на главную | войти | регистрация | DMCA | контакты | справка |      
mobile | donate | ВЕСЕЛКА

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


моя полка | жанры | рекомендуем | рейтинг книг | рейтинг авторов | впечатления | новое | форум | сборники | читалки | авторам | добавить
фантастика
космическая фантастика
фантастика ужасы
фэнтези
проза
  военная
  детская
  русская
детектив
  боевик
  детский
  иронический
  исторический
  политический
вестерн
приключения (исторический)
приключения (детская лит.)
детские рассказы
женские романы
религия
античная литература
Научная и не худ. литература
биография
бизнес
домашние животные
животные
искусство
история
компьютерная литература
лингвистика
математика
религия
сад-огород
спорт
техника
публицистика
философия
химия
close

реклама - advertisement




Принцип Паули (принцип запрета)

Паули едва перевалило за двадцать, когда в 1921 году он ворвался на научную сцену, написав обзор, посвященный общей теории относительности, который даже Эйнштейну сообщил кое-что новенькое о его собственной теории. Знаменитый своей прямолинейностью — или просто высокомерием (одни физики считали так, а другие эдак), — Паули был не прочь встать на лекции и сообщить лектору, что он говорит полную ерунду, невзирая на то, кто он и какова его репутация. Самомнение Паули было настолько высоким, что в физическом сообществе о нем был пущен анекдот примерно следующего характера.

Паули умирает и попадает на небеса. Бог спрашивает у него: есть ли в физике что-нибудь такое, о чем он, Паули, хотел бы узнать. Паули отвечает: да, есть; ему непонятно, почему постоянная тонкой структуры, характеризующая силу электромагнитного взаимодействия, имеет значение 1/137,035 999 074, а не просто 1/137. Бог подходит к доске и начинает быстро покрывать ее уравнениями. Спустя короткое время лицо Паули озаряет победоносная ухмылка. Он выхватывает из рук Бога мелок и говорит: «Вот оно! Смотри, в этом месте ты допустил ошибку, и дальше все пошло не так».

Однако, несмотря на его чудовищный эгоизм, Паули был одним из влиятельнейших физиков XX века. В 1930 году он сделал свое знаменитое предсказание о существовании «нейтрино», призрачной частицы, которая уносит с собой энергию, «исчезающую» при радиоактивном бета-распаде. Эта частица поразительно увертлива: сквозь нас каждую секунду проносятся 100 триллионов солнечных нейтрино и атомы нашего тела им нисколечко не мешают. Уже одного открытия нейтрино было бы достаточно, чтобы Паули сделал себе имя. Однако знаменит он прежде всего своим принципом запрета, за который Паули в 1945 году получил Нобелевскую премию по физике.

Принцип запрета, сформулированный Паули, — один из самых удивительных эдиктов во Вселенной, и тем не менее он пользуется дурной славой: даже лучшие попытки физиков объяснить его на понятном всем языке терпели неудачу. Однако не пугайтесь. Первый шаг к пониманию — это снова оценить эксперимент с двумя прорезями и выудить из него кое-что еще, а именно: одно конкретное умозаключение, которое он позволяет сделать, имеет более общий характер, чем кажется на первый взгляд.

Вспомним: если нам удастся определить прорезь, сквозь которую проходит каждая частица, никакого зебрового интерференционного рисунка на втором экране не будет и в помине. Вместо этого частицы, проходящие сквозь прорези, равномерно распределятся по второму экрану. Исследование вопроса: каким образом определение прорези, через которую проходит частица, размывает интерференционную картину, — подталкивает к выводу, что сам акт наблюдения заставляет частицу, несущуюся сквозь пространство, рыскать в полете самым случайным образом. Это рыскание, эта «нервная дрожь» частицы, как и многое другое в квантовом мире, имеет фундаментальный характер, она от природы свойственна всем обитателям микроскопического царства и абсолютно неодолима. Она, эта дрожь, говорит нам: как бы мы ни старались одновременно определить и местоположение частицы, и ее импульс, нашим стараниям положен жесткий предел. Чем точнее мы устанавливаем местоположение, тем неопределеннее наше представление об импульсе. И наоборот. Вот такой компромисс.

С точки зрения волны (но не частицы) этот самый «принцип неопределенности» довольно тривиален. Чем больше волна локализована в пространстве, тем больше в ней ярости и порывистости, и, следовательно, тем большими энергией и импульсом она обладает.

