home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



Рис. 9-3. Три последовательности состояний в двоичной сети

Как и в системах, описываемых дифференциальными уравнениями, каждое состояние изображается точкой в 12-мерном фазовом пространстве15. По мере того как, шаг за шагом, сеть переходит из одного состояния в другое, последовательность состояний вычерчивает траекторию в этом фазовом пространстве. Для классификации траекторий различных последовательностей применяется концепция аттракторов. Так, в нашем примере, последовательность А, которая движется к стабильному состоянию, связана с точечным аттрактором, тогда как колеблющееся состояние В соответствует периодическому аттрактору.

Кауффман и его коллеги использовали эти двоичные сети для моделирования чрезвычайно сложных систем — химических и биологических сетей с тысячами связанных между собой переменных; такие системы совершенно невозможно описать дифференциальными уравнениями16. Как и в нашем простом примере, последовательность состояний этих сложных систем изображается траекторией в фазовом пространстве. Поскольку число возможных состояний в любой двоичной сети конечно (хотя оно может быть чрезвычайно большим), система должна рано или поздно прийти в то состояние, которое уже встречалось. Когда это произойдет, то следующим шагом система перейдет в то же самое состояние, в которое она переходила и прежде, — поскольку ее поведение полностью детерминировано. Она последовательно повторит тот же цикл состояний. Подобные циклы состояний представляют собой периодические (или циклические) аттракторы двоичной сети. Любая двоичная сеть имеет по крайней мере один аттрактор, но может иметь и больше. Предоставленная самой себе, система в конечном счете закрепится при одном из своих аттракторов и будет в нем оставаться.

Периодические аттракторы, вокруг каждого из которых существует своя область притяжения, — наиболее важные математические характеристики двоичных сетей. Обширные исследования показали, что многие живые системы — включая генетические сети, иммунные системы, нейронные сети, системы органов и экосистемы — могут быть представлены в виде двоичной сети, обладающей несколькими альтернативными аттракторами17.

Различные циклы состояний в двоичной сети могут значительно различаться по длине. В некоторых сетях они бывают исключительно длинными, и длина эта возрастает по экспоненте с ростом числа переключателей. Кауффман определил аттракторы этих исключительно длинных циклов, насчитывающих миллиарды и миллиарды различных состояний, как «хаотические», поскольку их длина практически бесконечна.

Тщательный анализ аттракторов больших двоичных сетей подтвердил то, что кибернетики обнаружили еще в 40-е годы. Некоторые сети хаотичны, поскольку генерируют кажущиеся случайными последовательности и бесконечно длинные аттракторы; другие же генерируют совсем простые аттракторы, соответствующие паттернам высокого порядка.

Таким образом, изучение двоичных сетей дает еще одно представление о феномене самоорганизации. Сети, координирующие совместную деятельность тысяч элементов, могут проявлять высокоупорядоченную динамику.


Рис. 9-2. Простая двоичная сеть | Паутина жизни. Новое научное понимание живых систем | У границы хаоса