Книга: Диалектика Материи



Кондрашин Игорь

Диалектика Материи

Игорь Кондрашин

Диалектика Материи

Системный подход к основам философии

Оглавление

- Предисловие

- Введение

- I. Структурно-функциональный синтез развивающихся систем

- Материя, движение и развитие

- Движение в пространстве

- Движение во времени

- Движение в качестве

- Развитие

- Энергия

- II. Общая теория материальных систем

- Системность Материи

- Функциональная ячейка и функционирующая единица

- Принципы системного построения Материи

- III. Диалектический генезис материальных систем

- Каскадность построения мира

1. Уровень а - виртуальные частицы

2. Уровень А - кварковый

3. Уровень АА - нейтринно-фотонный

4. Уровень АБ - мезонный

5. Уровень Б - нейтронно-протонный

6. Уровень В - атомный

7. Уровень Г - молекулярный

8. Уровень Д - агрегатный

9. Уровень Е - мультимолекулярный

10. Уровень Ж - субстратный

11. Уровень З - клеточный

12. Уровень И - организменный

13. Уровень К - гиперорганизменный

- Первобытные общины

- Рабовладельческие государства

- Феодальные государства

- Капиталистический период

- Период современной гиперорганизации

- IV. Системная архитектоника организационных уровней Материи

- Заключение

Введение

Девятнадцатое, а вслед за ним и двадцатое столетия принесли Человечеству массу научных открытий, ознаменовались невиданными достижениями Разума. Работы Гегеля и Фейербаха, Маркса и Энгельса, Менделеева и Эйнштейна, Бехтерева и Павлова и других великих мыслителей позволили по-новому взглянуть на окружающий нас мир, по-иному воспринимать происходящие вокруг нас явления и события. Развитие физики и химии, биологии и кибернетики, научно-технический прогресс и связанное с ним все расширяющееся промышленное производство резко увеличили потенциальные возможности человеческого общества в получении большого спектра предметов пользования и потребления.

   Вместе с тем, параллельно указанному процессу, все более ширится круг проблем и вопросов, требующих скорейшего решения и определенных ответов. Среди них: безудержный рост народонаселения при прогрессирующем истощении природных ресурсов, поиски новых источников энергии при все более резких климатических колебаниях, увеличение числа невылечиваемых заболеваний - раковые, СПИД и др., все большая социальная поляризация общества и увеличение преступности и терроризма, необходимость глобального роста производительности труда при сохранении экологического равновесия в природе, скорейшее уничтожение ядерного оружия, несущего в себе большую потенциальную опасность гибели всей Земной цивилизации.

   Каковы же перспективы дальнейшего существования человеческого общества, цели его развития, оптимальная его структура и численность, что нужно считать необходимым и достаточным в его потреблении? Эти и другие аналогичные вопросы все острее встают перед мыслящей частью Человечества, заставляя прилагать все большие умственные усилия для их решения.

   Между тем, вслед за великими философами древности (Аристотелем, Гераклитом, Платоном) попытки раскрыть тайны нашего мироздания и установить причинную обусловленность всех явлений предпринимались Спинозой, Бэконом, Галилеем, Декартом, Ньютоном, Лапласом, Кантом и другими мыслителями более поздних времен. Каждый из них по-своему пополнил общий ФОНД ЧЕЛОВЕЧЕСКИХ ЗНАНИЙ.

   Особое место в этом ряду занимают имена Гегеля и Фейербаха, в чьих работах выкристаллизовались такие понятия, как "диалектика" и "материя", дававшие ключ к пониманию событий и явлений, окружающих нас в каждодневной жизни.

   Если категория "материя" была более или менее всем понятна и спор шел лишь о том, принять ее или не принимать вообще, а если принять, то "первично" или "вторично" - с "диалектикой" вопрос обстоял намного сложнее. Все передовые умы того времени понимали, что именно с ее помощью удастся продвинуть вперед наши знания о мире, но как это сделать и можно ли это сделать вообще при том уровне ЗНАНИЙ, никто тогда еще не знал, ибо в самой "диалектике" было еще слишком много путанного и непонятного. Да и саму "диалектику", по оценке Ф. Энгельса, до этого серьезно изучали лишь два мыслителя - Аристотель и Гегель.

   "Систематика после Гегеля невозможна. Ясно, что мир представляет собой единую систему (подчеркнуто мною - И.К.), то есть связное целое, но познание этой системы предполагает познание всей природы и истории, чего люди никогда не достигают. Поэтому тот, кто строит системы, вынужден заполнять бесчисленное множество пробелов собственными измышлениями, то есть иррационально фантазировать, заниматься идеологизированием", - с нотками отчаяния написал Ф. Энгельс в своей работе "Анти-Дюринг". Но уже сама эта работа была одной из первых попыток дать энциклопедический очерк понимания философских, естественнонаучных и исторических проблем с помощью нового метода. Системный подход и некоторые элементы материалистической Диалектики были использованы и К. Марксом при написании "Капитала".

   Вместе с тем, пытливые умы исследователей не оставляло в покое желание еще более выкристаллизировать, отточить "диалектику" и с ее помощью воссоздать полную картину Мира в историческом разрезе. Было очевидно, что только этим путем можно будет вывести законы развития природы, общества. "Когда я, - писал Маркс в одном частном письме, - сброшу с себя экономическое бремя, я напишу "Диалектику". Истинные законы диалектики имеются уже у Гегеля, правда, в мистической форме. Необходимо освободить их от этой формы". В другом письме, адресованном Энгельсу, Маркс писал (в 1858 году): "Если бы когда-нибудь снова нашлось время для таких работ, я с большим удовольствием изложил бы на двух или трех печатных листах в доступной здравому человеческому рассудку форме то рациональное, что есть в методе, который Гегель открыл, но в то же время и мистифицировал".

   Одновременно с Марксом и Энгельсом понимали важность совершенствования метода материалистической диалектики и другие исследователи. В этой связи следует упомянуть о работах И. Дицгена, которого В.И. Ленин охарактеризовал следующим образом: "Иосиф Дицген - рабочий философ, открывший по-своему диалектический материализм и много великого". А вот слова Ф. Энгельса о нем: "И замечательно, что не одни мы открыли эту материалистическую диалектику, которая вот уже много лет является нашим лучшим орудием труда и нашим острейшим оружием; немецкий рабочий Иосиф Дицген вновь открыл ее независимо от нас и даже независимо от Гегеля". Сам же Дицген писал: "Так как я со своей стороны опасаюсь, что нам еще долго придется ждать, пока Маркс обрадует нас обещанным трудом, и так как я с юных лет много и самостоятельно изучал этот предмет, то я попытаюсь дать возможность пытливому уму немного познакомиться с диалектической философией... Мои товарищи знают, что я не прошел высшей школы, что я простой кожевенник, усвоивший философию самоучкой. На свои философские работы я могу использовать лишь часы досуга..."

   Таким образом, уже в то время было очевидно, что для решения возникающих перед человечеством проблем необходимо с помощью метода диалектического материализма построить как можно более полную единую картину мира с тем, чтобы с помощью выявленных при этом объективных законов и закономерностей определить характер связей и механизмов взаимодействия элементов Материи с целью сознательного их использования в своей деятельности.

   Однако без глубоких знаний осуществить это было невозможно. Вот почему и Маркс, и Энгельс в равной степени проявляли постоянный интерес к естественным наукам. Между ними существовало даже своеобразное разделение труда. Маркс глубже знал математику, историю техники и агрохимию, кроме того он занимался физикой, химией, биологией, геологией, анатомией и физиологией; в отличие от Энгельса он больше изучал математику и прикладное естествознание. Энгельс глубже знал физику и биологию; вместе с тем он занимался математикой, астрономией, химией, анатомией и физиологией; в отличие от Маркса он больше изучал теоретическое естествознание.

   Основоположники марксизма сознавали, что для создания целостного мировозрения необходимо было не только критически переработать предшествовавшие им достижения философии, политической экономии, социалистических и коммунистических учений, они должны были обобщать и основные достижения современного им естествознания, без чего невозможно было придать материализму новую, диалектическую форму.

   В результате многолетних углубленных занятий естественными науками, с целью их теоретического обобщения, Энгельс задумал выдающуюся по замыслу работу - "Диалектику природы". В качестве ее систематизирующей основы Энгельс решил применить классификацию форм движения - механического, физического, химического, биологического - с тем, чтобы выявить в указанной последовательности общие диалектические закономерности, характерные для всех этих форм движения. Таким образом, в "Диалектике природы" Энгельс поставил перед собой грандиозную задачу - путем синтезирования теоретических схем различных областей знаний в единую научную теорию доказать, что в природе сквозь кажущийся хаос бесчисленных изменений прокладывают себе путь те же диалектические законы движения, которые и в истории господствуют над кажущейся случайностью событий, тем самым обосновав всеобщность основных Законов материалистической Диалектики.

   Сам Энгельс сформулировал эту задачу следующим образом: "...Для меня дело могло идти не о том, чтобы внести диалектические законы в природу извне, а о том, чтобы отыскать их в ней и вывести их из нее. Однако выполнить это систематически и в каждой отдельной области представляет гигантский труд. Дело не только в том, что подлежащая овладению область почти необъятна, но и в том, что само естествознание во всей зтой области охвачено столь грандиозным процессом радикального преобразования, что за ним едва может уследить даже тот, кто располагает для этого всем своим свободным временем..."

   После смерти К. Маркса в 1883 году Ф. Энгельс, всецело поглощенный работой по завершению публикации "Капитала" и по руководству международным рабочим движением, уже не имел возможности заниматься естествознанием систематически и вынужден был фактически прекратить работу над своим произведением. "Диалектика природы", будучи только в рукописных набросках, так и осталась незаконченной. Ее первое издание появилось в СССР лишь в 1925 году и В.И. Ленин не мог с ней быть ознакомлен.

