – наглядная иллюстрация описываемых событий. Если все действительно было так, может, приматы просто не успели взлететь? Летучие мыши вовремя подсуетились, а приматы безнадежно отстали, оставив в современном человеке вечную тоску по свободному полету… Правда, вопрос этот темный, и каждый шаг изложенных рассуждений подвергается бурным обсуждениям.

Птицы в палеоцене имели потенциальный шанс на “мировое господство”. Млекопитающие были малы и слабы, а птицы были столь же теплокровны и умны. Однако летающие птицы не могут иметь большой мозг – летать мешает, а наземные формы возникают обычно в условиях отсутствия хищников, что расслабляет и приводит к еще большему упрощению мозга. Все современные нелетающие птицы, мягко говоря, не блещут интеллектом: страусы, киви, дронты и прочие подобные создания являются чуть ли не образцом неразумности.

Кстати, большой вопрос – что мешает цефализации страусов Struthioniformes, Rheiformes и Casuariiformes? Африканские страусы вообще жили и живут в тех же самых саваннах, что стали колыбелью, родиной и стартовой площадкой австралопитеков. Наземность в открытой местности, всеядная диета, зачатки социальности – некий задел у страусов имеется, но, может, рост слишком большой? Кроме того, крылья с самого начала были негодны для манипуляторной деятельности, а у наземных птиц так вообще редуцировались.

Возможно, главными кандидатами на чуть больший уровень цефализации могли бы быть пингвины Sphenisciformes: сложное плавание в воде, сопоставимое с полетом, требует развития мозга, но потенциально позволяет нарастить его массу. Однако антарктическая среда, бедная на раздражители, не способствует усложнению поведения пингвинов, специализация крыльев-ласт не оставляет никаких надежд на развитие трудовой деятельности, а антарктическая стужа и ограниченность ресурсов требуют строгой экономии энергии – какой уж тут затратный мозг. Тут уж не до мозгу – быть бы живу!

Ископаемые наземные птицы Азии, Европы, обеих Америк и даже Антарктиды – фороракосовые Phorusrhacidae и гасторнисовые Gastornithidae (они же диатримовые Diatrymidae) – становились успешными хищниками в отсутствие крупных бегающих хищников-млекопитающих. Гасторнисовые возникли в палеоцене и вымерли в эоцене, два этих долгих периода они терроризировали зверей Северной Америки, Европы и Китая. Фактически это двухметровые нелетающие хищные гуси – чудища, пожиравшие карликовых лошадей: фантасмагорическое сочетание! В Южной Америке и Антарктиде фороракосовые появились в среднем палеоцене и оставались главными плотоядными вплоть до появления тут плацентарных – кошачьих и псовых, заселившихся с севера в позднем плиоцене; тогда же фороракосы даже освоили Северную Америку, хотя и ненадолго; вымерли же они лишь в начале плейстоцена. Эти ужасные создания в эоцене жили и на территории современного Алжира, а в раннем олигоцене – современной Франции. В Австралии вплоть до плейстоцена аналогичную экологическую нишу занимали дроморнисовые Dromornithidae (гусеобразные, как и гасторнисовые) – сумчатые так и не смогли составить им адекватную конкуренцию, и это притом, что появились дроморнисовые только в олигоцене. Потенциально фороракосовые и гасторнисовые могли стать интеллектуальнее прочих птиц: хищный образ жизни предполагает некоторое напряжение мозгов, а наземность обеспечивает возможности их роста. Но, видимо, полуметровый клюв перевешивал. Принцип “сила есть – ума не надо” воплотился в ужасных птицах так же явно, как и в их родственниках – хищных динозаврах. К тому же в последнее время появились основательные сомнения в их хищности: гасторнисы могли быть сугубо растительноядными, тогда неразвитие их интеллекта и вовсе неудивительно (Angst et al., 2014; Mustoe et al., 2012).

Раз уж речь зашла о полете, невозможно пройти мимо шерстокрылов Dermoptera – ближайших родственников приматов по всем возможным показателям. Близость этих групп настолько велика, что многие систематики склонны определять шерстокрылов как подотряд приматов, называя их “летающими лемурами”; генетически шерстокрылы ближе к приматам, чем тупайи. Однако морфологически шерстокрылы близки и к насекомоядным – настолько, что некоторые авторы включали их в этот отряд (например: Van Valen, 1967). Собственно, древнейшие шерстокрыловые, древнейшие приматы и древнейшие насекомоядные различимы столь плохо, что статус целого ряда семейств и подсемейств остается под вопросом: это Mixodectidae, Placentidentidae, Ekgmowechashalinae, Thylacaelurinae и Paromomyidae. Тонкости строения основания черепа, включая слуховую капсулу и особенности расположения сосудов и нервов, размеры, пропорции, выпрямленность и строение суставных поверхностей фаланг кистей и стоп, гребешки для прикрепления мышц на них, форма когтей у Ignacius и Phenacolemur интерпретировались по-разному (Bloch et Silcox, 2001; Hamrick et al., 1999; Krause, 1991; Silcox, 2003). Строго говоря, доказательств отнесения этих зверюшек к плезиадаписовым или шерстокрыловым примерно одинаковое количество. Все же большинство современных палеонтологов считают паромомиид плезиадапиформами, а прочие упомянутые семейства – шерстокрылами.

Современные шерстокрылы крайне специализированы по множеству признаков. В первую очередь, конечно, стоит упомянуть летательную перепонку, тянущуюся от щек и ушей до кончика хвоста и занимающую промежутки между длинными пальцами на руках и ногах, благодаря которой шерстокрылы могут планировать на большое расстояние. Во-вторых, шерстокрылы имеют крайне специфическую зубную систему с редукцией на верхней челюсти первых резцов и клыкоподобностью вторых, а также очень оригинальным строением нижних резцов – в виде фестончатых гребешков, ориентированных горизонтально. Получается очень близкий функциональный аналог “зубной щетки” современных лемуров, у которых направленные вперед нижние резцы и резцеподобные клыки используются для чистки шерсти (кстати, такая “щетка” – одно из главных отличий современных лемуроподобных от их предков адапиформов Adapiformes и одновременно лучший довод в пользу монофилетичности лемуроподобных, исключая, возможно, руконожку; скелет же и прочие черты у лемуров и адаписовых почти идентичны, разве что мозг у лемуров побольше; вообще подобные “щетки” возникали у зверей неоднократно: уже упоминался кондиляртр Chriacus с таким же приспособлением).

Сейчас шерстокрылы представлены всего двумя видами, но с палеоцена по миоцен они были более разнообразны, причем почти все ископаемые формы известны из Европы и Северной Америки. Самые бесспорные шерстокрылы из них – плагиомениды Plagiomenidae. Ellesmene eureka была найдена на крайнем севере Канады, по соседству с Гренландией, в эоцене эта местность находилась на 76° северной широты – далеко за полярным кругом. Хотя тогда там и было не в пример теплее, чем сейчас, и росли субтропические леса, полярной ночи никто не отменял. Конечно, Ellesmene жила там не в одиночестве: в ее фауне встречены и другие виды, похожие на шерстокрылов, паромомисы, грызуны, многобугорчатые, лептиктиды, пантодонты, тениодонты, креодонты, миациды, различные копытные, птицы, крокодилы, саламандры и прочие животные (West et Dawson, 1978). Все они освоили столь необычные условия и, судя по изобилию их останков, были весьма многочисленны.

Скелет плагиоменид до сих пор не найден, они известны почти исключительно по челюстям и зубам, так что неясно, были ли они такими же ловкими планерами, как и современные шерстокрылы. Зубы Plagiomene очень похожи на шерстокрыловые: нижние резцы шпателевидные, с гребенчатым краем, щечные зубы широкие, а их эмаль складчатая, с режущими поверхностями для перетирания растений. Однако череп Plagiomene в некоторых деталях заметно отличается от шерстокрылового, так что их родство не слишком тесное. Удивительным образом Plagiomene по сложности слуховой капсулы и морфологии двураздельных нижних резцов схожи с прыгунчиками, по пневматизации основания черепа – с выхухолями Desmana moschata, по многобугорчатости моляров – с шерстокрылами, а по строению медиальной стенки слуховой капсулы – с приматами, в целом же строение оказывается неповторимым среди млекопитающих (MacPhee et al., 1989). Специализации зубов могли возникнуть конвергентно в разных линиях, а вот строение основания черепа у Plagiomene совсем уникально и особенно непохоже на вариант шерстокрылов. Так что плагиомениды вполне могут быть очередной оригинальной “околоприматной” линией.

Идея планирующего полета возникала много раз параллельно. Древнейший пример среди млекопитающих – юрский или раннемеловой Volaticotherium antiquum из Китая, выделенный в самостоятельный отряд Volaticotheria (Meng et al., 2006). Столь древние звери, конечно, не имеют прямого отношения к приматам и шерстокрылам, они были малы и обладали примитивным мозгом. Полет во всех своих вариантах ставил крест на возможности “приматизации”.

Почему тупайи, анагалиды, прыгунчики и тенреки не стали разумными?

Приматоморфы – одна из самых древних или даже самая древняя группа млекопитающих из доживших до современности. Единственный моляр Purgatorius ceratops из верхнемелового слоя Монтаны мог быть внесен сюда из более позднего нижнепалеоценового (Lofgren, 1995), но в любом случае в раннем палеоцене приматоморфы уже существовали и бурно эволюционировали. Уже тогда среди плезиадапиформов мы видим массу специализированных форм, об этом мы еще поговорим ниже. Быстрая специализация сопровождала появление каждой мало-мальски крупной группы приматов, настолько, что даже берет удивление: от кого же возникали последующие группы, кто и где доносил до новых времен генеральный план строения (кстати, эта фраза – идеальный кандидат для цитирования креационистами, которые забудут процитировать следующее предложение)? Однако ж существование доныне подобных “живых ископаемых” ставит все на свои места: коли этот пресловутый “генеральный план” и сейчас скачет по веткам в лесу, для эволюции приматов не все еще потеряно. Речь, конечно, о тупайях.