Принцип неопределенности служит для защиты интерференции — основы квантовой «потусторонности». Если у микроскопической частицы есть два варианта выбора и можно обнаружить — пусть даже в принципе, — какой из них она предпочла другому, то исключается сама возможность интерференции, поскольку важнейшее условие интерференции заключается в том, что две вещи должны смешиваться. Однако если не получается обнаружить, какую возможность выбрала частица, то интерференция между волнами, отображающими два варианта выбора, обязательно произойдет.

Это и есть ключевой момент — обобщение результата эксперимента с двумя прорезями. Интерференция происходит, если два варианта выбора неразличимы.

А какое отношение все это имеет к электронам? Самое прямое. Ведь получается, что электроны принципиально не различимы. Еще раз повторю: мы говорим здесь о свойствах микроскопического царства, у которого нет абсолютно никаких параллелей с миром нашей повседневной жизни. Мы можем сказать, что две куклы Барби неразличимы, однако фактически, на молекулярном уровне, это вовсе не так. Даже если взять уровень повыше, отличия все равно найдутся: в прическе одной куклы может быть на несколько волосинок больше, чем у другой, может различаться количество мятых складок на одежде. В нашем повседневном мире нет двух истинно одинаковых объектов. А теперь сравним этот мир с миром микроскопическим. Насколько мы знаем, каждый из триллионов триллионов триллионов электронов во Вселенной абсолютно идентичен всем остальным. У любого электрона, какой ни возьми, нет ни царапин, ни шрамов, ни пятнышек, ни чего-либо еще, выделяющего его из множества других электронов. И эта неразличимость — нечто поистине новое под солнцем.

А ключевой момент — помните об этом! — заключается в том, что неразличимые вещи могут интерферировать друг с другом. И поскольку невозможно отличить один электрон от другого, это имеет важные последствия для атомов, которые как раз электроны-то и содержат.

Вообразим себе некий процесс, в котором участвуют две идентичные частицы, взаимодействующие друг с другом. Это могут быть две любые частицы, лишь бы они были неразличимы. Например, два электрона, или два фотона, или даже два атома золота (на данном этапе наших рассуждений лучше, чтобы пример был как можно более обобщенный, вовсе не обязательно цепляться именно за электроны). В самом общем случае детали взаимодействия между частицами нам не известны. Они могут ходить парой, сталкиваться лоб в лоб, отскакивать друг от друга. Или же могут делать множество других вещей. Главное — мы не знаем никаких деталей.

Предположим, что, как и в эксперименте с двумя прорезями, мы имеем доступ к частицам только до и после их взаимодействия. Ну что же, теперь вообразим, что две частицы стартуют соответственно из точки 1 и точки 2. Затем они взаимодействуют и оказываются в точках 3 и 4. Есть два варианта, как это могло произойти. Частица, стартовавшая из точки 1, может оказаться в точке 3, а частица, начавшая свой путь из точки 2, заканчивает его в точке 4. Или же частица из точки 1 попадает в точку 4, а частица из точки 2 — в точку 3.

Конечно, мы могли бы сказать, какой из двух вариантов произошел, если бы частицы как-то отличались друг от друга — например, если бы одна была зеленой, а другая — синей или если бы на одной была татуировка: «частица А», а на другой: «частица В». Но эти две частицы абсолютно, решительно неразличимы. Таким образом, нет никакой практической возможности определить, какая из возможностей состоялась на самом деле. И это еще одно новое блюдо, которое неразличимые частицы подают на наш стол. Их неразличимость означает, что события, в которых они участвуют, тоже могут быть неразличимыми. А для микроскопического мира это имеет важные последствия, потому что, как уже подчеркивалось ранее, если два события неразличимы, вероятностные волны, отображающие каждую из двух возможностей, могут интерферировать между собой [32].

В нашем случае, когда две неразличимые частицы стартуют из точек 1 и 2, а заканчивают свой путь в точках 3 и 4, можно добиться некоторой точности. Общая высота волны для всего процесса — вспомним: ее следует возвести в квадрат, чтобы получить значение вероятности процесса, — равна сумме высот волн для первого и второго вариантов. Теперь обратимся к теории вероятности. Допустим, кто-то бросает игральную кость и у него выпадает «шестерка», — вероятность этого события составляет 1/6. А если кто-то еще бросает монетку и она ложится орлом вверх, то вероятность такого события —1/2. Если же оба броска происходят одновременно, то вероятность исхода «шестерка + орел» составит 1/6 х 1/2 = 1/12. Именно это происходит с высотами волн, если мы имеем дело с идентичными частицами. Суммарная высота волн в том случае, когда частица из точки 1 попадает в точку 3, а частица из точки 2 заканчивает свой путь в точке 4, составит В (1->3) х В (2->4). Таким образом, высота волны для всего процесса, включающего оба варианта, будет равна В (1->3) х В (2->4) + В (2->3) х В (1->4).