   Вне зависимости от этого Ленин также сознавал всю важность углубления диалектического метода познания, использования его в теоретических исследованиях и практической деятельности. Характерны поэтому следующие его высказывания в "Философских тетрадях": "Гениальна основная идея Гегеля: всемирной, всесторонней, живой связи всего со всем и отражения этой связи... в понятиях человека, которые должны быть также обтесаны, обломаны, гибки, подвижны, релятивны, взаимосвязаны, едины в противоположностях, дабы обнять мир. Продолжение дела Гегеля и Маркса должно состоять в диалектической обработке истории человеческой мысли, науки и техники. ... От живого созерцания к абстрактному мышлению и от него к практике - таков диалектический путь познания истины, познания объективной реальности". Изучение философских конспектов, фрагментов, заметок Ленина 1914-15 годов дает основание предполагать, что и он собирался написать специальный труд о диалектике, однако события последующих лет не дали возможности свершения этих творческих планов.

   Последним из известных мыслителей, кто хоть как-то пытался заняться разгадкой тайн Диалектики, следует считать Н.И. Подвойского. Однако его "Письма о диалектике" и "25 тезисов диалектики" имеют характер сугубо предварительных незавершенных довольно путанных набросков.

   Несмотря на то, что начиная с 60-х годов нашего столетия интерес к Диалектике вновь заметно повысился, изучение ее всеобщих Законов практически приостановилось. В то же время Жизнь продолжает стремительный свой полет на нашей песчинке - Земле, затерянной в безбрежном океане Вселенной. Проблемы нашего бытия громоздятся все выше с каждым днем в то время, как Человечество то самонадеянно, то беспечно, а порой и со страхом взирает на них, в большей массе даже не задумываясь и не догадываясь, что в один момент это нагромождение, наконец, может рухнуть на его головы, безжалостно подмяв и раздавив все, что было создано в течение тысячелетий человеческой цивилизации.* Случись такое, и этим может быть лишь доказано, что наша цивилизация явилась тупиковой ветвью в общей схеме Развития Материи. Тупиковая или нетупиковая, самоуничтожится или нет?

  

* Как страх и беспечность, так и беспочвенный оптимизм рождаются в результате обывательской отрешенности от всеобще существующих проблем.

Если ответ объективно существует, то единственно кто может его дать, так это коллективный Человеческий Разум - высшее творение развивающейся Материи. А единственным надежным орудием в его руках для этой цели может и должна стать Диалектика, то есть тот универсальный инструмент, лишь с помощью которого Человечество способно раскрыть нераскрытые еще тайны, сохранить и преумножить уже достигнутое, наметить едва видимые впереди цели и перспективы. Только с помощью Диалектики Разум способен на это. Отказ же от нее или даже временное воздержание от общения с нею может привести к самым плачевным результатам, в том числе и в нашей повседневной жизни, чему свидетельством являются все нарастающие проблемы наших дней.

   "Презрение к диалектике, - писал Энгельс в "Диалектике природы", - не остается безнаказанным. Сколько бы пренебрежения ни высказывать ко всякому теоретическому мышлению, все же без последнего невозможно связать между собой хотя бы два факта природы или уразуметь существующую между ними связь. Вопрос состоит только в том, мыслят ли при этом правильно или нет, а пренебрежение к теории является, само собой разумеется, самым верным путем к тому, чтобы мыслить натуралистически и тем самым неправильно. Но неправильное мышление, если его последовательно проводить до конца, неизбежно приводит по давно известному диалектическому закону, к таким результатам, которые прямо противоположны его исходному пункту. И таким образом, эмпирическое презрение к диалектике наказывается тем, что некоторые из самых трезвых эмпириков становятся жертвой самого дикого из всех суеверий - современного спиритизма". К сожалению, эти слова весьма актуальны и в наши дни.

   Итак, постоянное, все более углубленное теоретическое мышление, все большее проникновение в тайны Материи, выявление Законов ее движения, построение общей картины ее Развития - все это требует безусловного диалектического обобщения достижений естествознания наших дней. Незаслуженное же предание забвению Диалектики, отказ от ее дальнейшего изучения в течение вот уже более чем полувека и, как следствие, вынужденная необходимость использования некоторых ее выводов без учета появившихся новых факторов сменившейся эпохи - в конечном счете ведет к торжеству "антидиалектики" агностицизму, догматизму и неоспиритизму.

   В этой связи еще справедливее звучат слова В.И. Ленина из его статьи "Наша программа", написанные им в 1899 году: "Мы вовсе не смотрим на теорию Маркса как на нечто законченное и неприкосновенное; мы убеждены, напротив, что она положила только краеугольные камни той науки, которую социалисты должны (подчеркнуто В.И. Лениным - И.К.) двигать дальше во всех направлениях, если они не хотят отстать от жизни". К сожалению, эта важнейшая научная и практическая рекомендация классика социализма оставлена фактически без должного внимания современными социалистами и его предостережение оказалось пророческим.

   Следовательно, даже временное приостановление изучения Диалектики является отходом от нее, претит самому духу ее постоянного развития, усиливает позиции антидиалектики.

   О том, как осуществлять сам процесс диалектического познания, В.И. Ленин писал: "Нельзя понять вне процесса понимания (познания, конкретного изучения, etc.). Чтобы понять, нужно эмпирически начать понимание, изучение, от эмпирии подниматься к общему. Чтобы научиться плавать, надо лезть в воду".

   Интересны также мысли А. Энштейна по описанию механизма современного теоретического исследования: "Исходные гипотезы становятся все более абстрактными, все более далекими от ощущений. Но зато мы все ближе подходим к важнейшей цели науки - из наименьшего числа гипотез или аксиом логически получить дедуктивным путем максимум реальных результатов. При этом мысленный путь от аксиом к ощущаемым результатам или проверяемым следствиям становится все длиннее, все утонченнее. Теоретику все больше приходится руководствоваться при поисках теорий чисто математическими, формальными соображениями, поскольку физический опыт экспериментатора не дает возможности подняться прямо к сферам высочайшей абстракции. Место преимущественно индуктивных методов, присущих юношескому периоду науки, занимает поисковая дедукция. К тому же надо далеко продвинуться в построении такого теоретического здания, чтобы прийти к следствиям, которые можно сравнить с опытом. Конечно, опыт и здесь остается всемогущим судьей. Но его приговор может последовать только после большой и трудной умственной работы, перебрасывающей мост через пропасть между аксиомами и следствием". Эта схема верна для теоретических поисков в любом секторе научных знаний.



   Известно, что все существующие естественнонаучные теории дают ответы, как правило, прежде всего на вопрос как?, в то время как для раскрытия тайн нашего бытия появляется все большая потребность найти ответы на многочисленные вопросы почему, ПОЧЕМУ? Эту задачу возможно решить лишь путем создания всеобъемлющего эволюционного учения, способного охватить единой теоретической схемой весь путь Развития Материи от самых низших форм ее существования до самых развитых, причем охватить его так, чтобы показать процесс эволюции высших форм из низших и при этом выявить причинную обусловленность указанного процесса.

   До сих пор такого всеобъемлющего Учения еще не было и его создание и пропаганда всегда были первейшей и наиважнейшей задачей всех философов-теоретиков, а осуществлено это могло бы быть только на основе диалектического материализма, поскольку только материалистическая диалектика отличается от любого другого метода познания тем, что на основе изучения частных закономерностей движения она способна вывести законы всеобщего движения и развития. Это отличие обуславливается тем, что диалектическая логика не представляет собой замкнутую систему понятий, состоящую из строго определенного числа законов и категорий, не допускающих какого-либо изменения своего содержания и введения новых категорий. Классики марксизма рассматривали ее как непрерывно развивающуюся систему, требующую постоянного пополнения новыми элементами, внесения в категории необходимых изменений, которые диктуются ходом движения научного познания, создания новых философских понятий.

   Чтобы отвечать этим требованиям, материалистическая Диалектика должна постоянно подвергать самоанализу свой категориальный аппарат, определять его способность давать истинную оценку детерминистской обусловленности событий и находить оптимальные решения актуальных проблем, пополнять содержание законов и категорий на основе обобщения новых данных о развитии общества и научного знания, экстраполировать эволюционное движение форм организации Материи хотя бы на ближайшее историческое будущее (в пику всем неоспиритическим предсказателям и псевдоастрологам) с тем, чтобы максимально сгладить, по крайней мере для Человечества, последствия надвигающихся негативных событий и катаклизмов. Поэтому в ее арсенале наряду с чувственными перцепциями и формальнологической дедукцией должны быть самые передовые формы мышления, способные на все более свободное оперирование с помощью интеллектуальной интуиции элементами научной абстракции в процессе анализа многочисленных явлений с целью синтезирующего сведения выявленных закономерностей в единую теорию.

   Таким образом, и развитие диалектической логики означает прежде всего дальнейшую разработку категорий материалистической Диалектики, обогащение их смыслового содержания, выдвижение новых понятий, выступающих в роли категорий Диалектики, установление связи между ними, построение единой логической системы, позволяющей в наиболее полном и достоверном виде отражать реальную действительность и двигать научное познание вперед по пути дальнейшего раскрытия тайн развивающейся Материи.