Тупайи Scandentia в своем облике удивительно точно сохранили признаки фактически позднемеловых примитивных плацентарных. Неспроста они регулярно оказывались в составе насекомоядных (например: Van Valen, 1967). Эти животные всеядны с упором на насекомоядность; преимущественно древесны, но некоторые наземны, хотя и они прекрасно лазают по деревьям; почти все активны днем. На пальцах у них когти, лапки не хватательные и большой палец не противопоставлен прочим, глаза находятся по бокам головы, обоняние отличное, мозг примитивный. Однако ведущие органы чувств у тупай – зрение и слух; на пальцах имеются дактилоскопические узоры, хоть и примитивные, зубы похожи на зубы лемуров, имеется такой специфический для лемуров орган, как подъязык – вырост под языком с зазубренным краем, используемый для чистки передних нижних зубов. Тупайи наглядно демонстрируют нам примитивность приматов – эти два отряда весьма схожи. Древнейшие настоящие тупайи – Eodendrogale parvum – известны из среднего эоцена Китая; возможно, немного древнее неопределенные и вообще сомнительные тупайи из Турции (которые, строго говоря, могут быть кем угодно от сумчатых до копытных). Палеоценовые формы нам неизвестны, но примитивный план строения современных представителей не оставляет сомнения, что эти зверьки возникли намного раньше эоцена и должны восходить к меловым насекомоядноподобным млекопитающим.

В качестве древнейших тупай назывались анагалиды (конкретно – отряд Anagalida, а не когорта с таким же названием, но с гораздо бóльшим содержанием; чтобы избежать путаницы, отряд иногда называют Anagaliformes или Anagaloidea), но масса их специализаций в строении нижней челюсти, зубов и конечностей – включая раздвоенные когти на передних и копытца на задних ногах – позволяют говорить, что эта группа весьма отдаленно родственна “архонтам”. Скорее всего, анагалиды возникли не от животных, похожих на Cimolestes, как “архонты”, а от зверей типа Zalambdalestes (которые по этой причине иногда включаются в состав отряда анагалид). Даже экологически анагалиды отличались от предков приматов и прочих подобных групп; об этом свидетельствуют странная форма зубов и специализация конечностей. Впрочем, все эти особенности не мешают многим ученым считать анагалид предками грызунов и зайцеообразных; они же могли быть предками огромных южноамериканских ксенунгулят Xenungulata и слоноподобных пиротериев Pyrotheria, что показывает великие возможности эволюции. (Отдельный вопрос – как азиатские анагалиды оказались в Южной Америке? Поэтому некоторые палеонтологи считают предками ксенунгулят и пиротериев кондиляртр.) Учитывая, что грызуны с зайцеобразными возникли чуть позже, чем “архонты” разделились на тупай, шерстокрылов и приматов, но из того же филогенетического ствола, анагалид можно рассматривать как потомков тех же древних “архонт”. Не зря некоторые систематики включают в когорту или надотряд Anagalida прыгунчиков, грызунов и зайцеобразных и объединяют их с Euarchonta (в отличие от Archonta, сюда не входят рукокрылые, но входят тупайи, шерстокрылы и приматы) в более крупный таксон Unguiculata. В некоторых системах прыгунчики оказываются в стороне, тогда Anagalida называется Glires, Euarchonta – Primatomorpha, а Unguiculata – Euarchontoglires. Однако ж всё это – спор о словах, сути филогении это не меняет. Палеоценовые анагалиды жили в Азии и там могли в некоторой степени заменять приматов, хотя уже говорилось, что их экологические отличия достаточно очевидны. Вероятно, некоторые анагалиды выкапывали еду из земли, хотя в пределах отряда имеется достаточное разнообразие.

Прыгунчики Macroscelidea – особая тема. Эти небольшие зверушки традиционно относились к насекомоядным, на основании наличия слепой кишки они сводились с тупайями в группу Menotyphla, по строению предплюсны объединялись с зайцеобразными, по строению черепа, зубов и по эмбриологическим данным включались в анагалид, палеонтологические данные роднят прыгунчиков с палеоценово-эоценовыми североамериканскими кондиляртрами семейств Apheliscidae или, менее вероятно, Hyopsodontidae (и даже конкретнее – подсемейства Louisininae). Генетические данные – теоретически самые точные – выносят их в афротериев – группу африканского происхождения. Одно из наглядных отличий строения прыгунчиков от насекомоядных – большие размеры глаз, а поведения – дневной образ жизни; сходство с тупайями вообще довольно отдаленное. Показательно, что наиболее родственные прыгунчикам кондиляртры семейства Apheliscidae – Apheliscus и Haplomylus – одновременно весьма напоминают ежиных рода Macrocranion (Penkrot et al., 2008), а строение древнейших эоценовых прыгунчиков позволило предположить их близкое родство с Hyopsodontidae (Simons et al., 1991; Tabuce et al., 2001), тогда как его представители Hyopsodus и Sarcolemur первоначально были описаны как примитивные приматы. Посему совсем не странно, что, несмотря на генетическое расхождение, масса особенностей прыгунчиков сближает их с приматами.

Важным представляется сравнительно сильное развитие головного мозга и относительно сложное поведение. Однако существенно, что прыгунчики рано специализировались к прыганию по земле, отчего берцовые кости срослись, а большие пальцы и на кистях, и на стопах редуцировались; кости предплечья прижаты друг к другу, отчего способности к вращению кисти назад-вперед (пронации-супинации) резко ограничены. Понятно, что хватательная функция кистей в итоге почти отсутствует. Прыгунчики с самого своего возникновения и доныне питались преимущественно насекомыми, хотя некоторая доля растительной пищи в рационе тоже имеется; наличие слепой кишки, в отличие от ежей и землероек, показывает, что значение растительной пищи в прошлом могло быть большим, чем сейчас. Миоценовый род Myohyrax имел зубы, подобные зубам грызунов и приспособленные к перетиранию растительной пищи, так что прыгунчики принципиально не были заперты в эволюционном тупике специализации. Такая смешанная диета вполне вероятна для древнейших приматов, но наши предки забрались на деревья, а прыгунчики освоили землю.

Впрочем, природа богата на выдумки. Древесные родственники у прыгунчиков тоже имеются – среди тенреков Tenrecidae. По ряду черт тенреки крайне архаичны; например, у них имеется клоака, но нет мошонки, а обмен веществ очень низкий, так что они почти холоднокровны. Хватает и специализаций: у тенреков нет скуловой кости, ежовые и полосатые тенреки Echinops telfairi, Setifer setosus и Hemicentetes semispinosus обзавелись иглами наподобие ежей, в засушливый сезон многие виды впадают в спячку. Тенрековые вообще весьма разнообразны: среди них есть аналоги опоссумов и ежей, землероек и кротов, выхухолей и выдр. Питание у всех преимущественно насекомоядное, хотя при случае едят плоды; образ жизни ночной. Древесные виды принципом своей организации напоминают предков приматов.

Любопытно, что тенреки миллионы лет сосуществуют на Мадагаскаре и в Африке с лемуровыми. Однако ж тенреки и лемуры не конкурируют напрямую и не вытесняют друг друга. Тенреки в среднем мельче и более насекомоядны, а главное – у них куда более многочисленное потомство. Хотя есть виды, у которых бывает 1–4 детеныша, у большинства их – около десятка, а рекорд принадлежит обыкновенному тенреку, рожающему до 32 малюток. Неслучайно и количество сосков у этого вида – 29 – рекордно для млекопитающих. Понятно, что при максимальных длине и весе взрослых тенреков около 40 см и 2,5 кг (обычно же – в полтора раза меньше) размер детенышей крайне невелик, есть проблемы и с качеством воспитания. При продолжительности жизни максимум несколько лет (в неволе – до полутора десятков лет) возможности нарастить сколь-либо значимый мозг и обзавестись богатым жизненным опытом стремятся к нулю. Все эти показатели крайне контрастируют с лемурами, у большинства из которых обычно рождается один детеныш с максимумом у карликовых и мышиных лемуров, которые могут иметь до четырех (хотя чаще у них рождается двойня). При этом лемуры в среднем заметно крупнее тенреков, а продолжительность их жизни – больше 20 или даже 30 лет – гораздо внушительнее, отчего размеры мозга велики уже при рождении и заметно увеличиваются после. Ни один самый седобородый тенрек-аксакал не дотянет до среднего возраста лемура. Как итог – социальное поведение тенреков и лемуров несопоставимо. Некоторые виды тенреков социальны, но выражается это лишь в том, что для сна несколько зверьков сцепляются в один шар, а кормятся они все же поодиночке. Не все лемуры общительны, но некоторые виды демонстрируют такой уровень социальности, какой тенрекам и не снился.

Группа афротериев Afrotheria вообще представляет уникальный пример возникновения крайне разнородных групп из одного корня. Корень этот разветвился в Африке примерно тогда же, когда в Евро-Америке возникли эуархонты-приматоморфы или даже конкретно приматы, однако последние остались гораздо однообразнее. Афротерии же дали наземных насекомоядных прыгунчиков Macroscelidea, подземных златокротов Chrysochloridae, роющих, наземных, древесных и полуводных тенреков Tenrecidae, трубкозубов Tubulidentata, даманов Hyracoidea, хоботных Proboscidea и сугубо водных сирен Sirenia. Уже по такому соотношению видно, что афротерии развивались в первоначальной изоляции от других групп млекопитающих. Видимо, в меловом периоде в Африке сложилась ситуация, аналогичная более поздней “великолепной изоляции” южноамериканской фауны. Приматоморфы же жили в окружении прочих бореоэвтериев, которые не давали им занять новые экологические ниши (если не считать адаписорикулид предками приматов). Приматы очень рано – уже в среднем палеоцене, 57–60 млн лет назад, – появились в Африке; характерно, что древнейшая находка сделана в Марокко – Altiatlasius koulchii. Видимо, к этому времени афротерии были уже достаточно разнообразны и развиты, чтобы не проиграть в конкурентной борьбе бореоэвтериям, но аналогов приматов среди афротериев еще не было. История повторилась 26–27 млн лет назад в Южной Америке – предыдущих миллионов лет не хватило, чтобы из опоссумов или грызунов возникло что-то подобное приматам.