Теперь следует обратить внимание на кое-какие особенности высоты квантовой волны, ассоциированной с событием. Как и в случае с любой другой волной, для ее описания нужны два числа. Одно необходимо для того, чтобы обозначить максимальную высоту, или «амплитуду», волны. А поскольку волна идет то вверх, то вниз, достигает максимума, затем минимума, снова максимума и так далее, то есть не всегда имеет эту максимальную высоту, требуется еще одно число, именуемое «фазой», которое определяет расположение максимумов.

Самый простой способ визуально представить высоту квантовой волны — это вообразить ее стрелой, указывающей в определенном направлении, ровно как стрелка на часах[33]. У стрелы есть «амплитуда» — это всего-навсего длина стрелки часов. А также у нее есть «фаза». Она определяется с учетом конкретного направления: например, стрелка часов указывает на 12. В этой картинке высота волны — просто-напросто высота кончика стрелки над нулевым уровнем: в случае часов нулевой уровень — это линия, соединяющая на циферблате цифры 9 и 3.

Вернемся к двум неразличимым событиям, в которых участвуют те самые две неразличимые частицы. Предположим, точки 3 и 4 — одно и то же место. Тогда высота волны для всего процесса равна В (1->3) х В (2->3) + В (2->3) х В (1->3). Другими словами, высота квантовой волны для всего события — это суммарная высота квантовых волн для варианта, когда частицы движутся «нормально», и варианта, когда они меняются местами.

Предположим, конечная точка находится на одном и том же расстоянии от точек 1 и 2. Получаются две неотличимые возможности, зеркально отображающие друг друга. И если расстояние действительно таково, разумно предположить, что вероятности двух вариантов тоже одинаковые. Иными словами, квадраты высот волн, каждая из которых отображает возможность «своего» варианта, — одна и та же величина.

Итак, стрелы одинаковой длины имеют один и тот же квадрат высоты, независимо от направления, в котором они указывают. Это легко понять, если вы посмотрите на стрелку обыкновенных часов. Квадрат ее длины один и тот же, куда бы она ни показывала — на 2, 11 или 9 часов. А теперь вы вполне можете вообразить стрелы, отображающие квантовые волны каждого из двух вариантов, в виде двух равновеликих стрелок на часах.

Вот здесь-то и зарыта квантовая собака. Не важно, каков угол между стрелами, — квадраты их длин всегда будут одной и той же величиной. Допустим, стрела № 2, отображающая возможность второго варианта, отклонена от стрелы № 1 на х градусов. Вообразим, что мы поменяли местами исходные позиции частиц, входящих в точку 3, — точки 1 и 2. Оп! Стрела № 1 уже выглядит как стрела № 2. Другими словами, она отклонилась от первоначального направления на х градусов. А теперь поменяем местами две исходящие частицы. Происходит то же самое. Стрела № 1 отклоняется еще на х градусов от того положения, которое она занимала, — в сумме получается градусов. Однако перемена сначала исходных мест, а затем исходящих частиц просто-напросто возвращает все к тому, с чего все началось, — восстанавливает первичную ситуацию. Поэтому градусов должны равняться полному обороту, поскольку что-то — что бы то ни было — будет выглядеть как раньше только в одном случае: если это «что-то» совершило полный оборот вокруг оси. Или два оборота. Или три. И далее. Лишь при этом условии стрела будет выглядеть одинаково.

Рассмотрим разные возможности. Если равны полному обороту, тогда х — это половина оборота. Если равны двум полным оборотам, тогда х — один оборот. Если равны трем полным оборотам, тогда х — полтора оборота. Если 2х равны четырем полным оборотам, то х = 2 оборота. Если = 5 полных оборотов, то х = 2,5 оборота. И так далее. Но поворачивать что-либо на полтора или два с половиной оборота — то же самое, что поворачивать на половину оборота. А поворачивать что-либо на два или четыре оборота — все равно что поворачивать на один оборот. Поэтому ясно: существуют всего лишь две возможности. Вероятности двух событий не изменятся, если стрелы, отображающие высоты вероятностных волн для каждого из событий, отстоят друг от друга либо на пол-оборота, либо на полный оборот.