   В данной работе делается попытка на основании суммирования известных научных знаний в этой области и добавления новых необходимых элементов построить искомую логическую систему, продолжая и выполняя тем самым замыслы основоположников Диалектики (прежде всего Ф. Энгельса) и отвечая вместе с тем насущным требованиям современного научного познания. Вполне естественно, что даже не каждый профессиональный философ обладает достаточной теоретической подготовкой и суммой индивидуальных знаний, в особенности естественнонаучных, чтобы до конца понять все элементы описываемой системы и поэтому изложение носит несколько научно-популярный характер, однако при наличии интереса и желания диалектическая суть предлагаемой теории легко может быть постигнута любым логически мыслящим читателем.

[ Оглавление ] [ Продолжение текста ]

[ Оглавление ]

Игорь Кондрашин

Диалектика Материи

I. Структурно-функциональный синтез

развивающихся систем

"Целью всякой науки, будь то естествознание или психология, является согласование между собой наших ощущений и сведение их в логическую систему"

А. Эйнштейн

немецкий ученый-физик

"Всякая научная теория должна вытекать из фактов, которые она призвана объяснять, и в этих границах она остается справедливой; с появлением новых фактов, не укладывающихся в рамки данной теории, она рано или поздно должна уступить место новой теории, заключающей в себе более широкие обобщения"

А.М. Бутлеров

русский ученый-химик

"С каждым составляющим эпоху открытием, даже в естественнонаучной области, материализм должен изменять свою форму"

Ф. Энгельс

Материя, движение и развитие

"Количество существующего в мире движения всегда постоянно." - Р. Декарт.

   "Движение есть способ существования материи. Нигде и никогда не бывало и не может быть материи без движения... Материя без движения так же немыслима, как и движение без материи. Движение поэтому так же несотворимо и неразрушимо, как и сама материя - ... : количество имеющегося в мире движения остается всегда одним и тем же." - Ф. Энгельс.

   "В мире нет ничего, кроме движущейся материи." - В.И. Ленин.

   Эти три постулирующие цитаты закладывают краеугольные камни в наше познание общей теории развития мироздания.

   Итак, Материя есть объективная реальность, сущность которой представляют различные виды движения, являющегося ее атрибутом. Таким образом, в мире нет ничего, кроме движения, весь имеющийся строительный материал движение. Материя соткана из движения. Любая частица любого вещества представляет собой упорядоченное движение микродвижений; любое событие - это определенное движение элементов системы движений. Любое явление, событие или вещество можно мысленно разложить на различные виды движения так же, как и из различных видов движения в соответствии с определенными Законами синтезируется любое явление, событие или вещество Материи. Поэтому, чтобы знать, как это происходит - необходимо изучить Законы, которым подчиняются различные виды движения Материи.

   До настоящего времени движение Материи в основном связывают лишь только с ее движением в пространстве и во времени, при этом внимание исследователей главным образом было сосредоточено на технических проблемах вычисления и измерения пространственных расстояний и временных интервалов при пренебрежении фундаментальными проблемами пространства и времени.

   Однако, как известно, первые довольно ясные позитивные идеи о том, что же представляют собой Пространство и Время, были высказаны еще мыслителями Греции классического периода (геометрия Аполлония, Евклида, Архимеда, идеи о времени Аристотеля и Лукреция). Со времен Галилея, и в особенности со времени Ньютона, пространство и время превратились в неотъемлемые составные части Мира и научного взгляда на Мир. Более того, физическое пространство стало трактоваться с помощью геометрии Евклида, а время интерпретироваться по аналогии с геометрической координатой. Целью науки стало описание и объяснение вещей и их изменений в пространстве и времени. Пространство и время были взаимно независимыми и составляли объективный, точно определенный и данный нам изначально фон. Все могло изменяться за исключением самой пространственновременной системы координат. Эта система представлялась столь неизменной, что Кант рассматривал ее как априорную и, более того, как продукт интеллектуальной интуиции.

   Понимание относительности движения было достигнуто уже во времена Декарта, поскольку все уравнения движения и их решения записывались в определенных системах координат, а система координат - это концепцуальный, а не физический объект. Поэтому хотя движение и было релятивизировано в координатной системе, последняя рассматривалась как закрепленная в абсолютном пространстве.

   И только около ста лет тому назад впервые была высказана мысль о том, что любое движение следует относить к какой-нибудь системе отсчета. И хотя то, что предлагалось, было моделью физической системы отсчета, выполненной с помощью геометрической координатной системы и поэтому это не влекло за собой никаких изменений в математике, а было лишь семантическим изменением, но этого было достаточно, чтобы отбросить понятие абсолютного пространства. Образно говоря, после этого уже можно было допустить, что если бы во Вселенной существовало одно единственное тело, оно не могло бы двигаться, ибо движение возможно лишь относительно некоторой материальной системы отсчета. Вот почему совершенно независимо от действующих сил понятие движения стало подразумеваться для системы, имеющей по меньшей мере два тела. И если бы Вселенная была совершенно пустой, то не было бы ни пространства, ни времени. Физическое пространство существует только в том случае, если существуют физические системы (тела, поля, квантовомеханические сущности и т.д.). Точно так же время существует лишь постольку, поскольку эти системы так или иначе изменяются. Статическая Вселенная обладала бы пространственными чертами, но была бы лишена времени.

   Таким образом, разумная философия пространства и времени в отличие от чисто математической теории пространства и времени стала исходить из предположения, что пространство является системой конкретных отношений между физическими объектами, а время есть некоторая функция изменений, происходящих в этих объектах. Иными словами, она стала реляционной, а не абсолютной теорией пространства и времени.

   Следующим этапом в эволюции теории движения явилась созданная в 1905 году специальная теории относительности Эйнштейна, которая показала:

   а) что пространство и время не являются взаимно независимыми друг от друга, но представляют собой компоненты некоего единства более высокого порядка, именуемого пространством-временем, которое распадается на пространство и время относительно определенной системы отсчета;

   б) что протяженности и длительности не абсолютны, то есть не независимы от системы отсчета, а становятся короче или длиннее именно в зависимости от движения системы отсчета;

   в) что больше не существует чисто пространственных векторных величин и простых скаляров: трехмерные векторы становятся пространственными компонентами четырехмерных векторов, временные компоненты которых сродни старым скалярам. При этом четвертой координате приписывается совсем иной смысл, чем остальным трем координатам, а временная составляющая пространственно-временного интервала имеет свой собственный знак, противоположный знаку пространственных составляющих. По этим и иным причинам время в специальной теории относительности не эквивалентно пространству, хотя и тесно связано с ним.

   Специальная теория относительности практически мало что добавила в конкретизацию понятия движения, поскольку пространство и время не играют в ней более значительной роли, чем в дорелятивистской физике; эта теория реально ничего не говорит о том, что представляет собой пространство-время помимо того, что рассказывает о его метрических свойствах. Философский аспект пространства и времени ею не затронут.

   Теория гравитации, или общая теория относительности Эйнштейна, написанная в 1915 году, внесла свой вклад в познание физических свойств пространственно-временного движения. Согласно этой теории пространство и время являются не только реляционными (а не абсолютными) и релятивными (то есть относительными к системе отсчета), но они также зависят и от всего того, из чего состоит мир. Таким образом, метрические свойства пространства-времени (то есть пространственно-временной интервал и тензор кривизны) должны рассматриваться теперь как зависимые от распределения вещества и поля во Вселенной: чем выше плотность вещества и поля, тем более искривлено пространство, тем более искривлены траектории лучей и частиц, и тем быстрее ход часов. Согласно общей теории относительности тело или луч света порождает гравитационные поля, последние же реагируют на первые. Взаимодействие сказывается на структуре пространства-времени. Если бы все тела, поля и квантово-механические системы исчезли, то, как предсказывают фундаментальные уравнения общей теории относительности, пространство-время не только бы осталось существовать, но и сохранило бы свою риманову структуру. Но оно не было бы физическим пространством-временем. То, что осталось бы, было бы математической системой отсчета и не имело бы какого бы то ни было физического смысла. В целом общая теория относительности вследствие трудного для понимания ее математического аппарата не получила еще соответствующего философского обобщения.

   Фактически то же самое можно сказать и о физических исследованиях, изучающих процессы, протекающие во Вселенной в целом. В последние десятилетия космология перестала быть отдельной самостоятельной наукой и превратилась в высшую прикладную область физики - мегафизику, занимающуюся проблемами пространства-времени во всем объеме: космическим пространством и вечностью в целом. Однако для того, чтобы представить эволюцию Вселенной в целом на протяжении нескольких временных эпох и отдать предпочтение одной из множества отстаиваемых гипотез ее образования, астрофизической аргументации пока еще недостаточно и это можно сделать лишь с помощью серьезного философского исследования, исключающего различные антинаучные догадки.

   Таким образом, человеческое познание в настоящее время достигло такого предела, когда наши идеи относительно пространства и времени перестают быть чисто естественнонаучными и все более превращаются в философские проблемы, решение которых позволит, наконец, ответить на такие фундаментальные вопросы: что такое пространство и время, как они связаны с бытием и становлением, какова их роль в развитии материальных форм в целом.

Движение в пространстве. Итак, для диалектического понимания строения и Развития Материи необходимо подчеркнуть следующее: движение в пространстве теснейшим образом связано с движением во времени - без движения во времени не может быть движения в пространстве. Движение в пространстве имеет двойственный характер. Во-первых, оно включает в себя движение материальной точки или системы относительно другой точки или системы отсчета, то есть относительное пространственное движение. Оно может протекать только в более обширном в сравнении с элементами движения объеме пространства и характерно лишь для материальных точек или подсистем, двигающихся внутри этого пространства. При этом собственный пространственный объем самих элементов движения остается постоянным и они лишь последовательно занимают необходимый для них объем внутри гиперпространства, освобождая точно такой же объем позади себя. Примерами относительного вида движения в пространстве-времени могут служить относительные перемещения единиц фотона, молекулы, автомобиля или планеты.