Впрочем, в палеоцене разница афротериев и бореоэвтериев была слишком незначительной. И древнейшие прыгунчики (Chambius kasserinensis из нижнего-среднего эоцена Туниса, Nementchatherium senarhense из среднего-позднего эоцена Алжира, Herodotius pattersoni из позднего эоцена Египта), и древнейшие слоны (Eritherium azzouzorum из начала позднего палеоцена – 60 млн лет назад, Phosphatherium escuillei с границы палеоцена и эоцена – 56 млн лет назад, оба из Марокко, а также многочисленные роды и виды из эоцена Алжира, Египта и Ливии) обнаруживают явное родство с североамериканскими кондиляртрами (Gheerbrant, 2009; Gheerbrant et al., 1996; Hartenberger, 1986; Penkrot et al., 2008; Simons et al., 1991; Tabuce et al., 2001 и др.), причем хотя все они известны и из Африки, но из самой северной ее части.

Древнейший неназванный даман известен с границы палеоцена и эоцена Марокко, Seggeurius amourensis жил в нижнем эоцене Алжира (Court et Mahboubi, 1993; Barrow et al., 2010), более поздние эоценовые роды тоже североафриканские – из Марокко, Алжира, Туниса, Египта; их строение не свидетельствует очевидным образом о родстве с кондиляртрами, хотя таковое часто постулируется. Древнейшие тенрекоподобные животные (Todralestes variablis из позднего палеоцена Марокко, Dilambdogale gheerbranti из позднего эоцена Египта, а также более поздние Widanelfarasia и Qatranilestes оттуда же) тоже известны из Северной Африки, хотя ближе к адаписорикулидам Индии, Северной Африки и Европы, нежели кондиляртрам (Seiffert, 2010). Трубкозубы – самые специализированные из афротериев – не обнаруживают с прочими представителями этой группы какого-либо морфологического сходства, а происхождение их крайне туманно, поскольку все ископаемые формы очень поздние и очень похожи на современного трубкозуба. При всем этом происхождение трубкозубых от кондиляртр не вызывает у палеонтологов сомнений, а совпадения в строении с панголинами могут быть отнесены на счет конвергенции.

Учитывая, что кондиляртры были широко распространены в Азии, Европе, Северной и даже Южной Америке, все это может свидетельствовать о евро-американском либо азиатском происхождении афротериев или вообще полифилии этой группы. Близкие к предкам слонов кондиляртры жили в Азии: например, фенаколофиды Phenacolophidae, из которых древнейшая – Minchenella grandis – известна из позднего палеоцена Китая, а чуть более поздний монгольский Phenacolophus родственен также эмбритоподам Embrithopoda, примитивнейшие представители которых найдены в Румынии и Турции, а в развитом виде – в Египте; антракобуниды Anthracobunidae, которые обычно относятся непосредственно к хоботным, появляются в раннем эоцене Пакистана (Wells et Gingerich, 1983). Фенаколофиды и антракобуниды, правда, могут быть предками не хоботных, а десмостилий Desmostylia (известных только с северных побережий Тихого океана), но в любом случае родственны. Схожая с кондиляртрами примитивнейшая среднеэоценовая сирена Prorastomus с Ямайки и другие эоценовые сирены имели пятый премоляр, тогда как у всех кайнозойских млекопитающих он исчез, так что отхождение линии сирен от прочих афротериев надо бы относить к меловому периоду.

Значит ли вся совокупность этих данных, что часть кондиляртр в генетическом отношении была афротериями? Надо ли относить корень афротериев в меловой период или эоцен? И возникли ли они в Африке, ведь родственные группы обнаруживаются и в Индии, и в Азии, и в Европе, и в Северной Америке? Или кондиляртры в принципе сборная группа, объединяемая палеонтологами скорее в силу недостатка сведений? Как понимать генетическое родство афротериев, если их палеонтологические корни столь разлаписты? В любом случае очевидно близкое сходство и, вероятно, родство мелких всеядных наземных и лазящих млекопитающих даже в эоцене, не говоря уж о меловом периоде и палеоцене.

Почему южноамериканские звери не стали разумными?

Происхождение афротериев от единого предка, отстаиваемое генетиками, еще требует серьезного палеонтологического подтверждения и обоснования. По другую сторону Атлантического океана “великолепная изоляция” сработала гораздо однозначнее. Конечно, речь о зверях Южной Америки.

Древние южноамериканские фауны характеризуются изобилием экзотических отрядов копытных Meridiungulata: нотоунгуляты Notoungulata, астрапотерии Astrapotheria, пиротерии Pyrotheria, ксенунгуляты Xenungulata и литоптерны Litopterna заполоняли пампасы и леса; иногда выделяются и другие группы. Удивительно, но среди великого разнообразия всех этих полуфантастических зверей так и не возникли аналоги приматов. Были псевдолошади, псевдоверблюды, псевдоносороги, псевдослоны, псевдодаманы, псевдохаликотерии и масса прочих существ, конвергентных со “старосветскими”, но “псевдоприматы” нам неизвестны. С одной стороны, этот факт облегчил жизнь первым широконосым приматам, с другой – остается вопрос: почему?

Южноамериканские кондиляртры быстро разделились на массу копытных отрядов, большей частью крупноразмерных, грызуны хорошо освоили нишу мелких и средних растительноядных, но при великих возможностях, предоставляемых пышной тропической флорой, почти не дали древесных форм (только древесных дикобразов Erethizontidae), тем более не развились во фруктоядных и с быстрой локомоцией. Может, южноамериканские грызуны не могли преодолеть конкуренцию опоссумов? Сомнительно. О конкуренции со стороны ленивцев речь вообще не идет. Вероятно, грызуны уже были заметно специализированы к моменту попадания в Южную Америку и не смогли эффективно перестроиться.

Может быть, ранние этапы заселения плацентарными Южной Америки пришлись на время, когда там преобладали степные ландшафты, а к моменту значительного расширения лесов фауна уже сильно специализировалась к наземной жизни? Такое предположение подтверждается великим разнообразием крупных южноамериканских копытных, адаптированных к жизни в открытой местности. Не исключено также, что мы просто не знаем этих древних древесных грызунов Южной Америки, как это часто бывает с лесными лазящими формами по чисто тафономическим причинам; однако приматы нам известны из нескольких местонахождений, и неочевидно, почему там не могли сохраниться останки других древесных животных. В любом случае уровень интеллектуального развития южноамериканских млекопитающих был явно ниже, чем у прибывших сюда в эоцене обезьян.

Неполнозубые-ксенартры Xenarthra всегда имели крайне примитивный мозг. Однако потенциально у них не раз возникали неплохие шансы для “приматизации”. Древесный образ жизни в сочетании с питанием высококалорийной пищей – как раз подходящий вариант. Муравьеды Vermilingua – тамандуа и карликовый, равно как и некоторые панголины Pholidota (африканские и азиатские животные) приспособились к этому неопределенно давно, начало их специализации может восходить чуть ли не к меловому периоду. Учитывая великую роль питания термитами в становлении всеядности и трудовой деятельности австралопитеков и “ранних Homo” (Длусский, 1980; Backwell et d'Errico, 2001), можно было бы ожидать от муравьедов и панголинов некоего интеллектуального уровня, но увы! И те и другие числят ближайших родственников среди наземных роющих животных и имеют самое архаичное строение среди плацентарных: примитивную плаценту, очень простой мозг. Масса специализаций не позволяет надеяться на сколь-либо “разумное” будущее этих зверей. Тем более мало шансов у броненосцев Dasypodidae и ленивцев Bradypodidae – крайне специализированных зверей. Возможно, чуть больше шансов было у гигантских наземных ленивцев Megalonychidae, Megatheriidae и Mylodontidae, тем более что некоторые их группы демонстрировали удивительную экологическую пластичность, дав, в частности, плавающие морские формы Nothrotheriinae (Muizon et McDonald, 1995). Впрочем, гигантские размеры в сочетании с растительноядностью всегда заводили животных в эволюционный тупик.

Афротерии, неполнозубые-ксенартры и южноамериканские копытные в генетическом плане отдаленная родня, иногда объединяемая в рамках группы атлантогенат Atlantogenata. Как было показано выше, во всех этих группах “приматизация” упорно не шла. Среди всего разнообразия атлантогенат лишь слоны могут похвастаться недюжинным интеллектом, но, скорее всего, это просто побочный эффект очень больших размеров, примерно как и в случае с китообразными. Огромные размеры слонов и их бесчисленные специализации – тумбообразные ноги, хобот, бивни, тяжелые челюсти – не оставляют надежд на появление у них настоящего разума.

