home | login | register | DMCA | contacts | help |      
mobile | donate | ВЕСЕЛКА

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add
fantasy
space fantasy
fantasy is horrors
heroic
prose
  military
  child
  russian
detective
  action
  child
  ironical
  historical
  political
western
adventure
adventure (child)
child's stories
love
religion
antique
Scientific literature
biography
business
home pets
animals
art
history
computers
linguistics
mathematics
religion
home_garden
sport
technique
publicism
philosophy
chemistry
close

реклама - advertisement



«Занимательная алгебра»

О том, с каким блеском Перельман добивался «реанимации» чисел, ярко свидетельствует его книга «Занимательная алгебра» (1928 г.; выдержала 13 изданий). Это, как отмечал автор в предисловии, «прежде всего не учебное руководство, а книга для вольного чтения». Понимая, что алгебра - предмет достаточно серьезный, он писал: «Чтобы придать предмету привлекательность и поднять к нему интерес, я пользуюсь в книге разнообразными средствами: задачами с необычными сюжетами, подстрекающими любопытство, занимательными экскурсиями в область истории, математики, неожиданными применениями алгебры к практической жизни и т.п.».

Однажды, говоря об Эйнштейне, Яков Исидорович заметил, что «если бы некий школьник из Цюриха не обнаружил, что алгебра - веселая наука, возможно, ему не удалось бы впоследствии сформулировать теорию относительности». В «Занимательной алгебре» приемы подачи материала - весело, непринужденно - реализованы, быть может, наилучшим образом.

В очерке «Горение без пламени и жара» показано, что процесс горения (окисления) происходит при любой температуре, но при низкой он протекает весьма медленно. Отсюда задача: «При температуре пламени 600 градусов ежесекундно сгорает 1 грамм древесины. Во сколько времени сгорит тот же грамм дерева при температуре 20 градусов?».

Тут, как говорится, задача в задаче. Распространенное мнение таково: дерево горит, когда большой жар. Но горение происходит при любой температуре! Чтобы ответить на вопрос о сроке горения, надобно знать «пятое действие арифметики» - возвышение в степень. Скорость реакции горения при 20 градусах в 258 раза меньше, то есть 1 грамм древесины сгорит за 258 секунд. Много это или мало? «Всего лишь» 10 миллиардов лет! Итак, дерево, уголь горят и при обычной температуре, не будучи вовсе подожженными. Гениальное открытие огня ускорило этот страшно медленный процесс в миллиарды раз.

В новелле «Замок с секретом» читателю предлагается детективная история: надо вычислить, сколько времени понадобится слесарю, чтобы открыть секретный замок сейфа, ключ от которого утерян. Дверь сейфа можно открыть, лишь установив определенным образом 5 дисков с 26 буквами на их краях (то есть подобрав нужный шифр). Алгебра и тут приходит на помощь: возможно 12 миллионов различных комбинаций подбора цифр. Считая по 3 секунды на каждую операцию, слесарю придется потрудиться над замком без малого четыре года.

Вот еще один алгебраический сюжет - он навеян медициной: «Необычайное лекарство» (о гомеопатических снадобьях). «Гомеопатические лекарства приготовляются так. Одну часть лекарственного настоя разбавляют в 99 частях спирта. И так далее - от 18 до 30 раз. Надо думать, что, назначая подобные дозы лекарства, гомеопаты никогда не пытались математически осознать то, что они делают. В противном случае получилось бы совершенно неожиданные результаты. Сколько лекарственного вещества наперстянки, употребляемой гомеопатами при лечении коклюша (30 разведений), содержится в пузырьке, полученном в аптеке? Оказывается, 1 кубический сантиметр лекарства растворен в 1060 кубических сантиметрах спирта. Что же это за объем такой - десять в шестидесятой степени? Даже Солнце с его объемом в 14·1017 кубических километров в 70 тысяч раз меньше того объема раствора, в котором содержится единственная молекула наперстянки!». Тут же следует парадоксальный поворот сюжета: «Если допустить, что даже одна молекула настоя способна исцелить от коклюша, то больной должен проглотить… 70 тысяч пилюль, каждая величиной с Солнце - порция для детского возраста несомненно чрезмерная…». (Сноска к этой медико-математической новелле гласит, что автором подсчета является не кто иной, как всемирно известный датский физик Нильс Бор.)