   Однако, движение этих материальных точек и тел, рассматриваемое в отрыве от всей системы однородных им единиц, является частным случаем движения элементов этой системы в гиперпространстве. Иными словами, если молекула газообразного вещества, перемещаясь, занимает последовательно один и тот же объем пространства S (при этом , а сам занимаемый объем , то есть постоянен, равен условной единице), то уже система молекул - условный газ, разлетаясь в разные стороны, при отсутствии замкнутости объема занимает все большее пространство (при этом за каждый временной интервал , а скорость распространения в пространстве равна ). Такое пространственное движение следует называть абсолютным и оно характеризует пространственную область, занимаемую материальной системой однородных взаимосвязанных единиц. Примером этого движения может служить диффузия газов и жидкостей, разлет фотонов света от их источника и т.п. Если в естественнонаучных исследованиях изучается, в основном, первый, относительный вид движения в пространстве, то для философского понимания Диалектики Материи более важен второй его вид, абсолютный, то есть совокупное пространственное перемещение всех системно взаимосвязанных однородных элементов.

   Заканчивая краткий экскурс в "пространство", уточним его относительную соизмеряемость для различных системных образований. В повседневной практике для измерения пространства используется обычный "метр". Однако расстояние до одной из видимых дальних галактик выражается уже величиной 1025 м. В то же время диаметр протона равен 10-15 м. Поэтому нет оснований не согласиться с логическим выводом, что все окружающие нас протяженности пространства можно выразить любой из величин от 10-n до 10n метров, где n может принимать любое значение от 0 до . В этом кроется универсальность пространства, а вместе с ним и форм существования Материи: от бесконечности вглубь до бесконечности в гиперсферу.



   В повседневной жизни обычно оперируют величинами от 10-4 м (толщина листа бумаги) до 106 м. Однако от того, что мы не способны измерять расстояния меньше 10-30 и больше 1030 м, было бы неправильно считать, что форм движения Материи в пространственных интервалах при не существует.

   Направленность движения в пространстве в философском исследовании имеет чисто формальное значение в силу изотропности пространства.

Движение во времени. Как известно, любое движение в пространстве неразрывно связано с другим видом движения Материи - движением во времени. Сочетание этих движений представляет собой событие.

   Движение во времени носит такой же двойственный характер, как и движение материальных форм в пространстве. Приглядимся к вращению секундной стрелки вокруг своей оси. Каждый момент времени она занимает определенное положение, соответствующее временной точке на координате времени. В следующее мгновение она покидает эту точку, заняв следующую. Вместе с кончиком секундной стрелки мы постоянно перемещаемся из одной временной точки в другую, покидая предыдущую и попадая в последующую, при этом сами временные интервалы, обусловленные нами, равны между собой. Такое движение во времени следует называть относительным для временных интервалов, последовательно чередующих друг друга. Величина их может быть различна. Для сопоставления достаточно сравнить скорость перемещения точки отсчета, совмещенной с концом часовой стрелки, со скоростью точки отсчета, размещенной на конце вертящегося пропеллера самолета. Разность временных интервалов, приходящихся на единицу углового или пространственного перемещения, очевидна.

   В нашем первом примере мы взяли событие длительностью в одну секунду. Однако, если взять событие, длящееся один час, то его временной период уже можно разбить на 60 минут или 3600 секунд. Секунды можно отсчитывать, начиная с первой, в нарастающем итоге. При этом несмотря на то, что себя мы будем ощущать лишь в интервале последней секунды, общая протяженность события фактически будет продолжаться как сумма секундных интервалов, начиная с первого. Такое суммарное приращение времени по ходу протяженности события следует относить к абсолютному движению во времени. Таким образом, после завершения любого события или при его отсутствии и абсолютного движения во времени не происходит. Ввиду этого можно утверждать, что движение во времени или приращение времени существует только для событий, связанных также с другими изменениями, а для наблюдателя, всегда находящегося в актуальной точке отсчета, приращения времени фактически не происходит и оно для него постоянно остается как t0. О движении во времени наблюдатель, то есть мы с Вами, может судить лишь по косвенным признакам, проявляя тем самым свои способности к абстрактному мышлению.

   В настоящее время известны события с различными временными интервалами: от 10-22 секунд (времени одной вибрации протона в ядре) до 1018 секунд (предполагаемая продолжительность существования Солнца в виде звезды). В обиходе мы пользуемся временными интервалами от 10-8 сек. (время, в течение которого свет пересекает комнату) до 109 сек. (продолжительность жизни человека).

   Однако, как и в случае с "пространством", мы можем предположить, что продолжительность событийных интервалов способна принимать любую величину от 10-n сек. до 10-n сек., где n принимает значение от 0 до .

   Говоря о направленности течения времени и его обратимости, следует отметить, что если точку отсчета пространственных координат можно совместить с любой точкой пространства и произвольно переместить в другую (по принципу их равновеликой относительности), при этом любое такое перемещение будет иметь положительный знак, то точка отсчета временной координаты совершает свое поступательное движение лишь строго в одном направлении, отмеряя временные интервалы развития той или иной системы или события. В силу этого временная точка отсчета как бы поедает лежащие перед ней интервалы, изменяя знак абсолютного Времени с + на - или наоборот. Так, если мы условимся оставшуюся до какого-то события сумму временных интервалов считать с положительным знаком, то точка отсчета через времени превратит часть положительных интервалов в отрицательные. И наоборот, если мы условимся считать длительность развития какого-то процесса как сумму положительных временных интервалов, то неприсовокупленные еще интервалы далее по оси временной координаты будут считаться как отрицательные, и мгновенная точка отсчета, перемещающаяся по оси, будет менять знак интервалов с - на +. Поскольку в нашей практической жизни мы встречаемся с этим явлением постоянно, его необходимо четко себе представлять.

?? Движение в качестве. Все многообразие окружающих нас форм Материи описать одним лишь движением в пространстве-времени представляется уже невозможным. Нам явно не хватает чего-то еще, что свело бы все явления, происходящие постоянно в Мире, в единую схему его построения и развития. Этим третьим видом движения является фактически не познанное, формально до сих пор пока никем не признанное и несправедливо всеми игнорируемое движение Материи в качестве. Ввиду пренебрежения к этому виду движения Материи, Наука даже в наши дни неспособна со всей ясностью дать полные, объективные и четкие объяснения каузальности большинству событий и явлений, происходящих вокруг нас в Мире.

   О том, что все эти явления зависят по крайней мере от трех параметров, говорил более ста лет назад еще Л.Н. Толстой: "Для того, чтобы представить человека, - писал он в "Войне и Мире", - совершенно свободного, не подлежащего закону необходимости, мы должны представить его себе одного вне пространства, вне времени и вне зависимости от причин" (подчеркнуто Л.Н. Толстым - И.К.).

   В.И. Ленин в "Философских тетрадях" позднее уточнил, что "функциональность ... может быть видом причинности". А как известно, функция это внешнее проявление качественных свойств какого-либо объекта в данной системе отношений.

   Однако, наиболее четкое определение обязательности рассмотрения организации строения Материи через тройственное движение дано Ф. Энгельсом в "Диалектике природы". "... Существует также много качественных изменений, писал он, - которые следует принимать во внимание, зависимость которых от количественных изменений никоим образом не доказана. ... Всякое движение заключает в себе механическое движение, перемещение больших или мельчайших частей материи; познать эти механические движения является первой задачей науки, однако лишь первой ее задачей. Но это механическое движение не исчерпывает движения вообще. Движение - это не только перемена места (то есть движение в пространстве-времени - И.К.); в надмеханических областях оно является также и изменением качества" (подчеркнуто автором - И.К.).

   Среди высказываний по этому вопросу наших современников следует отметить определение российского академика А.И. Опарина, охарактеризовавшего "процесс развития материи как путь возникновения новых, ранее не существовавших качеств" (подчеркнуто мною - И.К.). Таким образом, для создания полной картины строения и развития материального Мира необходимо рассматривать движение материальных формирований в трех равнозначных философских категориях: в пространстве - времени - качестве.

   И действительно, при анализе даже самых простых примеров нетрудно убедиться в этом. Представим себе какой-то замкнутый объем пространства (), ограниченный для наглядности стеклянной емкостью. Если мы станем наполнять этот объем каким-либо газообразным веществом, то движение газа внутри объема при его заполнении в течение n времени будет наблюдаться как абсолютное движение (, ) вещества одного качества (газа) в пространстве, заполненном "догазовым" веществом другого качества. Через временной интервал газ полностью заполнит данный объем и абсолютное движение в пространстве-времени для данной порции вещества Материи заданного качественного уровня прекратится. Другими словами, после уравновешивания системного состояния данного вещества однородного качества в условно замкнутом объеме пространства дальнейшее абсолютное его движение в пространстве-времени не осуществляется.

   Если это и возможно для некоторой части Материи на какой-то период времени, то общее Развитие совокупной Материи отсутствие абсолютного движения в пространстве-времени не допускает, поскольку оно является главнейшим условием ее существования. Вот почему наряду с абсолютным движением в пространстве-времени имеет место и движение материальных форм в качестве.

   Что же следует под этим понимать?

   Согласно обычному определению качество - это структурно нерасчлененная совокупность признаков, свойств вещества, поля или предмета, проявляемая в системе отношений с другими веществами, предметами или тому подобными материальными образованиями. Качество есть существенная определенность вещества, поля или предмета, в силу которого они являются данным, а не иным материальным образованием и отличаются от других образований. Поэтому каждая качественная форма Материи обладает определенной совокупностью свойств и признаков, которые она проявляет при отношении с другими формами Материи. А как известно, внешнее проявление качественных свойств объекта в данной системе отношений есть его функция. Вот почему с изменением качественной характеристики любого материального образования меняется и его функциональная характеристика.