Глава 21

Немножко географии

Палеоценовый мир был разделен на несколько больших географических областей. Южная Америка, Антарктида и Австралия представляли собой уже независимые части былой Гондваны, которым позже не суждено было вновь соединиться. Северная Америка, хотя и была отделена мелководным морем от Европы, все же населялась родственными фаунами (обмены фаун Европы и Северной Америки констатируются еще в конце мелового периода: Martin et al., 2005). Между Азией и Европой плескались воды широкого пролива, так что Азия существовала сама по себе, хотя в последующем соединилась с Северной Америкой. Индия плавала посреди океана, а в эоцене воткнулась-таки в Азию. Африка, почти перерезанная вдоль глубоким заливом на месте Сахары, лежала недалеко от Европы, но напрямую с ней не сообщалась, а между Африкой и Азией тянулась цепь островов наподобие современной Индонезии. В каждой из этих областей возникли свои фауны, в каждой из которых возникли во многом похожие формы.

Приматоморфы зародились в Северной Америке; судя по тому, что в среднем палеоцене приматоморфы добрались уже и до Африки, в Европе в это время они тоже должны были быть, а в позднем палеоцене они известны в Европе сразу во множестве форм. В Азии приматы, возможно, появились тоже в среднем палеоцене, но китайский Decoredon anhuiensis может быть как омомидом, так и анагалидом, и, с очень большой вероятностью, кондиляртром (возможно даже – уже поминавшегося семейства Hyopsodontidae). Достоверные приматы в Китае отмечены в позднем палеоцене, хотя вначале они там крайне немногочисленны и почти идентичны североамериканским. На Индостанском острове приматоморфы появились как минимум в раннем эоцене, если не принимать в расчет спорных адаписорикулид. Фаунистические связи работали в разных направлениях, и трудно разобрать, насколько реконструированная зоогеографическая схема соответствует действительности.


В палеоцене в разных регионах имелись свои потенциальные “приматы”: в Азии – анагалиды, в Африке – тенреки, в Южной Америке – опоссумы, в Австралии – кускусы. И лишь в Европе и Америке зародилась группа приматоморфов. Только на границе палеоцена и эоцена – с глобальным потеплением и распространением тропических лесов – возникают настоящие приматы адапиформы Adapiformes и омомиформы Omomyiformes, которые чрезвычайно быстро расселились по Азии и Африке и дали в последующем все более поздние группы. Приматы стали приматами в результате целого ряда конкретных обстоятельств. Огромную роль сыграли первичные морфологические и этологические специализации и конкурентные взаимоотношения с другими млекопитающими и птицами. Не будь великого множества прочих животных, приматы так никогда бы и не ступили на путь “приматизации” и никогда не увенчались бы разумным “венцом”.

Глава 22

Кем приматы стали и кем не смогли

Почему же именно приматы вылавировали между крайностями насекомоядных, грызунов, травоядных и хищников и пошли по пути развития интеллекта? Ведь задел у всех был один!

Среди приматов можно найти примеры конвергенции с самыми разными животными. Руконожка ай-ай Daubentonia madagascariensis имеет постоянно растущие резцы, как у грызунов. Мадагаскарские палеопропитеки Palaeopropithecus и бабакотии Babakotia, вымершие уже в историческое время, пропорциями конечностей и способом локомоции мало отличались от ленивцев. Мартышки-гусары Erythrocebus patas и мезопитеки Mesopithecus скорее напоминают в этих отношениях газелей, а галаго Galago – тушканчиков. Зубы гигантопитеков Gigantopithecus на удивление похожи на зубы крупных травоядных, причем не только копытных, но и ископаемых гигантских панд. Мандрилы Mandrillus имеют впечатляющие клыки, по сути это саблезубые обезьяны. Конвергенция касается не только строения, но и поведения. Так, жирохвостые лемуры Cheirogaleus впадают в спячку на сухой сезон, как делают и многие другие животные в неблагоприятные времена. Образ жизни и способ добывания пищи современных горилл Gorilla и, возможно, гигантопитеков Gigantopithecus напоминают таковые халикотериев Chalicotheriidae, гигантских наземных ленивцев Megatherioidea и, в меньшей степени, нотоунгулятных хомалодотериев Homalodotheriidae Южной Америки. Так что у приматов было много адаптационных возможностей, которые они успешно использовали!

Однако весьма поучительно знать не только экоформы, приобретенные приматами, но и те, которыми приматы так никогда и не стали. Рассмотрение таковых показывает ограниченность экологической пластичности приматов и одновременно подчеркивает специфику этого отряда.

При всем разнообразии среди приматов ни разу не возникли специализированные водные формы. Носачи Nasalis larvatus, переходящие затопленные мангровые заросли по пояс в воде, макаки-крабоеды Macaca fascicularis, добывающие пищу в воде, и целебесские макаки Macaca nigra, плещущиеся в морском прибое, даже не повод для сравнения с выхухолями, бобрами и капибарами. Приматы с самой своей зари были столь далеки от воды, что за десятки миллионов лет не смогли полюбить ее всей душой. Человек в этом смысле большое исключение, хотя и он стал человеком тогда, когда вышел осваивать горизонты саванн, а не морские просторы. Многочисленные модные домыслы о невероятной связи человеческих предков с водой, вплоть до постулирования необычайного родства с дельфинами, не имеют под собой особых оснований.

Не освоили приматы и роющий образ жизни, столь любимый ближайшими родственниками – насекомоядными и грызунами. Древнейшие специализированно-роющие звери известны уже из верхней юры – это Fruitafossor windscheffeli из Колорадо (Luo et Wible, 2005) и Docofossor brachydactylus из Китая (Luo et al., 2015). Современные шахтеры и спелеологи – первый шаг в столь новой для приматов области, как недра Земли, но внутренние сомнения не дают поверить в скорое эволюционное обособление морлоков.

Приматы не стали хищными. Конечно, приматы возникли из насекомоядных существ и почти все не против съесть кого-нибудь не слишком опасного, но избыточной свирепостью обезьяны никогда не отличались, ведь и самые хищно настроенные долгопяты, лори и галаго постоянно едят фрукты. Человек – максимальное приближение к идеалу плотоядного, но даже светлый образ неандертальца-суперхищника в последнее время оказался замутнен фактом варки каш из ячменя и поедания фиников, бобов, кувшинок и сорго (Henry et al., 2011).

Приматы никогда не дали крупных наземных травоядных. Гориллы и особенно гигантопитеки, сколь бы велики и растительноядны они ни были, не могут сравниться с антилопами, носорогами и слонами; да и гориллы при всей своей тяжести не выходят из густых лесов и отлично лазают по деревьям, если те достаточно прочные. Приматы с самого начала своей эволюции не умели жить на земле. Показательно, что даже на Мадагаскаре с его бедной на хищников фауной лемуры не дали полноценных наземных видов. Лишь несколько приматов спустилось с деревьев, и лишь один – человек – окончательно и бесповоротно (впрочем, из окна биофака каждую осень я наблюдаю студентов на яблонях, опровергающих сей тезис). Даже галаго, столь похожие на тушканчиков и живущие в буше, скачут в основном по ветвям, а не под ними. Этим приматы основательно отличаются от всех близких групп млекопитающих – грызунов, насекомоядных, афросорицид, ископаемых кондиляртр, лептиктид и многих прочих, включая даже тупай. Лишь шерстокрылы и летучие мыши сопоставимы с приматами по степени “отрыва от почвы” и даже превзошли их в этом, но шерстокрылов всего два вида, а летучие мыши оторвались не только от почвы, но и от деревьев.

Учитывая все вышесказанное, нельзя согласиться с часто приводимым рассуждением, что приматы – удивительно неспециализированные и генерализованные, что они “сделали ставку на специализацию к неспециализации”, что они адаптируются силой мысли, а не морфологически. Среди мира млекопитающих приматы заняли вполне определенную экологическую нишу, которую ревниво оберегали весь кайнозой, крайне редко покушаясь на чужие вотчины. Приматы за свою историю дали массу удивительно специализированных форм; с другой стороны, многие древние и современные животные гораздо менее специализированы.

Секрет успеха приматов кроется в сочетании специализации к древолазанию и всеядности (с уклоном в растительноядность) с сохранением заметной доли экологической пластичности. Жизнь в трехмерном мире на ветках деревьях привела к развитию зрительного и тактильного анализаторов с подавлением обонятельного, заставила напрягать мозги и пользоваться руками; одновременно не дала конечностям закостенеть и специализироваться по пути срастаний и редукций элементов. Разнообразное и достаточно калорийное питание способствовало загрузке мозга нестандартными задачами и обеспечению энергетики для их решения. Не слишком малые размеры тела, малое число детенышей и большая продолжительность жизни обеспечили возможности развития крупного мозга и наполнения его богатой информацией – жизненным опытом. В комплексе с высоким уровнем социальности это дало приматам возможность развития интеллекта вплоть до человеческих высот и, хочется верить, бóльших.

Вершина эволюции

Часть шестая, опять недлинная, оставляющая в терпеливом Читателе смешанные чувства, ибо в ней говорится о том, почему Читатель – не Пуп Земли

Человеку свойственно считать себя венцом творения, вершиной эволюции, старшим братом братьев наших меньших – в общем, пупом Земли. Об этом рассказывает множество преданий, мифов и легенд, в которых подчеркивается момент получения специфики, отличающей человека от прочих живых существ. Научный взгляд на мир, надо признаться, в этом отношении недалеко ушел от религиозного. Обычно черты, отличающие человека от животных, априори признаются прогрессивными, а сближающие – примитивными. Признаюсь, такой терминологией часто пользуюсь и я сам. Удивительно, но признаки, отличающие какой-либо другой вид от прочих, обычно называют специализированными, но этот термин крайне редко применяется в отношении человека. В чем же здесь хитрость?

Наверное, стоит четко определить значения слов.

Примитивным обычно называется признак, присутствовавший у предков ныне живущих организмов, но изменившийся или исчезнувший у многих из них.

Прогрессивными стоит называть вновь возникающие признаки, дающие возможность выхода вида на новые просторы эволюции.

Специализированным является признак, который не может богато изменяться в будущем, а потому заводит вид в эволюционный тупик.