Яков Исидорович как-то рассказал, что к нему обратился знакомый парикмахер:

- У меня имеется 30-процентный и 3-процентный растворы перекиси водорода, но оба не годятся, так как нужен только 12-процентный. Сколько перепортил раствора, а нужный получить не могу.

- Дайте листок бумаги. Замелькали цифры, иксы, проценты.

- Возьмите два литра 3-процентного и один литр 30-процентного, смешайте, получите нужный раствор.

- Спасибо. Так все просто… За помощь одеколон бесплатно.

Прекрасно прокомментирована картина художника Н.П. Богданова-Бельского «Трудная задача» (находится в Третьяковской галерее). Крестьянские ребятишки, изображенные на полотне, стоят у классной доски, на которой выведено мелом:

(10в2 + 11в2 + 12в2 + 13в2 + 14в2) / 365 = ?

Задача, отмечает Перельман, в самом деле нелегкая, то только для тех, кто не искушен в алгебре. Числа, написанные на доске, обладают магическим свойством:

10в2 + 11в2 + 12в2 = 13в2 + 14в2.

Но сумма первых трех слагаемых равна 365. Следовательно, такова же сумма и вторых слагаемых. Ответ: 2. (Для любителей математики приведено сложное алгебраическое решение задачи.)

Рассказано в книге о легендарном индийском мудреце Сета и его задаче: «Положите на первую клетку шахматной доски одно пшеничное зерно, на вторую - два, на третью - четыре и т.д. Сколько зерен поместится на доске?».

Для решения этой задачи не хватило бы урожая пшеницы во всем мире за 2 000 лет.

С неослабевающим вниманием читается рассказ о завещании известного реакционера царедворца Аракчеева:

1. «Я, нижеподписавшийся, вношу в нынешнем 1863 г. пятьдесят тысяч рублей ассигнациями в Государственный заемный банк с тем, чтобы сия сумма осталась в оном 93 года неприкосновенно со всеми приращаемыми за оную в продолжение сего времени процентами, без малейшего ущерба и изъятия.

2. Сия сумма назначается в награду тому из российских писателей, который через сто лет от кончины в бозе почивающего венценосца, т.е. в 1925 г., напишет на российском языке Историю царствования императора всероссийского Александра I лучше всех…

7. Академия наук определяет награду за удовлетворительнейшую историю - три доли капитала с приращенными через 93 года процентами.

8. Остальная четвертая часть поступает в распоряжение Российской Академии наук…

13. Награда сочинителю состоять будет из миллиона четырехсот тридцати тысяч двухсот двадцати рублей; а четвертая часть, четыреста семьдесят девять тысяч семьсот сорок рублей, поступит в распоряжение Академии».

Итак, рассуждает математик Перельман, в банк было положено 50 тысяч рублей. Аракчеев назначил автору «истории» 1 430 220 рублей, а 479 740 рублей - Академии. Всего, стало быть, распоряжался капиталом почти в 2 миллиона рублей. Но откуда такая сумма? Неужто тогдашние банки платили за помещенный капитал громадные проценты? Нет, всего 4 процента. Суть в том, что 93 года - срок, вполне достаточный (вспомните алгебру), чтобы 50 тысяч превратились в 2 миллиона.

Завещанию мракобеса Аракчеева не суждено было исполниться: в 1917 году династия Романовых приказала долго жить…


«Занимательная арифметика» | Доктор занимательных наук | «Занимательная астрономия»