   Таким образом, изменение в качестве, или движение в качестве, следует рассматривать как движение в функциональной разнородности веществ, реализуемое через системную организацию материальных форм.

   Вместе с тем, движение в качестве так же неразрывно связано с движением во времени, как и движение в пространстве. Без движения во времени невозможно себе представить качественных изменений, оно является независимой переменной указанной взаимосвязи. Поэтому движение в качестве можно понимать только как движение в качестве-времени.

   Так же как и движения в пространстве или времени, движение в качестве может быть относительным или абсолютным. Изменения функциональных свойств одних материальных образований по сравнению с другими представляет собой относительное движение в качестве. Суммарное накопление функциональных свойств всеми формами совокупной Материи образует абсолютное движение в качестве и именно оно важно для философского понимания диалектического Развития.

   Функциональные свойства любого материального образования могут проявляться лишь в системе отношений с другими однородными элементами. Единичное, изолированное материальное образование лишено возможности проявлять свои качественные признаки и не может служить целям материального развития. Поэтому обладание качеством или функциональной определенностью диктует необходимость каждому элементу быть включенным в какую-либо систему отношений с другими материальными образованиями, в процессе которых и происходит реализация присущих ему свойств. Вследствие этого движение Материи в качестве влечет за собой обязательную системную организованность материальных форм, являясь ее основной причиной. Все элементы известных системных образований в зависимости от своих функциональных свойств совершают те или иные пространственно-временные перемещения, в результате которых проявляются обладаемые ими свойства. Указанные перемещения, строго соотнесенные с пространственно-временны?ми интервалами абсолютного движения в пространстве-времени, представляют собой функциональные алгоритмы, при этом каждый алгоритм предопределен функциональными свойствами того или иного материального образования в данной системе отношений.

   Абсолютное движение в качестве постоянно прибавляет те или иные свойства материальным образованиям, тем самым являясь причиной появления новых функциональных алгоритмов, которые в свою очередь ведут к организации новых системных структур. Так движение Материи в качестве-времени детерминирует постоянство процесса системной организации материальных форм в той степени, в какой само качество служит детерминантом системности Развития Материи.

Развитие. Рассмотренные нами три вида движения Материи одновременно можно считать и единым ее движением в трех равнозначных философских категориях, объединенных общей атрибутивной принадлежностью к Материи. Само это движение, регламентируемое строго определенными закономерностями, направлено на обеспечение существования самой Материи, простертой в объективной реальности.

   Вместе с тем, движение Материи в трех категориях обеспечивает не только ее существование, оно ведет к развитию организации ее структур. Поэтому изменение структурных свойств Материи происходит вследствие движения ее форм в пространстве - времени - качестве через приращения по трем координатам: качественной, временной и пространственной (распадающейся в свою очередь на три составляющих). Общая результирующая и будет тензором Развития Материи. Таким образом, упрощенно Развитие Материи можно трактовать как регулярное появление новых качественных свойств , их распространение в пространстве , для чего требуется определенное время . Без движения Материи через свои формы в качестве-пространстве-времени ни развитие, ни даже ее существование невозможны:

   а) движение в качестве () - осуществляется путем изменения функциональных свойств одной системы материальных точек по сравнению с другой. Этим обусловливается качественная разнородность Развития и его системная организованность;

   б) движение в пространстве () - путем перемещения одной материальной точки (или системы точек) относительно другой. Этим достигается объемность Развития;

   в) движение во времени () - фиксирует длительность событий и протекает из прошлого через настоящее в будущее. Этим обеспечивается необратимость Развития.

   Все три вида движения в совокупности диктуют направленность тензора развития Материи, смысловая формула которого следующая:

Следует подчеркнуть еще раз, что все события материальной реальности имеют в своей основе обязательное сочетание всех трех видов движения, и исключение из триединого движения либо движения в качестве () либо в пространстве () может носить исключительно только временный характер. Событий без движения во времени в реальности не существует. Движение в пространстве можно считать производной от движения в качестве, которое в свою очередь можно считать производной от движения во времени. Само движение во времени производно как от движения в пространстве, так и от движения в качестве. Без обоих зтих движений движения во времени не существует.

   Абстрагирование от одного из видов движения даст нам частные случаи:

   а) при условно замкнутом пространстве () - "схему эволюции ", то есть последовательность качественных приращений во времени и их продолжительность;

   б) при условно застывшем времени () - "актуальный или исторический стоп-кадр ", то есть пространственное развертывание качественных форм на определенный момент времени;

   в) при условно ограниченном качественном спектре () - "механическое движение ", то есть перемещение материальной точки (или системы точек) относительно точки отсчета.

   Любое указанное абстрагирование может быть чисто условным или искусственным, поскольку в действительном Мире движение Материи осуществляется во всех трех категориях, образуя системные образования, представляющие собой как минимум два взаимосвязанных компонента, относительные друг к другу в пространстве-времени. Объединенные в единую систему элементы, обладая определенными функциональными свойствами, приобретают внутрисистемный потенциал, определяющий характер их движения в пространстве-времени и регламент их внутрисистемного существования. Изменение системной организации материальных образований, ее усложнение и совершенствование является прямым результатом движения в качестве-времени. Особенности именно этого движения, его движущие силы и структурную механику мы и будем рассматривать в продолжение нашего исследования.

Энергия. Описание видов движения Материи будет неполным, если не остановиться еще на одной очень важной философской категории - энергии.

   Энергия в общем понятии есть мера движения Материи. Другое определение характеризует ее как функцию состояния системы.

   Движение Материи в качестве-пространстве-времени происходит не произвольно, а подчиняясь строгому закону постоянства общей суммы энергии. И если для инерциальной материальной точки, двигающейся равномерно-прямолинейно, величина энергии однозначна и равна Eк, то для системы множества точек величина энергии будет выражаться формулой:

Эта формула в определенной мере раскрывает механизм и взаимосвязь всех видов движения Материи, а также его регламентирование. Подставляя в формулу выражение значения скорости , мы получим закономерность абсолютного движения материальных форм в пространстве-времени. Для разрозненного множества точек полная энергия будет составлять:

где mi - сумма качественно однородных точек.

   Соединение ряда точек в некоторую устойчивую (то есть с определенным временным интервалом) систему, предопределяющую характер их движения в пространстве-времени, образует своего рода материальную точку более высокого организационного порядка со своими функциональными свойствами и с потенциальной энергией Eпi. При этом Eк всей системы уменьшится и полная энергия будет характеризоваться развернутой формулой.

   Если же вся сумма множества разрозненных точек объединится в целостную систему, представляющую единую материальную точку или сумму точек более высшего порядка (с обязательным изменением их функциональной характеристики), то вся суммарная кинетическая энергия этого множества точек качественно низшего порядка перейдет в потенциальную энергию точки-системы высшего организационного порядка, то есть кинетическая энергия разрозненных точек или частиц как бы полностью увязает в системной структуре, включивших их, переходя в энергию внутрисистемной связи.

   И наоборот, при распаде материальной системы высшего порядка ее потенциальная энергия внутрисистемной связи трансформируется в кинетическую энергию множества точек более низшего системного порядка. Примерами описанных процессов могут служить реакции синтеза и распада в физических явлениях, ассоциации и диссоциации в химических и т. п.

   В целом же энергетическая константа самым прямым образом влияет как на движение материальных форм в пространстве-времени, так и на их системную реорганизацию при движении в качестве-времени. В силу этого изотропное и объемное пространство каждой предыдущей системной организации уровня n является областью возрастания энтропии последующих качественных уровней развивающейся совокупной Материи по мере протекания равномерных временных интервалов, при этом постоянная сумма энергии всей Материальной субстанции обеспечивает статическое равновесие этого Развития.

[ Оглавление ] [ Продолжение текста ]

[ Оглавление ]

Игорь Кондрашин

Диалектика Материи

II. Общая теория материальных систем

"Диалектика... - является единственным, в вышей инстанции, методом мышления, соответствующим теперешней стадии развития естествознания, поскольку только она одна предлагает моделирующие системы, и, таким образом, методы объяснения процессов развития, протекающих в природе, всеобщей взаимосвязи и переходов от одной области познания к другой"

Ф. Энгельс

"Диалектика природы"

Системность Материи

Все окружающее нас многообразие объективной реальности представляет собой качественно-различные формы Материи, развернутые в пространстве. Однако, расположение форм в пространстве не является случайным, оно предопределено организационной структурой одной из систем, куда та или иная материальная точка (или группа точек) входит в качестве составной части.

   Вследствие этого Материя не есть произвольное нагромождение качественных форм, беспорядочно разбросанных в пространстве и чередующихся во времени. Напротив, Материя существует в виде различного рода сложнейших по своей структуре многочисленных системных образований, находящихся в постоянной взаимосвязи и взаимодействии, причем порядок их организации строго регламентируется самим ходом Развития Материи через движение в качестве-пространстве-времени.

   Каждая часть любой системы имеет определенные качественные свойства и несет соответствующую функциональную нагрузку. Период функционирования каждой части системы предопределяется движением по ординате времени; перемещение в пространстве обеспечивает относительное друг к другу развертывание частей функционирующих систем; появление новых качественных свойств является фактором дальнейшего системообразования Материи. Таким образом, Материя существует не в виде статически устоявшихся произвольных образований, а представляет собой взаимосвязанное сочетание динамических систем, постоянно организационно преобразующихся и совершенствующихся в соответствии с движениями в качестве-пространстве-времени. Кажущаяся статичность отдельных системных образований является лишь следствием относительной длительности периода их функционирования.