Посмотрим, как же распределяются видоспецифические признаки человека, благо таковых не столь уж много.

Большие размеры мозга – как абсолютные, так и относительные – без сомнения, могут считаться величайшим человеческим достижением. Впрочем, тут важно именно сочетание обоих показателей. Абсолютный размер мозга вдвое больше человеческого у дельфинов, китов и слонов, а относительный – показатель церебрализации – значительно “прогрессивнее” у колибри, землероек, мышей, а среди приматов – например, у паукообразных обезьян и тамаринов. Ясно, что гигантский мозг гигантских китов занят в основном обслуживанием чувствительности и моторики, а “относительно гигантский” мозг землероек очень уж мал абсолютно. Таким образом, надо говорить о прогрессивности человека не по размерам мозга в целом, а по более существенным показателям – проценту новой коры или проценту ассоциативных нейронов. К сожалению, достоверно оценить их развитие в сравнительном аспекте очень трудно. Даже процент коры лобной доли, который, казалось бы, можно просто измерить в линейных размерах, площади или объеме, оценить можно по-разному. Так, по некоторым расчетам, человек не отличается по относительным размерам лобной доли от мартышкообразных; впрочем, другие исследователи эти выводы отвергают. Согласно самым точным оценкам, полученным путем томографического исследования мозга, человек по объему неокортекса, особенно в лобной доле, резко превосходит всех прочих приматов. У человека идеальное сочетание больших абсолютных размеров и больших относительных размеров мозга, хотя по каждому из этих показателей человек – не рекордсмен. Однако можно ли расценивать современного человека как прогрессивного в этом отношении?

Выше уже говорилось, что средний размер мозга мужчин неандертальцев и кроманьонцев превосходил величину современных мужчин. Объяснения приводились разные, но факт остается фактом: за последние пару десятков тысяч лет размер мозга довольно заметно уменьшился, так что его современную величину никак нельзя рассматривать как однозначно прогрессивную.

Крупный мозг трудно расценивать как прогрессивный орган и по причине его крайней энергоемкости: сложно представить, какие могут быть широкие эволюционные перспективы у такой особенности. Разум – это не приз в гонке, гораздо закономернее расценивать его как причудливую специализацию, вроде хобота слона или длинных ног тушканчика.

С большими размерами и энергозатратностью мозга человека связано увеличение синусной системы и количества питательных отверстий в костях черепа. Из-за изменения конфигурации затылка у современного человека сильнее изогнут сигмовидный синус, даже в сравнении с неандертальцами. Но все эти отличия второстепенны и не могут рассматриваться как прогрессивные на тех же основаниях, что и их первопричина – увеличение мозга.

Косвенно к изменениям нервной системы относится полное исчезновение вибрисс, имеющихся у шимпанзе. Вероятно, это связано с редукцией шерсти и, соответственно, увеличением чувствительности непосредственно кожи. Либо же выход в открытые местообитания вкупе с прямохождением вознесли лицо так высоко от всего, к чему вибриссы могли прикоснуться, что они просто стали бесполезны. Как бы то ни было, исчезновение органа и вида чувствительности вряд ли можно считать прогрессивной новацией.

Следующая богатая группа признаков связана с прямохождением. Сюда относятся, в частности, смещение большого затылочного отверстия на середину основания черепа, шейный и поясничный лордозы позвоночника – его изгибы вперед, короткий и широкий крестец, широкая и уплощенная спереди назад грудная клетка со сросшимся телом грудины, широкая низкая форма таза и его специфическая ориентация, продольный и поперечный своды стопы, консолидация стопы с нехватательным большим пальцем и редукцией других пальцев, латерализация стопы – усиление первой и пятой плюсневых костей, редукция волосяного покрова и усиление потоотделения. Насколько прогрессивны эти признаки? С медицинской точки зрения весь этот комплекс – сплошной регресс, поскольку сопровождается многочисленными нарушениями в функциях. Вертикальный позвоночник с лордозами чреват межпозвоночными грыжами и защемлениями нервов; поднявшееся сердце – варикозом вен ног; нестандартно повернутый таз – или ноги, нестандартно повернутые относительно таза, – вкупе с большой головой младенца приводят к большим проблемам при родах, выпадениям матки и прямой кишки; своды стопы норовят выпрямиться и достичь стабильности в плоскостопии; редукция шерсти с тоской вспоминается долгими зимними вечерами, а о повышенном потоотделении даже говорить страшно. Кроме всего этого, человек резко проигрывает в скорости передвижения всем животным аналогичного или большего размера и большинству – меньшего размера, включая, например, кошек. Выигрывает, впрочем, в выносливости, хотя верблюды могли бы поспорить.

С эволюционной точки зрения тоже не все однозначно. Поясничный лордоз есть у некоторых крупных горилл, у них же может срастаться тело грудины. Таз у афарского австралопитека “Люси” и всех известных архантропов был относительно ниже и шире, чем у современного человека, так что современное состояние можно расценивать как некоторый шаг обратно – к проконсулам. По степени консолидации стопы и редукции пальцев лошади, коровы и страусы на суше, а по степени латерализации – моржи с тюленями на море оставили нас далеко позади. Можно, конечно, говорить, что копыто лошади и ласта тюленя – тупиковая специализация, а у человека стопа благородно-прогрессивна, но в действительности человеку просто, видимо, не хватило десятка-другого миллионов лет до превращения стопы в идеальную точку опоры непарно– или парнокопытного образца. У всех наземных бегающих существ число пальцев со временем уменьшается, неясно, почему человек должен быть исключением. Впрочем, человек имеет культуру и предвосхитил слишком медленную эволюцию, создав себе искусственное копыто – ботинок. Однако даже в обуви человеку далеко до совершенства ноги копытных. Одновременно вихляющее устройство голеностопного сустава гарантирует вывихи даже на ровном месте. По большому же счету всем ясно, что гораздо надежнее вообще никуда не бежать, а прикрепиться к почве прочным стебельком и стать божьим одуванчиком – морские лилии обставили нас еще в ордовике.

Редукция шерсти типична для всех крупных наземных зверей саванны; в таком крайнем выражении, как у человека – с полным исчезновением пуховых волос, – она может расцениваться только как специализация, ограничивающая эволюционные возможности в будущем. Кроме того, число волос на квадратный сантиметр у человека такое же, как у шимпанзе, так что речь идет либо о редукции пуховых волос еще до появления человека, либо об именно видоспецифическом уменьшении размеров волос, но не их числа.

Двуногость в целом, конечно, послужила, казалось бы, необходимым условием для освобождения рук и трудовой деятельности, и этим плюсом все его минусы должны быть списаны. Однако, с одной стороны, многообразные двуногие динозавры, птицы, тушканчики и кенгуру являют пример того, что бипедия – недостаточное условие развития трудовой деятельности. С другой же стороны, вполне четвероногие обезьяны и даже еноты делают руками очень многое, а попугаи выполняют то же самое клювом. Шимпанзе могут пользоваться орудиями, используя четыре конечности – это куда как удобнее, чем двумя. Тонкость в том, что двуногость позволяет специализировать руку под орудийную деятельность, а обезьяньи кисти должны быть в первую очередь функциональными ходилками-цеплялками.

Тут мы переходим к следующей особенности человека – трудовой кисти. В ее комплексе особенно обращают на себя внимание противопоставление большого пальца с седловидным суставом первой пястной и кости-трапеции, широкая ладонь, а также сохранение всех пяти пальцев – прямых, длинных, подвижных, способных к точечному захвату, с расширенными и укороченными конечными фалангами. Прогрессивность такой кисти может быть поставлена под сомнение. С одной стороны, давно отмечено, что пятипалость – генерализованное (читай, примитивное) состояние. С другой стороны, у многих приматов кисть видоизменилась по сравнению с крысоподобным изначальным состоянием гораздо больше, чем у человека. Примеров множество – от потто и руконожек через паукообразных обезьян и колобусов до гиббонов, орангутанов, горилл и шимпанзе. Хватательная кисть – особенность всех приматов; можно в этой связи опять помянуть енотов и попугаев. Большой палец у потто противопоставляется гораздо противопоставленнее, чем у человека, что обусловлено, правда, редукцией указательного пальца. У некоторых неандертальцев большой палец противопоставлялся при плоском или шаровидном первом пястно-запястном суставе – обычно это расценивают как минус, вызывавший необходимость больших мышечных усилий и уменьшение точности движений, но наличие тонкой ретуши на некоторых мустьерских орудиях говорит само за себя, а с другой стороны – чем плоха сильная кисть? Крепкое мужское рукопожатие всегда предпочиталось вялому и безвольному, а уж кто-кто, а неандертальцы могли крепко пожать руку! У руконожки пальцы длиннее и подвижнее, чем у человека. У долгопята конечные фаланги пальцев не в пример шире и уплощеннее человеческих. Редукция большого пальца у древесных видов обезьян, конечно, всеми справедливо расценивается как специализация, но кисть гоминоидов, приспособленная к опоре на фаланги согнутых пальцев, однозначно ушла от варианта проконсула дальше, чем человеческая. Эксперименты показывают, что к точечному захвату способны даже макаки, хотя осуществляют его редко. Таким образом, кисть человека представляет мозаику многих примитивных и нескольких специализированных признаков, но прогрессивных – открывающих новые горизонты эволюции – в ней, возможно, вовсе нет.

