home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



Z-> Z2 + С,

Где z — комплексная переменная, а с — комплексная постоянная. Итеративная процедура состоит в выборе любого числа z на комплексной плоскости, возведении его в квадрат, добавлении константы с, возведении результата в квадрат, добавлении к нему константы с и т. п. Когда это вычисление выполняется с различными начальными значениями z, некоторые из них будут увеличиваться до бесконечности в ходе процесса итерации, в то время как другие остаются конечными33. Множество Жулиа — это набор всех тех значений z, или точек на комплексной плоскости, которые при итерации ограничены некоторым пределом, т. е. конечны.

Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время.

Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34.

Паутина жизни. Новое научное понимание живых систем

Паутина жизни. Новое научное понимание живых систем

Паутина жизни. Новое научное понимание живых систем

Паутина жизни. Новое научное понимание живых систем

Паутина жизни. Новое научное понимание живых систем

Паутина жизни. Новое научное понимание живых систем

Рис. 6-18. Разнообразие множеств Жулиа. Из Peitigen and Richter (1986)

Богатство и разнообразие форм, многие из которых напоминают живые создания, просто поражает. Однако настоящие чудеса начинаются, когда мы увеличиваем очертания любой части множества Жулиа. Как и в случае с облаком или береговой линией, такое же богатство отображается на всех уровнях диапазона исследования. С увеличением степени разрешения (т. е. когда все больше и больше знаков после точки учитывается при вычислении числа z) появляется все больше и больше деталей контура фрактала и обнаруживается фантастическая последовательность паттернов внутри паттернов — похожих, но никогда не идентичных друг другу.

Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется множеством Мандельбро (рис. 6-19). Это просто совокупность на комплексной плоскости всех точек с константой с, для которых соответствующие множества Жулиа представляют единые связные области. Чтобы построить множество Мандельбро, таким образом, следует построить отдельное множество Жулиа для каждой точки с на комплексной плоскости и определить, является ли это конкретное множество связным или разделенным. Например, среди множеств Жулиа, изображенных на рис. 6-18, три набора в верхнем ряду и один в центре нижнего ряда — связны (т. е. каждое из них представляет собой единую фигуру), в то время как крайние наборы в нижнем ряду разделены (т. е. состоят из нескольких отдельных областей).

Паутина жизни. Новое научное понимание живых систем


Паттерны внутри паттернов | Паутина жизни. Новое научное понимание живых систем | Рис. 6-19. Множество Мандельбро. Из Peitgen and Richter (1986)