   В зависимости от их функциональной зрелости все системные образования можно разделить на:

   1. Формирующиеся (зарождающиеся);

   2. Развивающиеся;

   3. Устоявшиеся;

   4. Отмирающие и

   5. Отмершие.

   При этом каждая разновидность конечных систем, как правило, проходит через все указанные этапы своего существования.

   В периоды формирования и отмирания в системах пребладают суммативные свойства материальных образований, основанные, главным образом, на движении в пространстве-времени. Развивающиеся, и в особенности, устоявшиеся системы имеют более целостный характер, что выражается в четкой взаимосвязи компонентов их структур строго определенными актуализированными функциями. Движение в качестве-времени придает тем или иным компонентам системы аддитивные свойства, которые постепенно усиливают объективную потребность в системной реорганизации.

   Все системное многообразие Материи в настоящее время можно условно разделить на ряд организационных уровней, объединяющих однотипные по своему строению системообразования. Изменение состояния системы любого уровня, характеризуемое относительным перемещением ее компонентов в пространстве-времени, представляет собой функциональное событие. Появление новых функций, как следствие движения в качестве-времени, по мере системной реорганизации детерминирует эволюционный процесс, прослеживающийся на всем протяжении Развития Материи по уровням своей организации, при этом направление этого процесса: от суммативных систем низкого уровня к целостным системам высокого. Вся совокупность системных процессов и событий предопределяет движение актуальной точки отсчета по координатным осям качества-пространства-времени, в результате которого и осуществляется развитие материальной субстанции.

Функциональная ячейка и функционирующая единица

Для понимания принципа внутрисистемной взаимосвязи компонентов каждого материального образования рассмотрим особенности строения любой системы. Для наглядности возьмем модель системы с самой простейшей структурой.

   Для этого мысленно перенесемся в абсолютно "пустую" область пространства, заполненную условным однородным "эфиром", состоящим из некоторого числа материальных точек. Поскольку данный эфир обладает определенными пространственными параметрами, это означает, что он представляет собой материальную субстанцию и характеризуется определенными качественными свойствами, описываемыми строго определенной функцией, причем эта функция будет одинакова для любых пространственных объемов данного эфира в силу его однородных качественных свойств. Поэтому, если мы удалим некоторую часть эфира из занимаемого им объема пространства и заменим ее другой, равновеликой по пространственной величине и качественной характеристике, частью эфира из какого-либо другого участка, то функция данного пространственного объема вследствие качественной однородности обеих взаимозаменяемых порций эфира останется без изменения, то есть общий функциональный фон данного образования не нарушится. Это свойство материальных систем является одним из основополагающих.

   Тот пространственный объем, из которого мы изъяли, а затем куда вновь поместили порцию условного эфира, называется функциональной ячейкой (сокращенно - фн. ячейкой) структуры данного системообразования, а сама эта порция эфира - ее функционирующей единицей (фщ. единицей).

   Поскольку мы с самого начала условились, что взятый нами объем пространства полностью заполнен эфиром, это означает, что всякое абсолютное движение в пространстве-времени к моменту нашего рассмотрения прекратилось (). Для того, чтобы обеспечить дальнейшее существование материальной субстанции, чего нельзя добиться вне полного абсолютного движения, Материя вынуждена в своем Развитии сделать очередной шаг в третьем виде движения - осуществить некое перемещение по ординате качества ().

   В силу этого "элементарные" точки эфира, расположенные относительно друг друга в пространстве-времени в определенном порядке, начинают перегруппировываться согласно некоторым закономерностям, образуя структуры сгустков материальных точек иного, более высокого, чем структура эфира, системного порядка, имеющих свою описательную функцию, соответствующую их новым качественным свойствам. Механизм системообразования сгустков нас пока не интересует, но то, что эти сгустки, вбирая в себя определенную часть элементарных точек эфира, имеют иные, отличные от первоначальных и свойственные только им внутрисистемные структуру и движение, для нас очень важно.

   Теперь материальные точки взятой нами области пространства входят одновременно в системные образования двух различных организационных уровней. Там, где материальные точки находятся в свободных от новообразованных сгустков областях пространства, они продолжают представлять первоначальный эфир. Там же, где формирование материальных точек в сгустки придало им новые качественные свойства, возникли области пространства, описываемые совсем иной функцией.

   После этого, если мы из части структурного пространства (фн. ячейки) изымем один из сгустков (фщ. единицу) и вместо него поместим равную ему по объему сумму материальных точек, организованных по системе эфира, то такая замена не будет равнозначной в силу различия функциональных свойств системных образований первого и второго уровней. По этой причине любая неравнозначная замена фщ. единиц всегда ведет к соответствующему изменению фн. фона данного образования. И наоборот, если мы вместо изъятого сгустка поместим в его фн. ячейку другой точно такой же сгусток материальных точек, то функциональные свойства данной части системы, как и ее фн. фон, не изменятся. Эти, а также другие закономерности системообразования лежат в основе построения всех окружающих нас материальных систем, представляющих собой энтелехические структуры фн. ячеек, каждая из которых объединяет строгий перечень определенных алгоритмов. Материальные образования, заполняя соответствующие фн. ячейки в качестве фщ. единиц, реализуют в процессе своего функционирования требуемые алгоритмы, обеспечивая тем самым существование всей данной целостной системы.

   Фн. ячейки на всех уровнях организации Материи не статичны, а возникают в силу балансированного изменения внутрисистемного потенциала то в одном, то в другом месте пространственно-временной протяженности.

   Фщ. единицы, постоянно притягиваясь ими, совершают соответствующие перемещения в пространстве-времени. Поэтому движение Материи в качестве-пространстве-времени следует рассматривать как постоянное движение всей совокупности фщ. единиц в пространственно-временное расположение соответствующих фн. ячеек, поскольку только там с их помощью может происходить реализация тех или иных фн. алгоритмов, актуально необходимая материальной субстанции для обеспечения своего существования, для осуществления того или иного этапа своего развития.

Принципы системного построения Материи

Принцип 1 Все движение Материи в качестве сводится к системной дифференциации функций ее образований, влекущей за собой их системно-структурную интеграцию.

Принцип 2 Каждое материальное образование имеет характерные только для него качественные свойства, описываемые строго определенной функцией, которые оно проявляет в процессе своего функционирования как часть некоторой системы организационного уровня n. Неизолированные материальные образования, имеющие фн. свойства одного системного уровня, вступают между собой во взаимосвязь, отражающую процесс системной интеграции Материи.

Принцип 3 Каждое материальное образование, представляющее совокупность взаимосвязанных дифференцированных элементов - фщ. единиц, структурно объединяет их в материальную систему организационного уровня n. Каждый элемент - фщ. единица уровня n - является микросистемным образованием совокупности дифференцированных элементов - фщ. единиц организационного уровня n-1 со специфическими для них фн. свойствами. Вместе с тем, устоявшаяся целостная система уровня n может представлять собой дифференцированный элемент - фщ. единицу структуры макросистемного образования более высокого организационного уровня n+1, способной реализовать соответствующие алгоритмы занимаемой ею фн. ячейки.

   Таким образом, вся системная организация материальной субстанции, разбитая на различные уровни, носит явно выраженный каскадный характер и каждый новый интеграционный этап дифференциации функций отражает очередную ступень каскадного Развития Материи.

Принцип 4 Каждая функциональная ячейка отличается от другой неоднородной ей фн. ячейки своим спектром алгоритмов функционирования, которые могут реализовываться только посредством заполняющих ячейки функционирующих единиц. Вот почему искомая фщ. единица должна обладать соответствующим перечнем функциональных возможностей, чтобы выполнять характерные для данной фн. ячейки алгоритмы.

Принцип 5 Изменение функциональных свойств (качества) любой системы уровня n является следствием изменения ее внутренней структуры, характеризуемой пространственно-временным расположением входящих в нее фн. ячеек и их алгоритмической взаимосвязью между собой. И наоборот, любое изменение внутренней структуры системы уровня n влечет за собой изменение ее функциональных свойств (качества).

Принцип 6 Каждое материальное образование, представляющее некую фщ. единицу "а", может проявлять свои фн. свойства только будучи помещенной в соответствующую ей фн. ячейку "А" пространственно-временной протяженности структуры системы уровня n. В то же время система уровня n может считаться целостной и нормально функционировать лишь при условии, что все фн. ячейки "А", "Б", "В" ... ее структуры будут заполнены соответствующими фщ. единицами "а", "б", "в" ... , через функционирование которых ячейки реализуют присущие им фн. алгоритмы.

Принцип 7 При замене в фн. ячейке "А" системы уровня n одной фщ. единицы "а" на другую равнозначную ей фщ. единицу "а" функциональные свойства всего системного образования не изменятся. Напротив, при замене в фн. ячейке системы фщ. единицы "а" на качественно отличную от нее фщ. единицу "б" того же организационного уровня n функциональные свойства всей данной системы, то есть ее фн. фон, соответственно изменятся.

   И действительно, если в молекуле воды H2O изъять входящий в ее состав атом кислорода из его фн. ячейки и вместо него поместить туда другой атом кислорода, функциональные свойства системного образования - молекулы воды - от этого не изменятся. Если же в освободившуюся фн. ячейку поместить атом серы, качественно отличающийся от атома кислорода, фн. свойства данной молекулы изменятся, поскольку после этого она будет обладать соответствующими свойствами сероводорода H2S, а не воды.