Грацилизация черепа – прогрессивный признак, красной нитью проходящий по всему антропогенезу. Очевидно, ей – в совокупности со смещением сроков зарастания швов с детства на взрослый период жизни – мы обязаны большим мозгом. Однако малая толщина свода черепа типична для всех полуобезьян, широконосых, мартышкообразных и гиббонов. Древнейшие известные крупные человекообразные тоже часто имели малую или умеренную толщину свода; для проконсулов это типичное состояние; не слишком толсты кости свода у ранних австралопитеков и хабилисов. Правда, в эволюции приматов и человека были этапы значительного утолщения свода – понгиды, грацильные и массивные австралопитеки, эректусы, гейдельбергенсисы и палеоантропы отличаются большой толщиной костей. Таким образом, тонкие стенки костей свода в действительности не прогрессивный, а архаичный признак, несколько раз склонявшийся к специализации в виде утолщения, а потом снова возвращавшийся в исходное состояние. Ровно то же самое можно повторить о надбровном, теменном, височном и затылочном рельефе черепа. Ясно, что приматы с тонким черепом и слабым рельефом имеют обычно небольшие размеры, а человек попадает совсем в иную весовую категорию. Поэтому правильнее говорить не о грацилизации, а о возврате к архаичному варианту при увеличении размеров, что для приматов, конечно, необычно.

Действительно прогрессивным можно считать позднее зарастание швов черепа – эта особенность резко отличает человека от прочих приматов и даже всех млекопитающих. Одновременно она потенциально может привести к появлению новых вариантов строения – например, новых костей свода, что является необходимым элементом определения прогрессивности. Впрочем, кости основания черепа – височная, клиновидная, затылочная – у человека срастаются капитальнее, чем у многих млекопитающих, обеспечивая прочный фундамент для больших мозгов.

Один из самых заметных – по причине нахождения на лице – сапиентных признаков – подбородочный выступ. Много было написано о вероятных причинах его появления и значении; в популярной литературе стойко бытует утверждение о связи подбородка со способностью к речи. В некоторых книгах это утверждение приобретает чуть ли не мистический смысл. Связь на самом деле есть, но она косвенная. С ходом прогресса жить становилось все лучше, большие зубы были уже не нужны, они уменьшались. Но укоротить всю челюсть было нельзя, ведь к задней стороне подбородка крепятся мышцы подъязычного аппарата. Если бы они стали короткими, то подвижность гортани тоже уменьшилась бы и люди не смогли бы говорить. А говорить хотелось. Поэтому отбор продолжал укорачивать челюсть по верхнему краю, но оставил ее длинной по нижнему, отчего передняя часть нижнего края оказалась выступающей вперед в виде подбородочного выступа. Альтернативой было бы удлинение шеи (и оно действительно осуществилось), но при выросшем шибко умном мозге беспредельно вытягивать шею просто опасно – как бы голова не отвалилась. То есть подбородочный выступ – признак весьма второстепенный, не имеющий собственного эволюционного значения, кроме разве что участия в половом отборе уже после своего появления. Он появляется автоматически как побочный эффект необходимости говорить вкупе с редукцией зубов. Но такое же, если не большее, удаление подбородка и гортани достигается и без подбородочного выступа на длинной челюсти неандертальцев с крупными зубами. С другой стороны, можно вспомнить некоторых ископаемых рептилий, например Ulemica invisa, у которых тоже имелся немалый подбородочный выступ, не сделавший их при этом особо болтливыми (хотя кто знает, может, оттого они и вымерли? много болтали?..). Имеется подбородочный выступ и у мандрила. Кстати, редкие случаи отсутствия сего украшения у современных людей не приводят к потере способности к речи. Несущественность в видовом масштабе, впрочем, не снижает принципиальной важности волевого подбородка для генералов и голливудских суперменов.

Уменьшение размеров и даже числа зубов часто рассматривается как прогрессивная человеческая черта. Интересно, морда муравьеда фантастически прогрессивна или все же специализирована? Небольшие размеры клыков, не выступающих за уровень других зубов, и, соответственно, исчезновение межзубных промежутков-диастем – типичные черты гоминид. Однако процесс редукции клыков зашел гораздо дальше – вплоть до полного отсутствия – у многих копытных, а из приматов – у руконожки. Ясно, что гигантские – на уровне саблезубости – клыки некоторых ископаемых и современных павианов – это специализация. Отсутствие клыков у руконожки – тоже специализация. Но вопрос: где “золотая середина” – у мартышек или человека? Не слишком большие клыки мартышек могут уменьшаться, а могут и увеличиваться в дальнейшей эволюции. Клыки людей явно только уменьшаются последние 4 млн лет, а у некоторых людей уже встречается их врожденное отсутствие. Так где бóльшие эволюционные возможности? Можно, конечно, утверждать, что уменьшение клыков привело к усилению способностей к жестикуляции, мимике и речи, в компенсацию резко ослабившейся демонстративной устрашающей функции, а также к увеличению боковой подвижности челюстей с последствиями для типа питания и опять же речи, но это примерно то же, что утверждать, что исчезновение зубов у муравьеда прогрессивно, ибо привело к появлению новых способностей в высасывании термитов из термитников, а также к специфической форме защиты в виде размахивания когтистыми лапами. Функции-то появились, но куда они ведут в эволюционном плане?

Масса видоспецифических признаков сконцентрирована на височной кости: это размеры и форма чешуи, вертикальная и поперечная ориентация барабанной пластинки, ориентация и степень изгиба пирамид, большие размеры сосцевидного отростка, окостенение и удлинение шиловидного отростка, углубление нижнечелюстной ямки, увеличение предсуставного бугорка и позадисуставного отростка, а также другие тонкости. Хотя все эти особенности действительно позволяют более-менее надежно диагностировать виды, трудно сказать, насколько они прогрессивны в эволюционном смысле. С большой вероятностью большинство из них – например, ориентация барабанных пластинок и пирамид – меняются автоматически в связи с укорочением лица, изменением формы черепа и особенно его основания, но не имеют какого-либо глубинного адаптивного смысла. Косвенно об этом свидетельствует огромная изменчивость – межвидовая, хронологическая, популяционная, половая, возрастная и индивидуальная. Ярчайший пример – сосцевидный отросток. Он мал у обезьян, австралопитеков, неандертальцев, женщин и детей, но велик у гейдельбергенсисов, сапиенсов, мужчин и взрослых. Как можно рассуждать о нем в рамках примитивности – прогрессивности? Изменения области нижнечелюстной ямки, очевидно, связаны с ослаблением жевательной мускулатуры и необходимостью укрепить сустав механически, но это не свидетельствует об особой прогрессивности нашего варианта по сравнению с обезьяньим. У некоторых ископаемых гоминид встречались специфические особенности, которые обычно рассматриваются как специализации, например отсутствие позадисуставных отростков у людей из Нгандонга или крупная щель между барабанной пластинкой и сосцевидным отростком у них же и эректусов Сангирана. Почему же тогда прогрессивно вертикальное положение барабанной пластинки у сапиенса?

Кстати, о прогрессивном вывихе…

Уменьшение человеческой нижней челюсти и жевательной мускулатуры вызвало необходимость укрепления височно-нижнечелюстного сустава. Скажем, у гориллы жевательные мышцы мощнейшие, они надежно притягивают нижнюю челюсть к черепу, она гарантированно не отвалится. Поэтому на височной кости суставная поверхность почти плоская, без особенных ограничителей по сторонам. У человека же слабенькие мускулы не могут обеспечить качественного прикрепления, посему нижнечелюстная ямка височной кости глубокая, сустав спереди огражден высоким предсуставным бугорком, а сзади – позадисуставным. При слишком большом открывании рта мыщелок нижней челюсти упирается в эти бугорки и движение прекращается. Беда же начинается, если ямка мелкая, бугорки невысокие, а мышца очень слабая. Особенно эта напасть типична для особо грацильных девушек, так как у них рельеф и мышцы по определению ослаблены: стоит такой чрезмерно эволюционно прогрессивной особе весело засмеяться или, не дай бог, зевнуть, как челюсть выскакивает из сустава и отваливается, закрыть рот уже невозможно. Это называется привычный вывих сустава. Но поскольку он привычный, то девушка скучающим движением с отчетливо слышимым щелчком рукой вставляет челюсть на место и продолжает смеяться или зевать. Такие вот издержки прогресса! У мужчин подобное бывает редко, ибо андрогены обеспечивают хорошее развитие мышц.

Одна из особенностей височной кости – шиловидный отросток – очевидно, связана с речевым аппаратом. У негоминидных приматов, австралопитеков, хабилисов и эректусов на месте этого отростка обычно расположена ямка, у человека отросток может быть длинный и даже состоять из нескольких отдельных костяных палочек. На отросток крепится шилоподъязычная мышца гортани, а потому логично, что отросток связан со способностями к речи.

Кстати, о болтунах…

Шилоподъязычная мышца тянет подъязычную кость и, соответственно, всю гортань вверх и вниз, участвуя в артикуляции речи. Вроде бы логично предположить, что шиловидный отросток височной кости будет развит сильнее у болтливых людей и останется махоньким пупырышком у молчунов. Однако размеры отростка прямо зависят от массивности мышц и косвенно – от размеров нижней челюсти, а потому у маленьких людей отросток может тоже быть небольшим, независимо от способности к речи. Даже напротив, легкие мышцы и челюсть способствуют большей скорости речи, что наглядно при сравнении мужчин и женщин – последние говорят в минуту больше слов, – а также разных групп современного человечества: кое-кто подсчитал, что французы тараторят по 350 слов в минуту, а полинезийцы едва выдавливают полсотни, тогда как разница между их челюстями более чем очевидна.

Более того, если шиловидный отросток будет слишком большим или даже шилоподъязычная связка окостенеет почти полностью, то движения будут ограничены, а человек не сможет говорить. Все то же можно повторить о костных остях на задней стороне симфиза нижней челюсти.

Таким образом, отростки и ости свидетельствуют о способности к речи в межвидовом масштабе, но не срабатывают в индивидуальных случаях.