Что это означает в реальном мире? Рассмотрим сначала вторую возможность. Если стрелы отстоят друг от друга на полный оборот, то, понятное дело, они указывают в одном и том же направлении и, таким образом, складываются. Представьте, что вы проходите по стреле пять километров на северо-запад, а затем по аналогичной стреле делаете марш-бросок еще на пять километров, и тоже в северо-западном направлении. Это все равно что пройти на северо-запад по стреле длиной десять километров. Итак, если стрелы отстоят друг от друга на один оборот, высота волны удваивается, а это означает, что вероятность происходящего события в четыре раза больше вероятности каждого события, из которых складывается процесс, по отдельности.

Иначе говоря, какой бы ни была вероятность попадания одной частицы в конкретную точку, вероятность того, что в эту точку попадут обе частицы, в четыре раза больше. Вы, наверное, по наивности полагали, что вероятность может быть только вдвое больше. Ан нет. Оказывается, в случае идентичных частиц вероятность увеличивается. То обстоятельство, что одна частица пребывает в конкретной точке, увеличивает вероятность того, что и вторая частица будет обнаружена здесь же. И между прочим, исход такого события носит куда более обобщающий характер, чем здесь изображено. Тот факт, что одна частица пребывает в определенном «квантовом состоянии» — то есть делает некую определенную вещь, — увеличивает вероятность того, что и другая частица будет делать то же самое. Это можно сравнить с детской игрой «Делай, как я». Или с поведением овечьего стада. Одна овца направляется к дереву в конце поля. Затем к ней присоединяется другая. И еще одна. Глазом не успеешь моргнуть, как уже все стадо устремляется к тому же дереву.

Работа лазера тоже основана на «овечьем поведении». Стоит атому испустить в неком направлении фотон определенной частоты, как сразу увеличивается вероятность, что соседний атом испустит фотон той же частоты и тот полетит «в ногу» с первым. А когда есть два фотона, увеличивается вероятность того, что к ним присоединится третий. В мгновение ока образуется целая лавина фотонов — все мчатся сквозь пространство в одном направлении, и у всех одни и те же свойства. Такая «стимулированная эмиссия» порождает световые волны, бегущие строго «в ногу», их гребни и впадины идеально выстроены, и в этом причина беспрецедентной яркости лазера.

Вот и все, что можно сказать об одной из возможностей, открывающейся двум взаимодействующим неразличимым частицам. А как там обстоят дела с другой возможностью, когда стрелы отстоят друг от друга на пол-оборота? Ну что же, если стрелы разнесены на пол-оборота, они указывают в разных направлениях и, таким образом, гасят друг друга. Вообразите, что вы проходите пять километров по стреле, указывающей на северо-запад, а затем пять километров по стреле, указывающей на юго-восток, то есть в обратном направлении. Вы вернетесь туда, откуда начали свой путь. Поэтому, если две стрелы разошлись на пол-оборота и, следовательно, погасили друг друга, высота волны оказывается равной нулю. Вероятность события отсутствует. Оно просто не произойдет. Точка.

Если две идентичные частицы ведут себя подобным образом, у них нет никаких шансов попасть в одну точку. Говоря более обобщенно, они даже не могут делать одну и ту же вещь. Мало того что их поведение никак не назовешь стадным или «овечьим», они выказывают абсолютно антиобщественный характер и относятся друг к другу с безграничной антипатией. Эта антипатия и носит название «принцип запрета Паули».

Вот ведь что удивительно! Из одного только факта, что две частицы неразличимы, следуют — вследствие интерференции неразличимых возможностей — две поразительно отличающиеся друг от друга модели поведения. С одной стороны, идентичные частицы могут вести себя антиобщественно, а с другой стороны, они могут быть стадом. Вопрос вот в чем: пользуется ли природа этими двумя открывающимися перед ней возможностями? Есть ли частицы, которые демонстрируют стадное, «овечье» поведение, и частицы, глубоко антиобщественные по сути? Ответ: да, есть. Фундаментальные частицы природы действительно распадаются на два отдельных лагеря. Те, которые предпочитают сбиваться в стадо, известны как «бозоны», а те, которые проявляют антиобщественное поведение, именуются «фермионами». Но что определяет принадлежность конкретной частицы к лагерю бозонов или фермионов? Ответ таков: ее «спин».


3.  Не больше двух горошин в стручке одновременно | Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной | Спин, и почему он так важен