Принцип 8 Каждое материальное образование становится фщ. единицей в фн. ячейке структуры системы уровня n только в том случае, если оно имеет устоявшуюся системную законченность уровня n-1, выражающуюся в наличии определенного спектра фн. свойств, отражающих функциональную дифференциацию подсистем макросистемы. Обладание только частью системных фн. свойств вынуждает фщ. единицу занять любую соответствующую ей свободную фн. ячейку в структуре организационного уровня n+1, при этом автономное, внесистемное ее существование становится практически невозможным. Свои индивидуальные фн. свойства каждое организованное материальное образование уровня n может реализовать лишь в процессе фунционирования в качестве фщ. единицы в одной из соответствующих ей ячеек системы уровня n+1, однако внешне проявляться уже будут комплексные фн. свойства всего нового системного образования.

   Так, атомы кислорода, обладая определенным спектром фн. свойств, практически не могут существовать в свободном состоянии и вынуждены заполнять фн. ячейки молекулярных структур, например, кислорода O2 или озона O3 или какого-либо другого химического соединения, включающего атомы кислорода, после чего внешне проявляются уже фн. свойства молекул этих соединений. В силу этого, атом кислорода, заняв фн. ячейку в молекуле воды, реализует свои фн. свойства лишь как фщ. единица данного системного образования и его индивидуальные свойства становятся неразличимы от спектра фн. свойств вобравшей его системы. Вот почему на практике невозможно различить, например, в молекуле воды специфические качественные особенности атомов водорода и кислорода. Сделать это можно лишь изъяв указанные атомы из фн. ячеек молекулы, но тогда и атомы будут иметь уже другие, "внесистемные" признаки.

Принцип 9 Функциональные ячейки и соответствующие им функционирующие единицы всех организационных уровней имеют различный период времени существования в структуре данного системного образования. На этом принципе построены все функциональные изменения, а также временная продолжительность функционирования физических, химических, биологических и даже социальных систем.

   Так, если молекула воды по какой-либо причине распадается на отдельные атомы, то три ее фн. ячейки прекратят свое существование, в то время как фщ. единицы - два атома водорода и атом кислорода - займут пустующие фн. ячейки других системных образований данного организационного уровня. Напротив, при окислении сероводорода H2S фн. ячейку атома серы занимает атом кислорода, в то время как сера в свободном виде выпадает в осадок.

   Таким же образом мы сможем проследить чередование фщ. единиц - белков в соответствующих фн. ячейках органических клеток, а также фщ. единиц работников в структурах фн. ячеек предприятий.

   Вместе с тем, необходимо отметить, что в процессе движения в качестве Материя прежде создает все новые слои фн. ячеек, которые затем заполняются соответствующими им фщ. единицами, при этом число фн. ячеек условно "верхних" слоев всегда превышает число соответствующих им образующихся фщ. единиц. Одновременно происходит процесс сокращения условно "нижних" слоев фн. ячеек, принуждающий высвободившиеся фщ. единицы к миграции, то есть к занятию соответствующих фн. ячеек в новых структурных формированиях.

   Число фн. ячеек регулируется структурной потребностью того или иного системного образования. Любую систему уровня n можно считать целостной и функционально законченной лишь только в том случае, если все фн. ячейки ее структуры заполнены соответствующими им фщ. единицами. Такая система является условно замкнутой для всех фщ. единиц, не могущих попасть в ее заполненные фн. ячейки. Вместе с тем, система становится открытой, как только в ее структуре появляются свободные фн. ячейки, готовые к принятию соответствующих фщ. единиц. Это свойство систем лежит в основе всех химических реакций, физических взаимодействий, биологических, социальных и других системных явлений.

Принцип 10 Группы фщ. единиц, заполняющие структуры фн. ячеек системных образований уровня n, образуют различные подсистемы с характерными фн. свойствами, при этом все фщ. единицы по значимости равны между собой только в одном - все они являются носителями определенных фн. свойств, которые они реализуют в процессе своего функционирования в соответствующей фн. ячейке. Однако сами фн. ячейки занимают в структуре любой системы далеко неравнозначную позицию, диктуемую системной организацией данного материального образования. Поэтому, чем сложнее организована система, тем заметнее в ней выделяется определенная структурная соподчиненность между ее фн. ячейками, регулируемая образовавшимися межячеечными связями, а фщ. единицы, заполняющие соответствующие им фн. ячейки, образуют своего рода фн. пирамиды соподчинения и различаются по своей фн. значимости.

Принцип 11 Функционирование каждой динамической целостной системы происходит под влиянием трех факторов:

   1. Энергетического - в силу действия которого осуществляется синтез системных образований путем заполнения фн. ячеек соответствующими фщ. единицами и замыкания системы для излишних фщ. единиц;

   2. Энтропийного - с помощью которого происходит размыкание фн. ячеек отфунционировавших системных комплексов, в результате чего освободившиеся фщ. единицы перемещаются в фн. ячейки других системных образований;

   3. Аккумулятивного - служащего для накапливания фщ. единиц, предотвращения их возможного распада с целью последующего их активного использования во вновь образующихся системных образованиях.

   Поэтому в каждой адиабатической (то есть находящейся в условной изоляции) динамической системе или подсистеме заметно проявление как минимум двух активных центров. Для одного из них характерно преобладание энергетического фактора, действие которого выражается в создании фн. ячеек на разных организационных уровнях (главным образом, по условной вертикали) и заполнении их имеющимися в наличии фщ. единицами. Это приводит к снижению уровня относительного порядка подсистемы, но обеспечивает ее развитие в качестве. Для другого центра характерно преобладание энтропийного фактора, ведущего к созданию фн. ячеек на одном организационном уровне (по условной горизонтали) и соответствующего их заполнения фщ. единицами. Это приводит к более равновесному состоянию данной части системы. Местоположение обоих центров в структурах систем непостоянно и перемещается в зависимости от меняющихся внутрисистемных условий. В результате действия обоих факторов происходит увеличение числа фщ. единиц одного уровня в одном из центров и недостаток их в другом. Это является причиной перемещения фщ. единиц из донорской области, где их избыток, в акцепторную область пустующих соответствующих им фн. ячеек.

   Таким образом, развитие любой динамической материальной системы может происходить только при наличии обоих центров (энергетического и энтропийного), то есть при действии фактора биполярности развивающихся систем. Его наличие можно проследить практически во всех процессах и явлениях, происходящих в природе, а также в событиях общественной жизни (начиная от химического процесса горения и кончая социальнными явлениями безработицы или нехватки рабочей силы, и т. п.).

Принцип 12 Упорядоченность движения материальных образований обеспечивается благодаря его системности, из которой вытекают определенные закономерности движения фщ. единиц в качестве-пространстве-времени. Анализ хода развития материальной субстанции по ординате качества показывает, что все материальные образования - фщ. единицы по функциональным признакам разбиваются на множество уровней системной организации, образуя строго закономерную организационную последовательность, при этом каждый новый уровень включает в качестве элементов своей структуры - фщ. единиц - системные образования нижних подуровней. Однако, в силу того, что суммарная энергия всей материальной субстанции является величиной постоянной, ее количество строго регламентируется для каждого организационного уровня, при этом синтезирование систем более высоких уровней связано с сокращением доли кинетической энергии материальных микрообразований, которая, как бы увязая в структуре макросистем нового уровня, трансформируется в ее условный энергетический потенциал.

   Таким образом, каждая система более высокого порядка, заполняя структуры своих фн. ячеек фщ. единицами - материальными образованиями предыдущих уровней, как бы аккумулирует кинетическую энергию их движения, переводя ее в потенциальную энергию связи в структуре данной системы. Поэтому образование функционирующих систем каждой последующей ступени происходит одновременно с обязательным аккумулированием энергии движения в пространстве-времени единиц предыдущего уровня. И наоборот, распад системы фн. ячеек любого уровня нарушает взаимосвязь между ее фщ. единицами, переводя их на предыдущий, более низкий уровень системной организации, где они, повинуясь законам, вытекающим из формулы , увеличивают скорость своего перемещения в пространстве, трансформируя таким образом потенциальную энергию связи в структуре распавшейся системы в кинетическую энергию движения в пространстве-времени высвободившихся функционирующих единиц.

Положения и принципы общей теории материальных систем частично широко известны, частично неизвестны совсем, хотя в Жизни на практике нам приходится встречаться с ними, часто не осознавая того, почти ежедневно. Поэтому, конкретно прослеживая процессы системного образования и развития материальной субстанции по уже известным организационным уровням, можно получить дополнительные доказательства их существования и действия.

[ Оглавление ] [ Продолжение текста ]

[ Оглавление ]

Игорь Кондрашин

Диалектика Материи

III. Диалектический генезис материальных систем

"Этот мир придуман не нами,

Этот мир придуман не мной..."

слова из песни

Каскадность построения мира

Наука, будучи плодом человеческого познания, в настоящее время находится в очередной важной фазе своего развития. Логически обобщая все большую массу эмпирического материала, она выводит строго сформулированные закономерности. Получаемые теоретические обобщения становятся все более абстрактными, все более разветвленными.

   И действительно, схема онтогенеза наших познаний напоминает растущее древо, при этом каждый год добавляет к нему все больше веточек и листочков, предопределяя и расчленяя фронт еще непознанного на все более узкие участки на каждом отдельном острие. Каждое новое наше знание-листочек закрывает собой очередное белое пятно нашего незнания, которое, если промедлить, в определенный момент может перерасти в невежество и за которое та или иная общность людей может заплатить своим благополучием, прогрессом и даже существованием. Человеческий Разум, как инструмент познания, служит естественным интересам Человеческого общества для предотвращения таких моментов.