Другие особенности, так или иначе связанные с речевым аппаратом, – низкое положение гортани, сильный изгиб основания черепа и большой диаметр канала подъязычного нерва. Они резко выражены – видоспецифичны – именно у современного человека, но вопрос – увеличивают ли они эволюционную пластичность? Прогрессивен или специализирован увеличенный горловой мешок обезьян-ревунов или гиббонов-сиамангов? Сложные способности певчих птиц в области пения способствуют этологической изоляции и видообразованию, но у людей они скорее способствуют общению, взаимопониманию и взаимодействию со слиянием коллективов – вещам благородным в социальном плане, но уменьшающим изменчивость и потому специализированным в плане эволюционном.

Крайне показательно, что форма подъязычной кости, на коей покоится вся гортань и от которой, по логике, должны зависеть способности к речи, тем не менее слабо отличается у самых разных млекопитающих, включая человека, но при этом крайне изменчива индивидуально.

Последняя видоспецифическая человеческая черта, которую хотелось бы упомянуть, – короткие раздвоенные и сильно наклонные остистые отростки шейных позвонков. У обезьян и неандертальцев они мощные, длинные, с монолитными верхушками и направлены почти строго назад. При большой массе головы – с тяжелыми челюстями и жевательными мышцами, крупными зубами, толстыми костями черепа – мощная шейная мускулатура обезьян и неандертальцев, крепящаяся к остистым отросткам, разрывала бы эти отростки пополам, будь они такими же, как у современного человека. У человека же голова легкая, даром что мозгов много, а потому отростки могут сохранять в некоторой степени свою первичную эмбриональную раздвоенность. Прогрессивность данной черты сомнительна: куда она ведет, кроме так называемого “перелома землекопа”?

Кстати, о землекопах…

Часть шейной и спинной мускулатуры крепится к остистым отросткам шейных позвонков. Например, там кончается полуостистая мышца шеи, распрямляющая верхнюю часть спины. Когда человек много и усиленно разгибается, скажем копая яму для фундамента или ставя мировой рекорд в угольном забое, мышцы перенапрягаются и – хрусть, пополам! – могут даже оторвать дугу или остистый отросток позвонка (Knüsel et al., 1996). Хорошо еще, если спинной мозг при этом не страдает. Конечно, после такого приходится отлеживаться, но диггерская профессия зовет, чары кирки и лопаты непреодолимы: после пары недель лечения человек отправляется обратно в шахту – до следующего стахановского успеха и нового перелома. Такова цена грацилизации. Читатель, отправляясь на дачу копать картошку, вспомни о судьбах предшественников и давай отдых спинным мышцам!

Как упоминалось в начале этой главы, прогрессивными стоит считать признаки, открывающие новые перспективы эволюции. У человека же видоспецифические признаки либо являются генерализованными, а стало быть примитивными, либо специализированными. Истинно прогрессивным можно считать лишь позднее зарастание швов черепа. Совершенно закономерно это выражается в том факте, что видовое разнообразие гоминид никогда не было слишком значительным, а со времен австралопитеков всегда только уменьшалось. Сниженное видовое разнообразие – первый признак ограниченности перспектив эволюции. У человека же оно снижено до предела – даже у шимпанзе больше видов, хотя они частенько поминаются как реликтовые и тупиковые!


Настоящая глава, конечно, не призвана развить у читателей чувство неполноценности, но имеет целью вызвать некоторую задумчивость и, возможно, побудить несколько объективнее относиться к морфологическим и эволюционным фактам.

Мир глазами руконожки

Часть седьмая, немножко хулиганская, продолжающая линию части шестой, рассказывающая об изобилии вершин, о том, почему руконожка прогрессивней долгопята, долгопят – гориллы, а горилла – руконожки

Часто эволюция живого мира излагается в виде пресловутой “лестницы существ” или же дерева с человеком на вершине. То есть, скажем, был Великий Предок пургаториус, потом линия-ствол все более и более продвинутых обезьян, по ходу которой ответвлялись боковые второ– и третьестепенные ветки всяких тупай, шерстокрылов, лемуров, широконосых, мартышковых, гиббонов, орангутанов, горилл и шимпанзе. Генеральная же линия включала, скажем, афарского австралопитека, а прямым итогом – аки звездой на новогодней елке – был-таки человек. На самом деле с точки зрения любого вида картина была иной. Ведь у любого примата (и даже вообще любого живого существа) была своя неповторимая родословная, сложились свои уникальные особенности; каждый является вершиной эволюции. В реальности картина эволюции представляет собой не дерево с ветвями, а бесчисленный лес параллельных стволов, тем не менее выходящих друг из друга. Нарисовать такой лес сложновато, но можно, по крайней мере, попробовать встать на точку зрения других живых существ. Как тогда будет выглядеть эволюция?

Глава 23

Мир глазами руконожки

Несомненно, венцом эволюции живого мира является мадагаскарская руконожка ай-ай Daubentonia madagascariensis. Эволюция приматов (руконожкогенез) представляется так: около 65 млн лет назад жил Великий Предок пургаториус, далее от генеральной линии ответвлялись всякие малозначимые боковые ветви наподобие лемуров, широконосых и узконосых обезьян (внутри коих на общем фоне и не различишь человека), а через промежуточные звенья вроде Plesiopithecus teras эволюция достигла своего апогея – руконожки.

Да и как можно думать иначе? Это же очевидно! Взгляните на руконожку: ни у кого среди приматов нет столь уникального черепа, никто не обладает такими пальцами и хвостом. Передние резцы огромные и растут непрерывно. Клыки вовсе исчезли (тут руконожка давно и навсегда обогнала гоминид, столь гордящихся редуцированными клыками; “не выступающие за линию других зубов” – вот уж смешная формулировка, то ли дело, когда клыков вообще нет!), а на их месте зияет огромная диастема. Столь замечательная зубная система является лишь одним из элементов хитрой пищевой адаптации. Ночью руконожка идет по джунглям и простукивает трухлявые стволы чрезвычайно длинным и тонким средним пальцем кисти. При этом она внимательно прислушивается своими огромными ушами к эху, отдающемуся в ходах, прогрызенных личинками насекомых; подобной эхолокации нет ни у одного примата. Запеленговав личинку, ай-ай прогрызает дырочку своими замечательными резцами, а все тем же длинным пальцем выковыривает добычу из коряги. Кстати, сложность добывания пищи, видимо, сказалась и на развитии нервной системы: относительный размер мозга у руконожки – один из самых больших среди полуобезьян. Хотя особой гениальности за ней пока не замечено, но много ли мы вообще знаем об этом уникальном существе?..


Обезьяны и все-все-все

Рис. 22. Руконожка, ее кисть и череп.


Специализации руконожки столь значительны, что первоначально ее вообще описали как грызуна. Потом долгое время она числилась в лемурах, но скорее по географической логике: всем известно, что на Мадагаскаре живут одни лемуры, стало быть, ай-ай тоже лемур. Но более объективно выделение руконожки в качестве самостоятельного инфраотряда. Прочие приматы однообразны и безыдейны на ее фоне.

Руконожки могут гордиться еще одним достижением: они до сих пор живы. Где апатемииды и Chiromyoides, имевшие такие же адаптации? Вымерли! Эти конкуренты обойдены в честной борьбе. Однако ж есть еще скрытая угроза в виде новогвинейских полосатых поссумов Dactylopsila: вдруг переплывут Индийский океан и захватят Мадагаскар? Но гораздо опаснее истинные враги прогресса, не дающие самим руконожкам захватить мир, – коварные дятлы. Не дай бог их черно-белые эскадрильи вторгнутся на чудный остров веерных пальм, тогда руконожкам может прийти конец…

Глава 24

Мир глазами шерстокрыла

Руконожка замечательна, но можно взглянуть на ту же картину и иначе. С точки зрения шерстокрылов – филиппинского Cynocephalus volans и малайского Galeopterus variegatus, именно они венец эволюции. Дело было так: Великий Предок пургаториус дал генеральную линию, от которой, конечно, ответвлялись какие-то тупайи, лемуры и обезьяны, но все они в своем убожестве сливаются в неразличимую серую массу. На самом деле эволюция (шерстокрылогенез) через ряд промежуточных звеньев типа Ignacius graybullianus пришла к совершенству в лице шерстокрылов.

Никто из приматоморфов не достиг таких высот, как шерстокрыл! Какие руки, какие ноги, какая летательная перепонка между ними! Всем хочется летать, а шерстокрыл – может. Хотя он только парит, но, во-первых, может планировать до 140 метров, а во-вторых, способен нести полезный груз в виде, например, детеныша, прицепившегося на животе. Конечности и пальцы невероятно вытянуты, можно сказать изящны, позавидует любой пианист. На подошвах кистей и стоп есть особые присасывательные диски для прилипания к коре дерева при посадке-пристволении. На грудине даже развит небольшой киль, хоть и не столь мощный, как у летучих мышей и птиц, но зачем же вдаваться в крайности специализации. А зубы! – таких фестончатых наружных резцов нет больше ни у кого.

Конечно, жизнь шерстокрылов есть кому омрачить. Того и гляди, схватит филиппинская гарпия Pithecophaga jefferyi. Кстати, другое ее название – “обезьяноед”; умная птица, похоже, хорошо разбирается в систематике и склонна относить шерстокрылов к приматам. Кроме того, по тем же лесам планируют вечные соперники – гигантские белки-тагуаны Petaurista. Живут они на тех же деревьях, имеют схожие размеры и внешний вид, ведут тоже ночной образ жизни, питаются частично той же пищей, так что вообще не очень понятно, как до сих пор они уживаются с шерстокрылами. Очевидно, все же диета совпадает не абсолютно.