   Человеческая цивилизация, как макросистемное образование Материи очень высокого уровня n, находящееся в стадии своего дальнейшего развития, свои первые теоретические обобщения могла делать лишь через эмпирическое познание окружающего мира. Эти поиски шли сначала посредством случайных наблюдений, а затем и с помощью специальных поисков и исследований как в пространстве (макро- и микро-), так и во времени (главным образом в историю, то есть в -t) и даже в качестве (путем исследования функций системных образований нижних уровней Материи: n-1, n-2, n-3 и т.д.). Таким образом, человеческая цивилизация лишь через абстракцию, логическое мышление и эксперимент может проникнуть (хотя бы частично, хотя бы условно) в один из близлежащих нижних уровней системного строения Материи, спускаясь по ступенькам каскадной организации вниз, а не поднимаясь от некоего "нулевого" уровня.

   Поэтому Наука до сих пор спорит о том, как был "сотворен Мир", что явилось его "началом". Ввиду того, что потребность в знании этого появилась уже сранительно давно, духовенство различных течений строит на этом незнании свои теологические версии (достаточно наивные с научной точки зрения и часто противоречащие друг другу) о божественном сотворении Мира. Недалеко от этого ушла и популярная у астрофизиков теория "первоначального взрыва".

   Итак, Науке пока неизвестен абсолютный нулевой уровень качественного развития Материи, а также то, был и/или существует ли он вообще. Однако за относительно начальный уровень системного развития можно условно принять любой из ставших известными самых нижних подуровней системной организации Материи. Это необходимо сделать прежде всего для упрощения хронологического изложения и понимания хода диалектического Развития материальных систем в соответствии с движением по координатам качества-времени-пространства от простого к сложному, от раннего к позднему, от меньшего к большему и т. д.

Уровень а

Самым нижним уровнем системного строения Материи, известным современной Науке, можно считать явление нулевых колебаний вакуума. Частицы, наполняющие его, называются виртуальными. Каких-либо глубоких серьезных теорий о функциональных свойствах данной системной организации Материи пока не существует ввиду невозможности осуществлять наблюдение или поставить эксперимент в рамках этого подуровня, но при изучении микромира наличие указанного явления приходится учитывать. Существует предположение, что время функционирования виртуальных частиц весьма непродолжительно, возникают они парами "частица-античастица", тут же исчезают, чтобы появиться вновь.

   С явлением нулевых колебаний вакуума перекликается гипотеза о существовании частиц-тахионов, двигающихся с постоянной сверхсветовой скоростью с очень малым периодом функционирования (существования).

Уровень А

Более фундаментальным нижним функциональным подуровнем, пронизывающим все строение Материи, являются в настоящее время системные образования, состоящие из кварков. В наши дни известно уже как минимум о шести типах кварков. Кроме них в этом подуровне существуют глюоны, связывающие функционально дифференцированные кварки в структурные образования, являющиеся фщ. единицами более высокого уровня (протоны, нейтроны и др.).

   Природа и функциональные свойства кварков интенсивно изучаются, но уже их различают по таким характеристикам, как заряд, изотопический спин, странность, барионный заряд, спин и т.п.

   Вполне естественно утверждать, что кварки и глюоны не являются самыми мельчайшими системными образованиями Материи, но познать структуру и состав самих кварков современная Наука пока еще не в состоянии. Известно лишь, что в свободном виде кварки практически не встречаются и поэтому для их выделения требуется расщепление частиц с приложением энергии больших величин. Это свидетельствует о том, что системная организация данного подуровня полностью стабилизировалась и Развитие происходит в более высоких организационных уровнях Материи.

   Что касается сферы распространения данного уровня, то она простирается по меньшей мере в пространственном объеме всей нашей Вселенной. Во всяком случае, все видимое нами с Земли космическое пространство является областью его распространения.

   Отсутствие достаточной информации о природе, времени функционирования, функциональных свойствах и структуре единиц данного подуровня не позволяет пока с полной достоверностью говорить о том, какую роль играли и играют кварки и глюоны в процессе Развития Материи, однако есть все основания полагать, что роль эта значительна. В любом случае, в философской классификации эти материальные образования по праву занимают один из базовых подуровней в каскаде системной организации материальных форм.

Уровень АА

В отдельный подуровень системного Развития Материи следует выделить следующую группу известных частиц, входящих в состав материальных образований более высоких уровней. Сюда относятся фотоны, электроны, гравитоны, нейтрино, а также подобные им частицы и соответствующие античастицы. Ввиду больших трудностей, связанных с наблюдением и изучением этих материальных образований, их функциональные свойства и характер их взаимодействий полностью далеко еще не изучены. Однако, в отличие от единиц уровня А они чаще встречаются в свободном состоянии, что говорит о фунциональных особенностях и большей пространственной метрике включающих их системных образований.

Уровень АБ

В группу единиц данного подуровня следует отнести Пи-, Мю- и К- мезоны, гипероны и им подобные частицы и античастицы. Их отличительной чертой служит то, что они являются системными образованиями единиц подуровней А и АА, недолговечными по времени своего существования, что характеризует их системную нестабильность. Как правило, они в качестве фщ. единиц занимают фн. ячейки структур более высокого порядка, но при отделении от них сразу же распадаются на свои составные части. Данные единицы не встречаются в свободном состоянии в течении относительно продолжительного времени. Их функциональные свойства в системных образованиях более высшего порядка также пока мало изучены.

Уровень Б

Следующим известным функциональным подуровнем развивающейся Материи являются стабильные системные образования так называемых "элементарных" частиц. Как известно, приоритет элементарности они носили временно в силу затруднений ранней науки расчленить их на составные части. Теперь, когда это уже сделано, их название носит чисто символический смысл и, возможно, скоро будет предано забвению.

   В эту группу следует отнести протоны и нейтроны, а также другие частицы и античастицы данного уровня. Как теперь уже известно, их структурный состав представляет собой системную комбинацию единиц подуровней А, АА и АБ, однако в отличие от материальных образований уровня АБ их характеризует большая временная стабильность, то есть больший период функционирования во времени. Так, например, если время функционирования Мю- мезона составляет всего 2·10-6 сек. (две миллионные доли секунды), то время существования нейтронов и протонов намного больше.

   В настоящее время известно более 200 наименований фщ. единиц, входящих в подуровни А - Б.

Уровень В

Сто с лишним атомных элементов периодической системы Менделеева представляют собой системные образования подуровня В. Функциональные свойства этих единиц изучены более глубоко, чем свойства единиц подуровней А - Б. Их внутренняя структура к настоящему времени также хорошо известна.

   Структурное различие между ними сводится к числу входящих в них протонов, нейтронов, мезонов и электронов, однако каждое очередное прибавление к системе пары протон-электрон резко меняет функциональные свойства всей совокупной единицы в целом и это является наглядным подтверждением регламентированности числа фн. ячеек в каждой данной системе.

   Областью пространственного распространения единиц уровня В является (как и для единиц подуровней А - Б) область обозримой нами Вселенной.

   Основная масса любой единицы данного уровня - атома - более, чем на 99,9% сосредоточена в его ядре, размер которого составляет 10-13 см, то есть в 105 раз меньше размеров самого атома (10-8 см). Так, если размеры атома представить в виде футбольного поля (с диаметром 100 м), то атомное ядро будет соответствовать дробинке с диаметром лишь 1 мм. Ядра имеют сложную структуру фн. ячеек. Основными элементами, заполняющими их в качестве фщ. единиц, являются ядерные частицы подуровня Б - нуклоны: протоны и нейтроны. Их массы покоя соответственно равны 1,00812 и 1,00893 усл. единиц. Масса электронов, входящих в состав любого атома, меньше массы нуклонов почти в 2000 раз (5,5·10-6 у.е.). Частицы, промежуточные по массе между электронами и протонами и входящие в состав ядра - Мю- и Пи- мезоны - массивнее электрона в 210 и 275 раз соответственно.

   Образование прочных и компактных атомных ядер из нуклонов - протонов и нейтронов - объясняется возникновением между ними ядерных сил, ядерных связей, ответственными за которые являются мезоны. Нуклоны обмениваются между собой мезонами, превращаясь поочередно то в протон, то в нейтрон, при этом протон может образовывать связи с ограниченным числом нейтронов и, наоборот, нейтрон связывается с определенным числом протонов. Поэтому устойчивость ядер зависит от числа протонов и нейтронов, заполнивших фн. ячейки структуры ядра.

   Число протонов определяет величину положительного заряда ядра, что является важнейшей характеристикой атома, так как от него зависит число электронов в электронейтральном атоме и, в конечном итоге, функциональные свойства каждого атома.

   Масса ядра ("массовое число атома" - A), являющаяся суммой масс всех входящих в состав ядра протонов и нейтронов, практически равна массе всего атома.

   Ядра, содержащие одинаковое число протонов, могут иметь различное число нейтронов, то есть быть изотопами. Почти все химические элементы насчитывают несколько изотопов. Наиболее многочисленны изотопы (по 6-10) у элементов, имеющих заряд ядра от 40 до 56, то есть расположенных в середине периодической системы. Число устойчивых (стабильных) изотопов значительно меньше числа неустойчивых, то есть радиоактивных. Стабильность ядер зависит от числа протонов и нейтронов, входящих в их состав в качестве фщ. единиц, и от их соотношения. В структурах фн. ячеек максимально устойчивых ядер легких элементов на один протон приходится один нейтрон. По мере увеличения заряда ядра рост числа нейтронных фн. ячеек опережает рост числа протонных. В ядрах с A

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238

XML error: XML_ERR_NAME_REQUIRED at line 238


на главную | моя полка | | Диалектика Материи |     цвет текста   цвет фона   размер шрифта   сохранить книгу

Текст книги загружен, загружаются изображения
Всего проголосовало: 1
Средний рейтинг 5.0 из 5



Оцените эту книгу