На самом деле, у шерстокрылов есть гораздо более успешные противники – зловещие крыланы, например Megaerops. У них-то диета совпадает с шерстокрыльей почти абсолютно; они тоже ночные и входят в близкую весовую категорию. Но они умеют летать по-настоящему, а значит – быстрее находят плоды. Вероятно, именно появление летучих мышей стало в свое время причиной вымирания бывших некогда разнообразными и широкораспространенными шерстокрылов. Два вида еще держат последние рубежи, но долго ли им будет это удаваться?..

Глава 25

Мир глазами долгопята

Акаков мир глазами долгопята Tarsius? Вне всяких сомнений, именно этот пучеглазый эльф венчает животное царство! Эволюция приматов (тарзиогенез) выглядела так: Великий Предок пургаториус основал генеральную линию развития (стоит ли упоминать несущественные – либо несусветно примитивные, либо невозможно аберрантные – боковые ветви, среди коих лемуры, широконосые и узконосые обезьяны оказываются безликой толпой), составленную знатной плеядой достойных предков типа Necrolemur antiquus с закономерным итогом в виде долгопята.

И разве это не очевидно? У долгопята что ни признак – то эксклюзив. Глаза занимают больше половины лица, а по объему больше головного мозга – таких выразительных нет больше ни у кого среди приматов! Правда, при таких размерах глазá уже невозможно вращать в глазницах – слабеньким мышцам не хватает сил и размаха, зато долгопят может вертеть головой на 180°. Такой способностью не обладает ни одно млекопитающее! Челюсти и зубешки махонькие – куда там человеку с его гордыми мыслями о редукции жевательного аппарата. Поскольку зверюшка размером с ладонь, то крошечные пальчики уже не могут обхватить большинство веток, но не беда – в компенсацию на кончиках пальцев, ладошках и стопах развились присоски, а ногти стали остренькими когтевидными цеплялками.

Долгопят мал, да удал – он свирепый хищник. Люди часто склонны утверждать, что они – самые хищные приматы. Ан нет! Ни один самый мясоедский эскимос и огнеземелец в подметки не годится долгопяту по части плотоядности. Долгопяты отлично слышат, мастерски находят насекомых во тьме, стремительно и бесстрашно бросаются они на жертву размером в половину себя, хватая ее руками. Еще и по этой причине концы пальцев оказались куда как более расширенными, чем у человека с его трудовой кистью. Чтобы совершать роковые прыжки, долгопяты обладают цевкой, сделанной из крайне удлиненных пяточной и ладьевидной костей. Малая и большая берцовая кости у них срослись, причем миллионы лет назад. Человек, если не вымрет, тоже обречен на подобное срастание и редукцию малой берцовой кости, но у него это в сомнительном и туманном будущем, а предки долгопята решили эту проблему еще в эоцене. Если измерять длину прыжка в пропорции к размерам тела, то посрамленные человеческие олимпийские чемпионы должны сгореть со стыда и с горя податься в дворники, ибо у них нет ни малейших шансов превзойти долгопята, который при габаритах 10 см скачет на несколько метров, тем более безо всякого разбега.

А хвост – это ж просто чудо какой хвост! Длинный, тонкий, с изящной кисточкой на конце – идеальный балансир. Долго еще можно петь оду истинному венцу эволюции. Но, думаю, уже ясно – подобное совершенство высится над прочими приматами, как Эверест над кочкой.

Впрочем, жизнь долгопятов, сколь это ни прискорбно, тоже небезоблачна. Она омрачена существованием разнообразных супостатов на земле и над землей. Некоторые из них даже красивы – скажем, райские мухоловки Terpsiphone paradisi и варакушки Luscinia svecica: эти отнимают у долгопятов пищу на ветвях. Некоторые безлики – например, белозубки Suncus и Crocidura: они не пускают долгопятов на землю. Третьи же страшны – примером может служить суматранский филин Bubo sumatranus: такие могут и сами запросто съесть бедного маленького долгопятика.

Глава 26

Мир глазами мандрила

Иным предстает мир, на который гордо взирают мандрилы Mandrillus leucophaeus и Mandrillus sphinx. Им ясно, что эволюция приматов (мандрилогенез) началась с Великого Предка пургаториуса, давшего ряд замечательных предков типа Victoriapithecus macinnesi. Боковые ветви типа лемуров, широконосых и человекообразных (где там человек, где гиббон – кто ж их, человекообразных, разберет, все они на одно лицо) блекнут на фоне действительно значимой эволюционной вершины – мандрила.

Ясно, что мир изначально вертелся для того, чтобы его населили мандрилы. Для начала, мандрил красив. Это самый красивый примат (а отбросив ложную скромность – вообще самый красивый зверь). Какая расцветка морды, да не простая, а усиленная рельефными кожными валиками, какая палитра зада! Какая грива – обзавидуется и лев! Она не только со вкусом раскрашена, но и изысканно причесана от природы, а не сваляна космами, как у некоторых. Это вам не бессмысленные патлы двуногих. В сложении мандрила удивительно сочетаются мощь и грация, сила и стройность. Мандрил не так безобиден – ведь это саблезубая обезьяна. Клыки самцов могут выступать за край нижней челюсти. И что за дело, что люди считают эволюционно прогрессивными маленькие клыки, ведь по модулю изменение размеров клыков, начиная от общего предка, у мандрилов гораздо сильнее, чем у гоминид. А бóльшие изменения – это больший прогресс. Огромные клыки – гарантия защиты от хищников. Конечно, леопард без особых проблем справится с одним мандрилом, но мандрилы не живут поодиночке. А против толпы орущих оскаленных обезьян, у каждой из которых клыки больше, чем у самого леопарда, уже лезть как-то не очень хочется. Поэтому мандрилы и их родственники павианы успешно живут в окружении злых и смертельно опасных хищников. Конечно, приходится существовать на постоянном осадном положении; законы военного времени работают тут всегда. Поэтому мандрилы и павианы имеют самую иерархичную систему из всех существующих среди приматов. Это отражается даже в построении отряда на марше. Со стороны невнимательному наблюдателю такое стадо может показаться беспорядочной толпой, но если разобраться, кто есть кто, то павианы идут фактически немецкой “свиньей”: авангард и арьегард составляют молодые самцы, а старые самцы с вожаком во главе окружают самок с детенышами, идущих в центре.

Власть альфа-самца практически безгранична. В группе мандрилов и павианов не место вредным мыслям о революциях, конституциях и таких сомнительных явлениях, как феминизм. Идеалы – в лучших традициях “Домостроя”, военно-диктаторских режимов и романа “1984”. Насколько такая система упрощает жизнь! Каждый знает свое место, начальник решает за всех, в обществе царит порядок и стабильность. Все попытки нарушить гармонию однозначно пресекаются устрашающим оскалом вожака. Кстати, несмотря на иногда бурные проявления чувств, контактная агрессия в группах и между группами мандрилов в природе случается редко, обычно все ограничивается демонстрациями силы. Впрочем, субординацию в таком строгом обществе соблюдать необходимо, нарушители “табели о рангах” сурово караются, неспроста едва ли не основной причиной смерти самцов павианов являются убийства отнюдь не леопардами, а другими павианами.

Мандрилы и павианы достигли своего идеала еще в плиоцене. Их план строения практически не поменялся за последние несколько миллионов лет, да и зачем? Они достигли совершенства – освоили леса и саванну, расселились по всей Африке и даже за ее пределы. Разве могут суетные гоминиды со своими морфологическими метаниями и экологическим экстремизмом сравниться со взвешенной стабильностью мандрилов?

Глава 27

Мир глазами гориллы

Спокойна за свой статус вершины эволюции горилла Gorilla gorilla. Великий Предок пургаториус… Ну, вы уже все поняли, терпеливый Читатель. Chororapithecus abyssinicus был одним из немногих ископаемых приматов, достойных упоминания в курсе гориллогенеза.

Горилла – несомненный чемпион. Она огромна (были, правда, некогда гигантопитеки, но где они теперь?), у нее громадные ручищи и железные мышцы. Как написал М. Ф. Нестурх: “Горилла обладает нечеловеческой силой!” Даже не самая крупная самка гориллы со смехом одной левой поборет олимпийца-человека. Показателен случай, произошедший в одном зоопарке. Там в клетке много лет жил самец гориллы. Однажды уборщик оставил рядом с клеткой метлу. Гориллу очень хотелось поиграть ей, но он никак не мог дотянуться через решетку. Тогда он раздвинул прутья, вышел, взял вожделенную игрушку, вернулся назад и не забыл загнуть прутья на место. И только тут работники зоопарка поняли, что все эти годы горилл сидел в клетке вполне добровольно…

Невероятная мощь короля джунглей сказывается в каждой детали его строения: здоровенные кости с гребнями для прикрепления мышц, сросшаяся грудина, поясничный лордоз (где вы, сказки двуногих о комплексе прямохождения?), широченная кисть с толстенными фалангами. Череп самцов увенчан сагиттальным гребнем для жевательных мышц, огромные челюсти украшены мощными клыками.

Горилле не страшен ни один враг в родном лесу. Леопарды могут изредка нападать на детенышей горилл, но когда рядом пасется хмурое двухметровое чудище с седой спиной, вкусы как-то сами собой склоняются к антилопам и лесным свиньям. Пребывая в родной стихии, горилла является идеальным воплощением тезиса “сила есть – ума не надо”, но разве это проблема? С другой стороны, в неволе гориллы оказываются едва ли не самыми интеллектуальными животными, в этом им помогает уравновешенность, недоступная вздорным шимпанзе. Размер мозга гориллы вплотную приближается к наименьшим величинам у современного человека и превосходит австралопитековые значения. Коэффициент интеллекта знаменитой гориллы Коко – 75–95, тогда как у людей умственная отсталость отсчитывается со значений ниже 70.

Все бы ничего, жить бы да жить гориллам спокойно миллионы лет, умиротворенно жуя банановые листья, но и на их горизонте ход